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A chirally invariant quark model of the nucleon is studied by the use of a Tomonaga
type of approximation. Static nucleon properties are calculated as a function of the bag
radius and compared against corresponding quantities obtained perturbatively, as indeed
has been done invariably in existing chiral bag calculations. It is found that for some ob-
servables (such as the energy) the perturbation treatment becomes unacceptably inaccurate
for R <0.9 fm. However, electromagnetic properties may be accurately calculated for
much smaller bag radii, provided that a coupling constant (f,) is appropriately adjusted
to give the correct asymptotic pion field strength.

INTRODUCTION

Chirally symmetric bag models,! ~% an extension
of the original MIT bag model,” have attracted a
great deal of interest and attention in recent years.
It is well known that the original MIT bag model
violates chiral invariance. This is remedied in the
chiral bag models by coupling to an explicit pion
field in such a manner as to make the axial-vector
current continuous everywhere, including at the
bag boundary. The (spherical) bag surface acts as
a fixed source, absorbing and emitting pions with a
strength which increases rapidly with decreasing
radius. Different versions of the chiral bag now
exist, distinguished by whether pions are allowed to
penetrate the bag volume,>~> or whether they are
strictly confined to the outside region.>®° Earlier
treatments® of the pion field had been classical, us-
ing a “hedgehog” ansatz. Later, a quantum-
mechanical solution was given by Thomas,
Théberge, and Miller® 3 (the “cloudy bag model,”
CBM) and by DeTar,? based on a linearized La-
grangian and a one-intermediate-meson approxima-
tion. Good fits to low-energy #-N scattering and
nucleon charge radii, magnetic moments, etc. were
obtained. The success of the model for nucleons
has stimulated work on the properties of the
strange baryons®!® and on the P;; nucleon reso-
nance.!! Chiral bags have been particularly in-
teresting for nuclear physicists since the Yukawa
pion tail is present in the theory from the very
outset.

Although the success of chiral models appears
encouraging, one must keep in mind that the ex-
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treme complexity of the full chiral Lagrangian'
describing quarks and pions has necessitated a
number of approximations and assumptions in all
quantum treatments for the sake of tractability.
Therefore, before one can accept the chiral bag as
a quantitively useful model of the nucleon, each
one of these assumptions needs to be checked. In
this work, we examine a key assumption used in all
the current literature to date, namely, that the pion
field is sufficiently weak for a single pion in inter-
mediate states to adequately describe the solution.
While this is certainly true for large bag radii (i.e.,
the weak-coupling limit), the single-meson assump-
tion cannot be adequate for small R.

In this work, we shall consider the chiral bag
model of Refs. 3—5 in a Hartree-type approxima-
tion. In the weak-coupling (large-R) limit and
equal nucleon and A masses (no gluon splitting),
the CBM results are recovered exactly. For small-
er radii, it is shown that the single-meson approxi-
mation very rapidly breaks down for some observ-
ables.

As a starting point, we shall use the CBM Ham-
iltonian as in Refs. 3—5. However, one should
remember that this Hamiltonian is the result of
linearizing in the pion field the original (highly
complicated) nonlinear chiral Lagrangian. For
smaller radii this can no longer be expected to be a
valid procedure and one would expect both a siz-
able contribution from pionic self-interactions as
well as multipion coupling to the surface. Al-
though consistency requires that these terms be
treated to the same order as the others, the compli-
cation is substantial and we shall restrict the
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present treatment to the linear Hamiltonian only.
The effect of including the nonlinear parts is
currently under study and will be reported
separately. However, at the very minimum, the
present work allows an assessment of the smallest
bag radius which may safely be used in a calcula-
tion.

NOTATION AND THEORY

Since several papers on the subject of chiral bags
exist in the literature, we shall recall below only
such details as are needed to establish continuity
and the necessary notation.

A bag theory for baryons which respects PCAC
(partial conservation of axial-vector current) is pro-
vided by the following Lagrangian density:

L(x)= 6(R —r)

i«
EqaaQa —B
+3(Dy ¢~ 5mop?
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In Eq. (1), g, is the quark field operator with a be-
ing the color index (@=1,2,3), the 6 function serv-
ing to confine the quarks within a radius R. ¢
denotes the pion field with bare mass m and B is
the energy density of the vacuum. For definite-
ness, the pion field will be allowed to exist both in-
side and outside the bag. However, the procedure
developed in this paper may readily be used for the
case of pions strictly ontside the bag. For the
present, we follow the customary route of approxi-
mating the highly complicated covariant derivative
D, ¢ by 3,4, and expanding the exponential term
to first order in ¢. The Hamiltonian correspond-
ing to the linearized version of Eq. (1), after pro-

jection onto the space of bare nucleons and A bags,
: 3-5
is

H=Hwyyr+H,+Hjy , ()
where
Hyrr=moyN'N+moATA (3)

Hy=5 [&H$-§+VEVE+m2-§), @

and

i .
Hin =7 [ d*S Guystadata - (5)

In the above, mgy and mg, are the bare masses of
the nucleon and A (i.e., the masses in the absence
of pions) which are defined by the mass formula'?
below,

m0=—3R—+—§7TBR3

0.24a,
R

where ¢, is the color coupling constant, S is the
total spin, and I is the total isospin of the specific
baryon. The last term in Eq. (6) generates a mass
splitting between bare nucleon and A bags. The
subscript « in Eq. (5) is used there and, hereafter,
for the three charge states of the pion. Note that
vs and 7, are quark operators. The integration in
Eq. (5) is over the bag surface since we have only
surface coupling between pions and quarks. In
H;,, the parameter f,, whose value will turn out
to be in the vicinity of the pion decay constant
fr=93 MeV, will be taken to be a free parameter
which, for a given value of bag radius R, is re-
quired to yield the measured strength of the
asymptotic pion field. f is found to be a slowly
increasing function of R.

The analysis of the CBM Hamiltonian [Eq. (2)]
proceeds in Refs. 2—5 by expansion of the pion
field operator $ (T,t) in momentum eigenstates.
Since plane waves are completely delocalized, they
do not constitute a good basis set for describing
the localized pion cloud and spherical symmetry of
the bag. A more suitable expansion, at least for
the bound-state problem, is provided by the follow-
ing unitarily equivalent expansion [a sum over re-
peated indices is implied]:

[=9+S(S+1)+3IT+1)], (6

o1 e dk N
¢,,(r):7_;fo = KUK Yy (P ()

+H.c., (7

where U;(kr) is a complete set of radial functions
obeying the free-pion-field equation

(V24+k*U=0. ®)

[Models requiring the pion field to vanish for

r < R may be handled by requiring that Eq. (8) be
satisfied for » > R and that 7-V¢=0 at the surface.
It may be readily verified that U is then a linear
combination of Hankel functions.] The complete-
ness relations are

2 ® ’ 1 ’
= [, kUGN U = =580 —r) - O)
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and
1

0k k') .

2 2 ,
= [, drr?uitkenUykry =
(10)
It is advantageous to make a further unitary
transformation on the pion creation and destruc-
tion operators,

UmaK)= 3 Fy(k)pima » (1)

n=0

where the F, (k) constitute a complete, orthonor-
mal set of momentum-space wave functions. (It is
also possible, but less convenient, to work directly
with coordinate-space wave functions since one
must then deal with differential equations rather
than algebraic ones.) Hence,

.7 ak F()F, (k) =5, (12a)
and

S B K)F, (k") =8(k —k') . (12b)

n=0

The pion field operator is, then,

L& 1 e dk
¢“(r)_n§o—‘/§ I, = kU, (K)

X Ylm(?)a,,,ma +H.c. (13)

Imagine now that one were to take as a trial
wave function the most general state consisting of
three quarks populating the levels of the bag in an
arbitrary way, and consisting of any number of
pions populating the pion levels labeled by .
Then, clearly, one would be solving the CBM
Hamiltonian exactly—obviously an intractable
problem. However, guided by earlier developments
in the treatment of intermediate coupling between
nucleons and pions, we shall make the so-called
Tomonaga approximation'3~16 by restricting the
sum over » in Eq. (13) to only one term and,
hence, make the following variational ansatz for
the physical baryon state | @),

|@)=(|quarks) | pions in mode n =0))"T,

(14)
where the quark wave function is given by
’ 172
PAGE &
¢ 4R [ 1—joHw)]
jo(cor/R)
X |ia#,(or/R) " 13

In the above, w is the usual quark frequency
(w=2.04) for the lowest-lying state and v, is the
spin-isospin wave function. The superscripts on
the right denote coupling to the quantum numbers
of the baryon, J and T.

The motivation for the ansatz in Eq. (14) is
straightforward. In the weak-coupling limit, the
motion of pions and quarks will be dynamically
decoupled. Furthermore, it will be seen later that
the pion wave function collapses to that of first-
order perturbation theory in this limit. The
present ansatz is just a form of Hartree approxima-
tion in which any number of bosons are allowed to
populate a single state, that state being determined
variationally. The natural tendency for bosons to
cluster into the same state motivates the present
ansatz, in much the same way as the exclusion
principle justifies the nuclear shell model for fer-
mions. .

Within a space spanned by the set of states of
the form Eq. (14), a reduced Hamiltonian can be
defined such that

(N|Hg |[N)=(N|H|N), (16)
which is satisfied by
HR =HMIT+ fo“’ dk a)Fz(k)A:,aAma

@ k.
+yof, dk ~=h(kROF (k)

X[om(@)rg(@a)Apme +H.c.], (A7)

where

(0] 1
(w—1) 4 37foR *

Yo=— (18)

Since only p-wave pions can couple to the quarks
in the no-recoil approximation, we have dropped
all /541 terms and put @, =A,,,. F(k) is the
normalized but otherwise arbitrary wave function
of the single state. The quark operators o,,(a) and
Tq(a) in the interaction part of the Hamiltonian
Eq. (17) can cause transitions between A and nu-
cleon states, as well as cause diagonal transitions.
To determine F(k), we demand that

s — —
——— (N |H = 1
8F(k)< |Hg |[N)=0, (19)
subject to the normalization constraint
(N |N)=1. This readily yields a familiar
form14-l6

A'kj(kR)

Fk)=—F7——,
( ) w1/2(w+l)

(20)
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where A is a free parameter to be varied, being
essentially a Lagrange multiplier. .#” is a normali-
zation factor determined from f dk F(k)=1.

Using the above expression for F(k), the reduced
Hamiltonian takes the form

He(A\)=Hyr+ L) 54t 4
R —HIMIT Lz(}\.)— ma‘*ma
+Go(AM[onla)r,(a)d,,, +H.c.],
(21)
where
Go(M)=yoL (L) /L4 (L) (22)
and
w k%, %kR)
L,(\)= dk——— . (23)
n(M) f° olw+A)"

In the reduced space, the physical state of the
nucleon or A obeys the Schrodinger equation

Hp(A\)|&@)=m4|&), &=N,A. (24)

The relation between the physical masses m, and

bare masses my, is given by
1

<& | H int I a )
Myg=Mog—————— . (25)
(@|a)
Equations (24) and (25) are solved simultaneously
by iteration. my and m, have been taken to be
938 and 1232 MeV, respectively.

Consider, for the moment, the perturbative solu-
tion of Eq. (25) to order 1/f,%. Minimizing
(N | Hg(A) | N'), it may be easily shown that A is
zero and, hence, all static quantities (probabilities,
self-energy, magnetic moments, etc.) agree exactly
to this order with the corresponding quantities cal-
culated perturbatively in the usual way, provided
that the N-A mass splitting is ignored. This makes
the ansatz Eq. (14) plausible. The present scheme
in effect treats the spin-isospin degrees of freedom
correctly but takes account of the pion wave func-
tion in an average way.

Although Eq. (24) is a much simplified reduc-
tion from the full theory, it still cannot be solved
exactly. In fact, much effort has been made in the
past to solve a simpler form of the same equation.
We follow Harlow and Jacobsohn!® by recognizing
that H conserves angular momentum and isospin,
and therefore expand the physical nucleon state
|N) in a quasimeson basis with the correct sym-
metries,

&= 3 35S Caln, L, T,s,t, B | LT(m) |st) 7. 26)

n=0L,T s,t B

In the above, L and T denote the total orbital angular momentum and isospin of n quasipions, s =t =% for
the nucleon and s =t¢ =—Z— for the A, B distinguishes between pionic states with the same n, L, and T, and
the superscripts to the right indicate the total spin-isospin (J,7) of the baryon. N is the maximum number
of quasipions, and an exact solution of Eq. (25) is attained for N = . The complexity of the algebra for
SU(2) X SU(2) limits the practically feasible values of N to be rather small.

With the expansion of the wave function Eq. (26), the problem of solving the Schrédinger equation be-
comes a matrix eigenvalue problem of small dimension with the off-diagonal matrix elements proportional

to

((n 4+ DL'SOHUT'EN? | 0 (@)ra (@A) | (LS)VHTHY(n))
=(= DT =s =1 V2 V2 L'V 2 T']V*W (ss'LL"; 1 )W (tt'TT"; 17)

X (s't'||o(a)r(@)]||st }{(n + DL'T'||AT||LT (n)) . 27

In the above, [s]=2s +1, etc. The reduced matrix element of quark operators in the above equation is cal-
culated by writing down the explicit form of the quark wave functions for the nucleons and A.!” The
second reduced matrix element can be recognized as a fractional parentage coefficient. Bolsterli’s'® scheme
of coherent meson pair states could be usefully introduced here as well. This would enable an extension of
the variational subspace with relatively little effort. However, we find the straightforward expansion ade-
quate since, for very small radii, the product ansatz Eq. (14) would not be valid anyway.

All calculated observables in the present scheme can be expressed in terms of a renormalized coupling

constant ¥ related to y, by the relation

Yo{N | 0m(a)a(a) | N)=7(N |op(a)ra(a) |N) .

(28)
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On inserting the expression for | N') and manipulating suitably, the above gives

Z= i’-: % S C*(nLTsta)C(nLTs't'B)[s'1/[¢'1 W (155 L,s' 3 )W (115 T,t' 3 )(s't'| [a(a)r(a) st ) .
0

The coefficients C are the amplitudes for states
with the indicated numbers, and are the output of
the matrix eigenvalue problem discussed above.

ELECTROMAGNETIC PROPERTIES

The interaction of photons with the chiral quark
bag proceeds through coupling with the nucleon
current jf,

iN=jg+ik, (30)

where j§ is the quark current as calculated from
Eq. (15) and j¥ the pion current. The latter can be
expressed in terms of F(k) and the pion operators
A, and 4,,,.

Because the static model is valid only for low
momentum transfer, the only electromagnetic
properties that have been calculated here are the
nucleon magnetic moments and charge radii. In
Refs. 4 and 5, the formation for calculating elec-
tromagnetic properties in the CBM has been given
in ample detail, and so only the results in the

[ d*r r2j2AF)=e(N | r3 | NYH,(R)G*A)

(29)

rmean-field approximation will be given below.

The calculation of all electromagnetic properties
requires the evaluation of matrix elements of the
current operator Eq. (30) between physical nucleon
states. From the Hamiltonian H (1), one may es-
tablish the following useful identities:

Ay | N)=—Go(d) Lid) ol w B
s30T L,(LA)
Xo,(a)rs(a) | N) 31
and
_ L(A) !
t 1
AL I N) = —Gy(A “A|l—H
Xa,(a)r3(a)|N) . (32)

A rather lengthy calculation, using the above iden-
tities, yields the following result for the contribu-
tion of the pion charge to the nucleon rms charge
radii:

25 8 8
(Ll/Lz-—}\,)z (Ll/Lz—}\,+wA)2 (L]/L2-}L)2—a)A2 ’ (33)
where
4 rodk d |kF(k) | d
HyR)=2 7k d VG F(R)].
W=7 [T e |V eF®I (34)
G (M) is the renormalized counterpart of Gy(A) [Eq. (22)], defined through
G(A)
B ALLI A, 4
GolM) (35)
and
WDA=Mp—Mpy . (36)
The contribution of the quark charges to the nucleon rms charge radii, calculated from Eq. (15), is
[ @*rr2j§(®)=cCy [ dr r[joXwr /R)+j Xwr /R)IO(R —r) (37)

where Cy is to be chosen such that the total (pion + quark) charge is e for the proton and zero for the

neutron.

Turning next to the calculation of nucleon magnetic moments, we first evaluate the pion current contribu-
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tion by calculating the expectation value of the operator u} between physical nucleon states, where

‘&:—zhml fd3re"‘ Tj (1) . (38)
q—>0 q

After expressing the pion current in terms of F(k) and creation/annihilation operators and integrating over
angles, the following expression results:
ul = 1 4/25 4/25
N (1—)»L2/L1)2 [(1 kLz/L )+wAL2/L1]2 (1—AL,/L,)?—(wpL, /L)

0 o0+ +A> 9

The contribution to the magnetic moments from the quark currents is calculated from
uf =po(N | gla)o,(a)Q a)g (@) | N)

=3u(N|g(3)0,(3)Q(3)q(3)|N) , (40)

where Q (a) is the charge of the ath quark (@=1,2,3) and p, is calculated from the quark wave function to
be

_ R(40-3)
= v —1) @
Inserting the form for |N'), u§ may be written as
u$ =po >, C*(nLTsta)C(nLTs't'a’ )M (s't’,st,LT) (42)
and the only nonzero elements of the matrix elements M are
1 1 1
(1) s=t=5, s'=t'=5, L=0, T=0, M= [_2/3 ,
1 1 1 l
(2) s=t=7, S'=t'=7, L=1, T=1, M=+ —4|>
3 3 1 20
B) s=t=3, s'=t'=5, L=1, T=1, M=+ 5>
3 3 1 —4
4) s=t=7, s'=t'=5, L=2, T=1, M= 1l
(43)
3 3 1 O
(5) s=t=7, s'=t'=5, L=1, T=2, M=3 5>
3 3 1 O
(6) s=t=%, s'=t'=%, L=2, T=2, M=75 ||,
1 , ., 3 gv2 | 1
(7) =t :7’ s =t :7’ L:l’ T:l, =—27— [_1”
3 , , 1 8\/5 1
(8) s=t=75, s =t=73, L=1, T=1, ='-2—7— __1’ .

The upper (lower) entry in the above applies to the proton (neutron), respectively. The additional terms, re-
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lative to Eq. (5.23) of Ref. 5, arise from the fact that when two or more pions are allowed in intermediate
states, they may couple to total allowed orbital angular momentum and isospin equal to 0,1,2.

RESULTS

The model discussed in this paper has all its parameters defined when f;, and the bag radius R are speci-
fied. However, f, must be related to the strength of the asymptotic pion field and, therefore, we consider
the expectation value of the pion field at a distance » from the center of the bag,

$,(P)=(N|¢ (D|N)

(0] 5

ki (kR)j,(kr)

_ (N | 7,GF|N) fo"’ dk————1— (44)

 o—1 127%R(1—AL,/L;)

Unfortunately, for A=40, the asymptotic behavior
of the above integral is not of the forme 7.
This can be understood in simple physical terms.
Considered as a coordinate-space wave function,
Eq. (20) contains a piece which goes as e " to-
gether with another piece with a longer range
behavior if A5£40. The latter piece serves to “mock
up” the effect of continuum states and provides a
means for lowering the total energy by including a
small admixture of these states. Hence, the nonex-
ponential behavior is purely an artifact arising
from the single-mode restriction. This dilemma
has also been noted by Bolsterli,'® who argues that
the choice A=0 is necessary in order to cancel the
lowest-order effects coming from states orthogonal
to the single internal mode. Of course, this choice
of A will not, in general, also minimize the energy.
Fortunately, as will be discussed below, the energy
is fairly insensitive in the range 0 <A <A, where
Amin minimizes the energy. Therefore, consider for
the moment the case A=0. From Eq. (14) it readi-
ly follows that the asymptotic strength of the pion
field is given by the coupling constant

o S(mgyR coshmoR +sinhmyR)
w—1 247 (f /mgy)my’R>

2
fﬂNN =

(45)

oo +A)

[

The requirement that f,yy>~0.081 then gives f
(or fp) as a function of the bag radius R.

We turn now to a discussion of numerical re-
sults.

The self-energy, defined as = =my —myy, is
shown in Fig. 1 as a function of the bag radius R.
The parameter A has been set to zero in Fig. 1 and
the asymptotic strength of the pion field is given
by fran>~0.081. The perturbation solution is
shown, together with the matrix eigenvalue solu-
tion of H(0) | N)=mgy |N) for the maximum
number of quasimesons equal to 1, 2, and 3. It
can be seen that for moderately large values of R,
the convergence of the solutions is rapid. Further-
more, the perturbation solution is quite inadequate
for R even as large as 0.9 fm. This has important
implications for several calculations existing in the
literature. For example, the extraction of a, in
Refs. 4 and 5, and the mass corrections and B(R)
in Ref. 9 can be considered adequate only for » > 1
fm.

At this point, the reader is reminded that the
perturbation calculation, which involves a max-
imum of one meson in intermediate states, is not
equivalent to the n=1 calculation, even though
they agree numerically for very weak coupling.
The latter is known as a Tamm-Dancoff approxi-
mation!® and is a diagonalization of the

TABLE 1. The nucleon self-energy calculated for two different bag radii and for both
A=0 as well as A=A,;,. A is measured in units of pion mass and the energy in MeV.

Perturbation n=1 n=2 n=3
A=0 A=0 A=2.4 A=0 A=14 A=0 A=1.1
R=1.0 fm —186 —202 —210 —228 —232 —234 —237
A=0 A=0 A=438 A=0 A=24 A=0 A=15

R=0.75 fm —386 —487 —518 —585 —602 —623 —633
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FIG. 1. The nucleon self-energy arising from pion ef-
fects as a function of bag radius, as calculated using
lowest-order perturbation theory and with n=1, 2, and 3
quasipions.

Schrodinger equation with a normalized wave
function, whereas the perturbed wave function to
second order is well known not to be normalized to
unity. As can be seen, the energy of the n=1 state
is indeed lower than the energy calculated pertur-
batively to second order in G.

In Table I, we show the results for A with a
fixed value of f, both for the case where A=0
and when it is allowed to assume the value which
minimizes the energy. As can be seen, the energy

o o
H [0)]

o
N

bare-nucleon probability

o 1 1 1 1 !
05 06 07 08 09 1.0 Il
bag radius (fm)

FIG. 2. The probability of a bare-nucleon (MIT) bag
as a function of bag radius calculated in different ap-
proximations. For R — o, the probability approaches
unity and pionic effects vanish.

1.0 T al T T T
n= |
perturbation solution
Osr' n=2 ’,4’ -
- n=3

ratio of coupling constants

06 | | | | 1
05 06 0.7 08 09 1.0 I

bag radius (fm)

FIG. 3. Z, the ratio of coupling constants as defined
in Eq. (29) of the text, calculated in different approxi-
mations. For R — o, there is no vertex dressing by
pions and Z approaches unity.

shifts are reasonably small in going from A=0 to
A=Api,. Furthermore, A, decreases with increas-
ing n. We shall, therefore, accept the prescription
of Bolsterli!® and debate this point no more. Thus,
in all subsequent figures A has been set to zero,
and f adjusted to give the correct asymptotic pion
field—irrespective of the order of approximation.
The physical nucleon is a bare bag only part of
the time. Figure 2 shows the probability of find-
ing a bare nucleon as a function of R both as com-

average numper OTf pions

kperturbotion solution

0 L 1 ! ! I

05 06 07 08 09 1.0 L1
bag radius (fm)
FIG. 4. The average number of pions surrounding

the nucleon bag as a function of bag radius, calculated

in different approximations. These numbers are well

within the bounds given by Dodd et al. (Ref. 20).
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FIG. 5. The proton and neutron rms charge radii as
a function of bag radius. The different approximations
considered in previous figures all yield the same result
as a consequence of renormalizing to the correct asymp-
totic pion field. (For an explanation, see text.) Center-
of-mass corrections are not included. The scale on the
left (right) corresponds to the proton (neutron).

puted perturbatively and with n=1,2,3 quasi-
mesons, respectively. As can be seen, the perturba-
tion solution lies closer to the exact solution than
the n=1 solution, even though the latter has a
lower energy. This feature persists for all observ-
ables. In Fig. 3 is shown Z(R) the ratio of cou-
pling constants defined as in Egs. (28) and (39).
For R — «, Z—1, even though the convergence is
rather slow and may not be obvious from the

o
o

T T T !

\/perturbotion solution |

N
o
T

n

proton magnetic moment (nucl. magnetons)
fele}
(8]

06 07 08 09 1.0 LI
bag radius (fm)

FIG. 6. The proton magnetic moment plotted as a
function of bag radius, calculated in different approxi-
mations. The differences between the different approxi-
mations essentially result from the different quark con-
tributions.

-25- —

-2.0r —

perturbation result

neutron magnetic moment (nucl. magnetons)

5 | | L | |
05 06 07 08 09 10 Ll
bag radius (fm)
FIG. 7. The neutron magnetic moment plotted as a

function of bag radius. Since the n=2 and n=3 ap-
proximations cannot be usefully separated on this scale,
they have been drawn together.

graph.

Although the total number of pions surrounding
the nucleon fluctuates, the average number (# ) is
well defined and provides an indication of the im-
portance of pionic effects in the chiral bag. This
number is illustrated in Fig. 4 as a function of bag
radius and the different approximations considered.
In every case, the value of {n) is well within the
bounds given by Dodd et al.?

The proton and neutron rms charge radii are
shown as functions of R in Fig. 5. Because we
have renormalized the asymptotic field strength to
the measured value for all cases, the perturbation
and n=1,2,3 results agree identically. This indi-
cates that, when renormalized, the lowest-order per-
turbative treatment yields answers for the rms ra-
dius well beyond the normally expected range of va-
lidity for R. We have made no corrections for
center-of-mass effects, since there is considerable
ambiguity as to the proper procedure. Neverthe-
less, the results in Fig. 5 are in the vicinity of ex-
perimental numbers {r?) ;/ 2=0.83 fm and
[(r?)}/?| =0.34 fm for R ~1 fm.

Magnetic moments of the proton and neutron
are shown in Figs. 6 and 7, respectively. Here, the
different approximations are all rather close to
each other but are not identical as for the charge
radii. The distinction lies in that for the mag-
netic-moment calculation the core contributes dif-
ferently in each approximation, whereas for the
charge radius calculation the core contribution is
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fixed from the requirement of definite nucleon
charge [see Eq. (37)]. Again, no center-of-mass ef-
fects are included, but the calculated numbers are
in the vicinity of the experimental values p, =2.79
nuclear magnetons and p, = — 1.91 nuclear magne-
tons for R ~1 fm.

CONCLUSION

When examined in an intermediate-coupling ap-
proximation, rather than in lowest-order perturba-
tion theory, the cloudy bag model shows signifi-
cant deviations for quantities such as the self-
energy, probabilities for specific pion states, aver-
age number of pions, and the color coupling con-
stant a., even for rather large bag radii. However,
the charge radii and magnetic moments are essen-
tially the same when calculated either perturbative-

ly or in the mean-field approximation used here,
provided that the coupling constant f is adjusted
to give the correct asymptotic pion field strength.
For small bag radii, the linearized Hamiltonian
used in the chiral bag calculations cannot be a
correct reduction of the full Hamiltonian. The
mean-field approximation developed in this paper
can be extended to the nonlinear terms in the
theory to calculate their importance for physical
properties. This study is currently in progress.
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