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The maximal symmetry of fermions of one generation, SU(16), which includes the left-

right-symmetric Pati-Salam group, SU(4), X SU(2)L, &SU(2)~, as a subgroup, allows the

possibility of a low-energy (Mq —100 GeV) breaking of the left-right symmetry. It is

known that such a low-energy restoration of parity can be consistent with weak-inter-

action phenomenology. We examine different chains of descent of SU(16) that admit a
low value of M~ and determine the other intermediate symmetry-breaking mass scales as-

sociated with each of these chains. These additional mass scales provide an alternative to
the "great desert" expected in some grand unifying models. The contributions of the

Higgs fields in the renormalization-group equations are retained and are found to be im-

portant.

I. INTRODUCTION

In the recent literature a number of grand uni-
fied models have been considered ([SU(4)], SO(10),
SU(16), etc. ) which include the Pati-Salam group
SU(4), XSU(2)L, XSU(2)ii as a subgroup and em-

body the twin features of left-right symmetry and
quark-lepton unification. These modds must of
necessity include additional mass scales M„[of
SU(4), quark-lepton symmetry breaking] and Mii
[of SU(2)z left-right symmetry breaking] and hold
the promise of providing an alternative to the
"great desert" (between the grand unifying and
electroweak mass scales) predicted in models with
no intermediate symmetry breaking.

In this paper we study the SU(16) theory' with

special emphasis towards the possibility of lower-

ing Mz to phenomenologically interesting ' values
of 100—1000 GeV. SU(16) is the maximal sym-

metry of fermions belonging to one generation and
includes the baryon number 8, the lepton number
I., and the fermion number I' among its generators.
In the SU(16) gauge theory these quantum num-

bers are exactly conserved in the symmetric limit
and baryon- and lepton-number nonconservation is
tied to the spontaneous symmetry breaking of the
theory. SU(16) can descend to the low-energy
SU(3), XU(1)E~ symmetry through various distinct
chains, many of which have already been dis-
cussed. ' The model allows novel decay modes of
the proton (p~e sr+sr+, etc.) and, depending on
the chain of descent, the different decay modes

may coexist and N-E oscillations may be allowed.
The low-energy unbroken symmetry

SU(3), XU(1)E~ is obtained after the breaking of

the SU(2)L, XSU(2)a left-right symmetry. The
SU(2)t breaking follows the standard Glashow-
Weinberg-Salam pattern and takes place at a scale
ML (-100 GeV). The observed parity violation in
the weak interactions requires the right-handed
weak bosons to be much heavier than ML. More-
over, in grand unified models, the intermediate
mass scales (e.g., Mq) affect the low-energy predic-
tion of sin 0~. A consistent solution in a grand
unified theory with the usually accepted value of
sin 0~-0.23 requires Mz ) 10 GeV. However, it
has recently been demonstrated by Rizzo and Sen-
janovic that if the neutrinos are Majorana parti-
cles, with the right-handed neutrino heavy () 100
GeV), then another scenario is also allowed by
phenomenology. In this alternative situation Mz
can be low (-100 GeV} and simultaneously sin Hs
high (-0.27). In this paper we investigate the em-
ergence of this latter possibility from an SU(16}
grand unified theory.

The paper is structured as follows. In the next
section we give some group-theoretic details of the
SU(16) model. In Sec. III, we consider one chain
of descent in detail and discuss the predictions of
the model. In Sec. IV, we present the results for
other chains of descent. We end with a concluding
summary. The implications of the model for pro-
ton decay are discussed in another paper.

II. SU(16) REPRESENTATIONS
AND SUBGROUPS

The ferrnions of one generation transform as a
fundamental representation (16) of SU(16) and all
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other irreducible representations may be generated

by taking its Kronecker products. Some of the
SU(16) Kronecker products are listed in Table I.
If we denote the fundamental representation by f
(= 16) and its conjugate by g~ (:—16), then the
other representations we find useful in this work
are the adjoint f&—„5Iif—rr(=—255), p( '~» (—= 136),
f(( '~»'(r' » l (=—5440), and the 18 240 representa-
tion. The last representation is generated in the
Kronecker product

136X136=1+25S+18240 .

We will denote just the 18 240 piece of the above
product by g re. I I denotes symmetrization; [ ]
denotes antisymmetrization.

Some of the important subgroups of SU(16) are
SU(8) XSU(8) XU(1)„SU(4),XSU(4), XSU(2),
XSU(2)i, XU(l)~, and SU(4), X SU(2)l X SU(2)„.
In Table II, we present the decomposition of
SU(16) representations under SU(8) x SU(8)
XU(1)F, while in Table III we give the correspond-

ing decompositions under SU(4)1. XSU(4)g
XSU(2)I. XSU(2)z XU(1)~. We can determine the
decomposition of SU(16) representations under the
Pati-Salam SU(4), XSU(2)L, XSU(2)& subgroup by
using Table III in conjunction with Table IV,
which lists the decomposition of SU(4)l, X SU(4)ii
under SU(4)L +ii. Table V lists the decomposition
of some useful SU(4) representations under SU(3)
XU(1).

In the subsequent sections we make repeated use
of these tables for two main purposes. To choose
the Higgs scalars to break the symmetry at any
stage (G„~G„+i, G„D6„+i},we have to look for
a Higgs field which is a singlet under the surviving

symmetry (6„+i)but is a nonsinglet under the
higher symmetry (G„}. The tables provide a useful

guide for this selection. The other important use
of these tables is in the evaluation of the scalar-
field contributions to the P functions. This point
is discussed in detail in Sec. III and will not be ela-

TABLE I. Some SU(16) Kronecker products useful
for this work.

16)(16=120+ 136
16' 16=1+255
136X 136=1+255+ 18240
136)(136=3876+5440+ 9180

borated here. Needless to say, these tables can be
of use for other grand unifying groups which in-
clude SU(8) XSU(8) or SU(4)L, XSU(4)a XSU(2)L
X SU(2)R as subgroups.

III. A TYPICAL CHAIN OF DESCENT

In this section we discuss in detail the following
chain of symmetry breaking (chain I):

SU(16)~SU(4)L, x SU(4)g xSU(2)l.
M„

XSU(2)ii XU(1)p

~SU(4), X SU(2), XSU(2),
M„

~SU(3), XSU(2)L, XSU(2)g
M

XU(1)s

SU(3), X SU(2)l XU(1)r
M~

~SU(3), X U(1)FM .
ML

Using Tables II, III, and IV, the Higgs fields re-
quired for the spontaneous symmetry breaking at
any stage can be determined. In Table VI we have
tabulated the different Higgs fields along with
their transforlnation properties.

TABLE II. Reduction of some SU(16) representations under SU(8)L )&SU(8)~ )CU(1)z.

16=(8 1)&+(1,8)
120= (8 8)p+(28 1 )2+ ( 1 28)
136=(8 8)p+(36 1)2+(1 36)
255=(1 1)p+(63 1)p+(1 63)p+(8 8)2+(8 8)
5440=(36 36)p+(28, 28)p+(168, 8)2+(8 168) 2+(336,1)4+(1,336) 4

18240=(63 63)p+(1 1)p+(1~63)p+(63 1)p+(1232 1)p+(1 1232)p+(280 8)2+(8 280)2
+(8,8)2+(8,280) 2+(280, 8) 2+(8,8) 2+(36,36)4+(36,36) 4
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TABLE III. Reduction of some SU(16) representations under SU(4)L, X SU(4)z XSU(2)L, XSU(2)g XU(1)F.

16= (4, 1,2, 1)i+ (1,4, 1,2)
120=(4,4, 2,2) +(10,1, 1, 1) +(6,1,3, 1) + (1,10,1, 1, ) +(1,6, 1,3)
136=(4 4 2 2)p+(10, 1 3 1)z+(6,1, 1, 1)z+(1,10, 1,3) z+(1,6, 1, 1)
255 =(1,1, 1,1)o+(15,1, 1, 1)p+(15,1,3, 1)p+(1,1,3, 1)p+(1,15,1, 1)p+(1,15, 1,3)p+(1,1,1,3)p+(4,4,2,2)z+(4, 4,2,2)
5440=(10, 10,3,3)p+( 10,6,3, 1)p+(6, 10, 1,3)p+(6, 6, 1,1)p+( 10,10,1,1)p+( 10~6, 1,3)p+(6, 10,3, 1)p+ (6,6,3,3)p

.+ (20~4~4~2)z+ (20~4~2~2)z+ (20 ~4~2~2)z+ {4~4~2~2)z+(4~20~2~4) z+ (4~20~2~2) z+ (4~20 ~2y2) z + (4~4~2~2)
+{45,1,3, 1)4+(35,1, 1,1)4+(20",1,1, 1)4+(15,1,3, 1)4+(1,1,1,1)4+(1,45, 1,3) 4+(1,35, 1,1) g+(1,20",1,5} 4

+(1,20",1, 1) 4+(1,1», 1,3) 4+(1,1,1,1) 4+(20",1,5, 1)4
18240={1» 1»~ 1i 1}o+{1»~ 1»~ 1~3)o+(1» 1 1~3)o+(1» 1»3~ 1}o+{1»~ 1» 3 3}o+{1»i 1~3 3}o+(1~1» 3 1}o+(115,3,3)p

+(1,1,3,3)p+ 3(1,1,1,1)p+2(1,15, 1, l)p+3(1, 15, 1,3)p+(1, 1, 1,3)p+2(15, 1, 1, 1)p+ 3(15,1,3, 1)p+(1,1,3, 1)p
+{84 1 5 l)o+(84 1 3 1)o+(84 1 1 1)o+(45 1 3 1)o+(4»1 3 1)o+(20 ~1~1~1)o+{15~1~5~1}o+{1~1~5~1}o
+{1~84' 1&5)0+(1~84~ 1&3)o+{1~84~1~ 1}o+(1~45&1~3)o+(1 45 1 3}o+(120" 1 1)p+(1 15~ 1~5)o+( ~&1~ 1&»}p

+(36,4,2, 2)z+ (36,4,4,2)z+ {20,4,2,2)z+ (4,4, 4, 2)z+ 3(4,4,2,2)z+ (4, 36,2, 2)z+ (4,36,2,4)z+ (4,20,2,2)z

+(4~4~2~4}z+{4,36,2 2) z+(4, 36,2,4) z+{4,20, 2,2) z+(4~4~2~4}—z+3(4,4, 2,2) z+(36&4~2 2}—z

+{36,4,4, 2} z+(20, 4,2, 2) z+(4,4,4, 2) z+{10,10,3,3)4+(10,6,3, 1)4+(6,10, 1,3)4+(6,6, 1,1)4+(10,10,3,3) 4

+(10,6,3, 1) 4+ (6, 10,1„3) 4+ (6,6, 1, 1)

A. The renormalization-group equations where for the group SU(N) (N=2, 3, . . .)

The different symmetry-breaking mass scales
cannot be chosen arbitrarily. The predictions of
sin Os. and a, at low energies (calculated using the
renormalization-group equations) are dependent on
these intermediate mass scales. %e use the stand-
ard renormalization-group equations

, N ——, g—T(Rf)
16m

1 1 M

g (m) g2(M) m

TABLE IV. Decomposition of SU(4}1.XSU(4}& under
SU(4)L+&. The three 20-dimensional representations
correspond to the Dynkin labels 20=(110), 20'=(300),
and 20"={020).

Here T(R) is the quadratic Casimir invariant cor-
responding to the representation R. The three
terms in the right-hand side of Eq. (2) represent
the gauge boson, the fermion, and the Higgs scalar
contributions, respectively. For the U(l) group
there is no non-Abelian gauge-boson coupling and
the first term is absent. The only other ingredient
in the calculation is the boundary condition, i.e.,
the relationship among the coupling constants at

4X4=1+15
4X4=10+6
4X20=6+ 10+64
4X 20' = 10+70
4X 36=$0+64+70
6X6=1+15+20"
6X 10=15+45
10X10=20"+35+45
10X10=1+15+84
15X 15=1+15+15+20"
+45+45+ 84

TABLE V. Decomposition of some SU(4) representa-
tions under SU(3) XU(1).

4=(3,v'1/24)+ (1,—v'3/8)
6=(3,—V 1/6)+(3, V'1/6)
10=(1,—V 3/2)+(3, —+1/6)
+16,V 1/6)
15=(1,0)+(3,V'2/3)+(3, —&2/3)
+(8,0)
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M„. For the SU(16) theory these are

g4L(M )=g4R'(M )=g/~2

g2L(MU ) g2R(MN ) g/2 '
(3)

Using Eqs. (1), (2), and (3) it is straightforward
to calculate the values of a, (=g3

—/4n. ) and
sin 8~ (—:e /g2 ) at low energies. It turns out
that the fermionic contributions cancel out in the
final expressions. In including the Higgs-field con-
tributions we use the Appelquist-Carrazone decou-
pling theorem and the extended survival hypoth-
esis of del Aguila and Ibanez. ' Consider the chain

Go G) —+G2 G„)~G„.
M) M2 M„ i M„

Let the Higgs scalar H; ((H; )+0) responsible for
the symmetry breaking 6;—+G;+ i be a member of
the irreducible representation R; of G;. It is, of
course, a singlet under G;+~. R; is contained in
some irreducible representation, say R;o, of the

group Go. Then

R;ODR;)DR;2. . . DR;(; ))DR;,
where R,J (i &j) is some representation of GJ
(DG;) which contains the representation R; of G;.
Now R;~z ~~ contains, besides R,J, other irreducible

representations of GJ. According to the extended
survival hypothesis, these fields which are con-
tained in R;~J i) but not in R,J acquire masses of
the order of MJ and do not contribute to the
renormalization-group equations beyond this mass
scale.

As a specific example, consider the Higgs scalar
(Table VI) which is responsible for the symmetry
breaking

SU(4)L XSU(4)a X SU(2)l. X SU(2)ii X U(1)F

~SU(4), X SU(2)1. X SU(2)a .
M„

o= ( —,—sin 8~),24~
11a ln10

3m Su
11 lnlo

'
3

(4b)

In Table VIII, we have listed the values of u and A,

for different values of sin 8s and a, .
o. and A, are chosen so that they vanish at M„.

Their low-energy values obtained using the
renormalization-group equations are functions of
the intermediate mass scales. For any mass scale

The vacuum expectation value, (0
~
X

~
0)@0, is a

singlet under SU(4), XSU(2)1 X SU(2)s. From
Table III, it can be seen that 7 is contained in the
representation (6,6,1,1)4 under SU(4)I XSU(4)ii
X SU(2)L, XSU(2)g XU(1)~, which itself is a
member of the SU(16) multiplet P, &'fI. According
to the extended survival hypothesis, all members of
the (6,6,1,1)4 multiplet acquire masses of the order
of M„, while all the other fields in g z'fj get
masses of the order of M„. According to the
Appelquist-Carrazone decoupling theorem, these
latter fields (mass M„) do not contribute in the
renormalization-group equations at all while the
members of the (6,6,1,1)4 multiplet contribute only
between the energies M„ to M„and decouple from
then onwards. Using Table VI, it is simple to cal-
culate all the Higgs-field contributions in the
renormalization-group equations. For convenience,
we have listed in Table VII the values of the qua-
dratic Casimir operator for the groups and repre-
sentations used in this paper.

The low-energy values of sin 8~ and a, are cal-
culated in the standard manner. %e find it con-
venient to introduce two variables o and A, related
to sin 8~ and u, through

TABLE VI. The Higgs fields that break the symmetry according to chain I. Note that a singlet under any group is
also a singlet under all subgroups. In this table the U(1) quantum numbers are always written as subscripts. The SU(n)
groups are written as n with a subscript to denote the chiral nature (if any), e.g., SU(3) XSU(2)L X SU(2)& &&U(1)& I is
written as 321.2~1& I..

Symmetry-breaking
mass scales Higgs field

255

136

136

(1 11 1)p

(6,6, 1, 1)4
1 1)p

(1,15,1,1)p

(1,10,1,3)
(10,1,3, 1) 2

(4,4,2, 2)p

(1,1,1)

(15,1,1)

(10,1,3)
(10,3, 1)

(1,2,2)

3 2L.2z la

(1,1,1)p

(1,1,3)~pyg
(1,3, 1)v 3'

(1,2,2)p

( 1 3)~3/5
2)++3/20

(1)p

(1)p
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SU{4) representation

T(R)
10

3

15

4

SU(3) representation

T(z)
3 6
1

2

5

2

SU(2) representation

T(z) 1

2

TABLE VII. Values of the quadratic Casimir opera-
tor for different groups and representations found useful
in this work. The representations are hsted by their
dimensionalities.

other (Ng ). In the following calculation we set

N~ ——N~ ——1. We also choose 1Vg =1. This corre-
sponds to one 136 and one 136 multiplet of Higgs
fields. It has recently been shown'e that with two
such multiplets it is possible to give a natural ex-
planation of the expected masses of the mirror fer-
mions [which have to be introduced in an SU(16)
theory to cancel triangle anomalies]. We have tak-
en all Higgs fields to be complex; this introduces
an additional factor of 2 in the Higgs-field contri-
butions in Eq. (2).

In our analysis nl. has been set to 2 (i.e.,
Ml. -100 GeV}. Low-energy restoration of parity
(Mz —100—1000 GeV) requires ns to be between 2
and 3. Adding Eqs. (5) and (6) (N& Nz N——p =——1,
nr ——2),

56 34 180(0'+A, ) ]1 nx+ ]1 nR 11 (7)

M; we introduce the variable n; through M; =10 '

GeV.

B. The results

2 12 8
0 =—(6+ „Ng ——„—Nr ——„Ng)ng

+ (4 „N~ ——„N—r—)n„

+(4+ „Ng ——„Ng)—nx

15 3+(3——
22 Ng )ns —(5—„Ng }nL, , —(5)

A, =(6+—„Ng ——„Nx ——„Ng)ng

(4 „Ng ———„—N—x)n„+( „Ng+ „Ng)n—x-
+(1 „Ng)nz (3+——„Np }nL, . —(6)—

Here N~ and Nx are the number of g-type and I-
type fields. h, L and P (6z ) come from the 136
(136) representation of SU(16). We choose the
number of such representations to be equal to each

In terms of the variables introduced in the previ-
ous subsection we find for the symmetry breaking
of chain I,

28 17 73„n„+—„ng ——„—&A, (=40) . (9)

The two sides are equal if n„=n„=n„The.
bounds on n„ that follow from the above relation
are

ng ——2: n„&17.8,
n, =3: n„&17.4. (10)

Equations (8) and (10) together show that only a
small range of M„ is allowed for sin 0~ ——0.27 and

From Table VIII it can be seen that for the range
« variation of u, usually entertained, it is a good
approximation to choose A, =40. The increase of 0.

with decreasing sin 8~ is more rapid. Using Eq.
(7), we can get the following bounds:

n~ ——2: sin 0~ &0.23,0.25,0.27

~n„&20.8, 19.3, 17.7,
nz ——3: sin Hg &0.23,0.25,0.27

~n„)20.2, 18.7, 17.1 .

Note that n~ ——2 and sin Og &0.25 or nz ——3 and
sin Hip &0.23 requires M„&Mpi, & j ( 10 GeV)
and are hence inadmissible.

Furthermore, since n„&n„& n„, Eq. (6) implies

TABLE VIII. cr and A, for different values of sin'8& and a, . Note a{M~),$9.

sm Op 0.23
55.7

0.24
51.8

0.25
48.0

0.26
44.2

0.27
40.3

0.28
36.5

a, 0.10
38.1

0.11
39.0

0.12
39.7

0.13
40.4

0.14
41.0

0.15
41.4
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sin 8~ (0.25 ruled out even for nx ——3.
It is clear from the above discussion that in the

allowed situations low-energy restoration of parity
requires the scale of quark-lepton unification (M„)
to be high. A similar analysis of Eq. (7) with low
M„(i.e., n„-4—5) indicates that the opposite is
also true, i.e., low-mass quark-lepton unification
goes together with high values of Mz. In passing,
we note that in view of the above results, N-N os-
cillations will be suppressed in this chain of des-
cent of SU(16).

In Table IX, we have listed a number of solu-
tions that are allowed by Eqs. (5) and (6). All the
solutions, except the last two, have Mz ——10 or 10
GeV. The last two solutions with high Mz are in-

cluded for the sake of comparison with the low-

Mz results.
It is easy to convince oneself that if Higgs-field

contributions are neglected, then no consistent
solution of Eqs. (5) and (6) can be found with low

M~. In that situation, in place of Eq. (7) one has

0+A, =4n„+4ng —8nL

and

nz ——2: sin 0~ &0.23,0.25,0.27~n„&26,24,22,

n~ ——3: sin 8~ &0.23,0.25,0.27~n„&25,23,21 .

Thus for this chain of descent of SU(16), only
when the contributions from the Higgs scalars are
retained does one have the possibility of low-mass

parity restoration.

IV. OTHER CHAINS OF DESCENT

In the previous section, we have discussed in de-
tail one chain of symmetry breaking of the SU(16}

group to the low-energy unbroken SU(3})&U(1)EM
symmetry. In this section we consider a few alter-
native scenarios.

A. Chain II: The possibility
of chiral color

SU(16)~SU(4)L, XSU(4)x XSU(2)L XSU(2)x
M„

~SU(3)g xSU(3)g XU(1)L
M„

XU(1)x XSU(2)L X SU(2)g

~SU(3), XU(1)~ I, X SU(2)r. X SU(2)~
M„

SU(3), XSU(2) XU(i)r
M~

~SU(3), XU(1)EM
ML

If SU(16) breaking follows the above pattern of
descent, then the chiral SU(4) groups are broken
first (at M„) to chiral SU(3) (color) and U(1)
(8 1.) groups. A—t a lower mass scale M„, the
symmetry is further broken; the axial-vector gauge
bosons become massive and only the vectorial
SU(3), and U(1)z I. pieces survive

The Higgs fields that break the symmetry in this
fashion are exactly the same as in chain I (see
Table VI) except that in this case the scalar g picks
up a vacuum expectation value at an energy scale
M„which is now higher than the scale M„at
which the field X gets its vacuum expectation
value. To include the effect of the Higgs scalars in
the renormalization-group equations, it is now
necessary to know the decomposition of SU(4)L
&( SU(4)x representations under SU(3)1 XSU(3)x

TABLE IX. The results for chain I. Higgs-field contributions are included. All masses

are in GeV.

Mass M~ Mass M„ Mass M„ Mass M„ sin ega

10
10
10
10
10
103

10
10
1010

1.12x 10'

5.13x10"
2.57X10"

1017

2.75 X 10"
2X10"

6.31x 10'
2.66x 10"
3.59x10"

2X 10"
1.12X 10'

5.13X10"
2.57X10"
1.5PX10»
2.75x10"

5X10"
6.40X10"
2.66x 10"
2.51X10"

2x 10"
1.12X 10'

5.13X10"
2.57X10"
1.50X 10"
3.98X10"
6.31X10"
6.40X10"

1017

3 98X10'
2x10"

1.12X10"

0.271
0.267
0.28
0.275
0.276
0.275
0.28
0.278
0.238
0.223
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XU(1)1. XU(1)~ . These decompositions can
be read off from Table V which lists the SU(3)
XU(1) content of the relevant SU(4) representa-
tions.

The low-energy values of sin 8~ and a, can be
calculated in the standard manner. In terms of the
variables o. and A, and in the notation introduced in
the previous section, we get

o = —(6+—„Ng „—N—
~ „—N—&)n„

+(8+N~ „N—
&
—„N—r—)n„

3 15——„(Ng+2Nr)n„+(3 —
22

N—g }n„
3—(5——

22 Ng }nL,

A, = (6+ „Np ———„Ng ——„Nr)ng

+ (—„Ng +—„Nr + „Ng )n—„
—(4+ „Np —„—N„)n„—

The first two and the last two solutions of Table
IX (chain I) which have n„=n„=n„are also solu-
tions for this chain, since in that limit chains I and
II are identical. We have included one example of
low-energy parity restoration that is allowed in this
chain when Higgs-field contributions are ignored.
Note that in this case M„=M„ is very high as is
sin Hgr.

B. Chain III: The possibility
of M +&&M,

SU(16)~SU(4)L, X SU(4)g X SU(2)l. X SU(2)~

~SU(4), XSU(2)L XSU(2)g
M„

SU(3), XSU(2)& XSU(2), XU(1)s &
M„

+ (1—„Ng )n g
—(3+ „Ng )—nl. . —(12) ~ SU(3), XSU(2)z XU(1)z XU(1)z

M
As a consistency check we note that chain I and
chain II become identical if one chooses M„=M„
and Eqs. (11}and (12) become identical to Eqs. (5)
and (6), respectively, in this limit.

As discussed already, we are interested in the
case where N~ ——N~ ——Ng= j. and NL,

——2. Com-
bining (11) and (12) we find that in this situation

104 48 34 1800 +At 11 n~ 11 ng + 11 ng 11 ~

Since for this chain n„&n„, we note that the lower
bounds on n„ that are obtained by setting n„=n„
are exactly the same as those obtained for chain I
[using Eq. (7)j. In particular, N Noscillation-s are
also suppressed in this chain. The upper bounds
on n„obtained by setting n„=n„=n„ in chain I
[see Eq. (10)] become bounds on n, for this chain.

In Table X we have presented various solutions
that are allowed in this chain of descent of SU(16).

~ SU(3), XSU(2)L, XU(1)r
M

R

~SU(3), XU(1)EM .
ML

This chain of symmetry breaking is somewhat
similar to chain I discussed in Sec. III. The only
difference is that the SU(2)z symmetry breaking
takes place in two stages. At M~+, SU(2)~ is bro-

ken to U(1)~', the charged right-handed vector bo-
sons 8'p$ pick up masses of this order. U(1)R is
broken at a lower mass scale M 0 (100—1000
GeV) which is the mass scale of the second
neutral-vector boson Z2. M + p&ML also implies

gz &gI. . (In the context of SO(10) grand unifica-
tion such a situation has been investigated by Raj-
poot. ") This chain of descent thus leads to a left-

TABLE X. The results for chain II. The last entry is a solution where Higgs-field contri-
butions have been dropped. Masses in GeV.

Mass M„ Mass M„ Mass M„ sin28~

10
10
10
10
10
10
103

1015

2.75X10"
1015

2.66X 10'
1014

1015

5.62X10"

1.36X 10"
2.75X10"
1.26X 10"
2.66X 10'6

2.66X1015
7.94x10"

10"

1.36X10"
3.98X 10"
1.41 X 10'

1017

2.66X10"
1.12x10"

1019

0.279
0.275
0.28
0.28
0.278
0.278
0.278
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3 5—(5 —„Ng „N )n—l—,— (13)

A, =(6——„N» ——„Ng+ „Np+ —|—|N~)n„

—(4—„N» „Ng )n„—+ ( —„—Ng+ „N—g)n—„
3 1 1+(1—
i2 Ng —

)) N~ }nx+—«Ngnii p

—(3+—„Np+ „N )ni. .— (14)

In the case that we examine in detail,
N» N&=Ng =N——=1 and nL

——2 (i.e., Ml. —100
GeV), we get from Eqs. (13) and (14)

56 34 4 172+ 11 X+ 11 g+ 11 ~gO

right asyinmetric (gL Qgii) theory with the charged
right-handed vector bosons much heavier than the
corresponding left-handed ones and the two
neutral-vector bosons (which have masses of the
same order}. It has been found that such a theory
is also in agreement with all neutral-current data
with sin 8~ in the range 0.23 —0.28.

The Higgs scalars required for this symmetry-
breaking chain is the same as in chain I, except
that one needs an additional scalar field for the
symmetry breaking at M~+. This breaking can

take place through the Higgs field ox (C255)
which transforms as (1,1,1,3)p under SU(4)L,

&& SU(4)n && SU(2)L &&SU(2)a XU(1)z. To maintain
left-right symmetry in the unbroken Lagrangian,
we also include a field oi (C255} which trans-
forms as (1,1,3,1}p.

Using the renormalization-group equations we

get

o= —(6—„N» ——
„,
—Ng+ „Ng+ „—N )n—„

+(4 „N» —„N—~ )n„—+—(4+ „N~ „—N& }n„——
9 3 3+ ( 3—» Np „N )—n„—+ «Ng n„o—

Using n„&n„+, we can set the following lower

bounds on n„ from Eq. (15):

n 0——2, sin Op &0.23,0.25,0.27

~n„& 13.8, 12.8, 11.8 .

On the other hand, from Eq. (16), using

n„&n„&n„&n„+and setting n 0
——2, we get

n 0——2, sin gg (0.23,0.25,0.27

(17)

—+n„& 13.29, 13.69, 14.08 . (18)

V. SUMMARY AND CONCLUSIONS

Inequalities (17) and (18) cannot be simultaneously
satisfied for sin Hn (0.23. In the allowed cases,
M„ turns out to be very large (-10' GeV) so that
N-N oscillations are again suppressed.

In Table XI, some of the solutions allowed
within this chain of symmetry breaking are exhi-
bited. Note that the additional fiexibility in this
chain makes it possible to accommodate as low
value of sin28n as 0.235. The unification mass

M„ is also comparatively lower in this case.
%e do not present any results with the Higgs

contribution ignored. This is because in that situa-
tion the additional mass scale Mzp drops out from

Eqs. (13) and (14) (its coefficients are proportional
to Ng ). The equations for this chain are then
identical to those of chain I and, as discussed in
Scc. III, do not allow any solution with low Mq.

An alternative situation with M + &M„can be

envisaged. %e do not discuss this case except to
point out that exactly the same bounds set by (17)
and (18) apply in that case to the mass scale Mn+.

A variant of chain II with Mn+QMxp can also

be considered. The results are qualitatively the
same and we do not present them here.

50 31 17 1 75
11 u 11 v + 22 g + + ~ ll gp ll ~ (16)

We have examined the possibility of a low-mass
restoration of parity in the framework of the

TABLE XI. Results for chain III. Masses in GeV.

Mass M„p Mass Mz+ Mass M„ Mass M„ Mass M„ sin28~

10
103

10
10
10
102

2.68' 10»
2.85' 10'

1010

103

10
1012

2.68' 10'
2.85X 10»
2.51)& 10'4

2.42 &( 10'
5 && 10'2

10"

2.68 X 10'
2.85 )( 10'
2.51 )& 10'
2.42' 10"

1013

7.85g10"

2.68)& 10'
2.85' 10»
2.51)(10'
2.42)& 10'6

3.68' 10»
7.85' 10'4

0.235
0.235
0.25
0.28
0.257
0.267
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SU(16) model of grand unification. It has been
noted recently that such a low-energy breaking of
left-right symmetry is consistent with present
data. ' If in the upcoming experiments at LEP,
ISABELLE, or the pp collider, any evidence of a
low-mass 8'z is seen, then that would rule out
models of grand unification which cannot accom-
modate left-right symmetry, e.g., SU(5). One
would still have to distinguish between the dif-
ferent models which can allow such a situation,
e.g., SO(10), SU(16), and larger groups. In this pa-
per we have presented the detailed predictions of
SU(16) for several chains of symmetry breaking.
The implications of these results for baryon-
number violation will be discussed in a companion
paper.

We find many different allowed scenarios in-
cluding the possibility of a two-step breaking of
the right-handed symmetry. In this latter situation
the charged right-handed vector bosons are super-
heavy while there are two light neutral-vector bo-
sons. I.ow-energy parity restoration in this case
would thus be in the neutral-current sector only.

As a special case of our results we can obtain

the predictions of the SO(10) model when it is first
broken to the Pati-Salam SU(4), XSU(2)L,
X SU(2)ti. These correspond to the results ob-
tained by setting M„=M„ in our calculations.

In our calculations we have retained the contri-
butions in the renormalization-group equations
coming from the Higgs fields. We find that these
contributions are significant and important.

Note added. During the completion of this work
we received a paper by R. N. Mohapatra and M.
Popovic [Phys. Rev. D 25, 3012 (1982)] in which
related ideas have been examined. Similar investi-
gations have also been carried out by A. Mohanty
and J. C. Pati at the University of Maryland
(private communication from J. C. Pati).
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