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Electromagnetic properties of Majorana neutrinos
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The electromagnetic properties of Majorana neutrinos are studied in general terms,
with a careful discussion of the difference between the cases of Majorana and Dirac neu-

trinos. Some peculiarities associated with the Majorana character of the neutrinos are
noted; for example, it is shown that for two Majorana neutrinos with the same CP parity
their transition magnetic moment is of the type cr„„yq and not o.&„ in contrast to the situa-
tion for the diagonal magnetic moment of Dirac neutrinos (or charged leptons). We also
indicate how the electromagnetic form factors in the Majorana case can be obtained from
those calculated as if the neutrinos were Dirac particles.

The advent of grand unified theories' that unify
the weak, electromagnetic, and strong interactions,
and the recent experimental reports that neutrinos
have finite masses in the cosmologically significant
range, have motivated much interest in the cosmo-
logical implications of massive neutrinos. In par-
ticular, the effects of the radiative decay mode
vi~v2+y on a variety of astrophysical problems
have been widely studied. On the theoretical side,
several calculations of the rates for vi~v2+y in
specific models exist in the literature. ' In the
simplest cases, these calculations are very similar
to the calculations of the rates for iM ~e+y. In a
recent paper by Pal and Wolfenstein several
models for the vi~vq+y process are discussed,
distinguishing the cases in which v~ and v2 are
Dirac or Majorana neutrinos. Our purpose in the
present work is to discuss the differences in these
two cases without the adoption of specific models.
Among our results we find that fcr Majorana neu-

trinos with the same CP parity, the transition mo-
ment is of the type o»y, and not o„„. This is op-
posite to the well known result for the magnetic
moment of Dirac neutrinos and charged leptons
and follows from general properties of the elec-
tromagnetic vertex. We also indicate how the
mechanics of a specific calculation operate to yield
this result, and show how the form factors in the
Majorana case can be obtained from the form fac-
tors calculated as if the neutrinos were Dirac parti-
cles, for which general formulas exist in the litera-
ture.

Model-independent considerations on the process
p~e+y, which are also applicable to the case of
Dirac neutrinos, but not to the case of Majorana

where, using gauge invariance and the Dirac equa-
tion for the spinors, the most general form of I

&
is

+i~»e'(6+gus)

O' =Pi —P2

is the momentum of the photon. For a real pho-
ton only the terms involving 6 and g contribute.
The Hermiticity of J' ' and, if applicable, CP in-
variance imply certain reality conditions on the
form factors which we now discuss. Let us consid-
er the off-diagonal case viQvz first. In this case it
is easy to realize that Hermiticity by itself does not
imply any restriction of the form factors. Howev-
er, the assumption of CP invariance combined with
Hermiticity imply some reality conditions. CP in-
variance implies that the fundamental Lagrangian
is invariant under the transformation

C C ~ViL~ liViR ~ ViR~ liViL (i =1~2),

where, in the Dirac representation for the y ma-
trices,

VI. =—lf2V) (4)

neutrinos, have been previously discussed by
Tung. Although our interest is in the latter case,
we first review the case of Dirac neutrinos. In
standard notatior the electromagnetic form factors
of the neutrinos are defined by

(v2(p2) I
J~™

I vi(pi ) & =u(p2)~p(p2~pl )u(pl )
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In Eq. (3) it is understood that all other fields must
transform appropriately; in particular for the pho-
ton A&~ —A&, which implies

g(EM) g(EM) (S)

The transformation properties in Eqs. (3) and (5)
can now be used to show that if the Lagrangian is
CP-invariant, then F, f, G, and g must be relative-

ly real; i.e.,

for all the neutrino flavors. Equation (11), togeth-
er with a phase convention for the charged lepton
fields, implies a convention for the Kobayashi-
Maskawa matrix in the lepton sector which, in

general, contains phases that break CP invariance.
Before deciding whether CP invariance is broken
or not, we must discuss the transformation proper-
ties of Majorana neutrinos under CP. In the case
of Majorana neutrinos the transformation in Eq.
(3) for Dirac neutrinos must be replaced by

viI. ~'Vivre ~

(12)

Gc 91 t2 6
g g~

(6) ViR ~ tiviL

since v'=v according to (11). Further, the Majora-
na condition v'=v restricts r1; to be real so that

where the rl; are defined in Eq. (3). In the diago-
nal case v~

——v2 there are more restrictions. In this
case the most general form of I

&
is

I;(p» pi) =y,P+(e'y, e,e)y—Z
+i&pA (G+gy5)

and the transformation properties in Eqs. (3) and

(5) imply that

if CP invariance holds. In addition, Hermiticity by
itself implies that F, f, and G are real:

ImF=Imf =ImG=O.

The above discussion is merely intended as a
brief review of well known results for Dirac neutri-

nos (and charged leptons). We now turn to our
main purpose in the present work which is the ex-

tension of this discussion to the case of Majorana
neutrinos. Before proceeding, it is appropriate to
say a few words about our phase convention. In
general a Majorana neutrino field satisfies

(10)

where v' is defined in Eq. (4) and E is a phase.
For several neutrino fiavors, v in Eq. (10) can be
interpr'eted as a column vector and E as a diagonal
unitary matrix (in the basis of mass eigenstates).
A redefinition of the phases of the left-handed
components vL of the fields is equivalent to a rede-
finition of E. Therefore, without loss of generali-

ty, the phases of the vL can be chosen such that
E=1, and the Majorana condition becomes

r/( =+1 . (13)

Equation (13) can also be deduced by requiring the
invariance of the mass terms v;v; =v,

"
(i yiyv)v;

under the transformation in Eq. (12). As with Eq.
(3), Eq. (12) must be supplemented with the ap-
propriate transformation of all the other fields. A
given theory is CP invariant if the fundamental

Lagrangian is unchanged under the transformation
in Eq. (12) for some set of r);. Finally we mention

that the plane wave decomposition of the Majorana
field is

1v= ops upse(2~)'"

+a*(p,s)v(p, s)e'~'"], (14)

+i~,~'(G'+g'y5) .

However, in contrast to the situation in the Dirac
case, Hermiticity and CP invariance can be used

where the convention in Eq. (11) gives

v(p, s) =u'(p, s) =iy2u*(p—,s) .

We are now in a position to extend the previous
discussion to the case of Majorana neutrinos. We
consider the off-diagonal case viQvz first. The
electromagnetic form factors are defined by equa-

tions identical to Eqs. (1) and (2):

(v2(p2)
l

&p'"'
I vi(pi ) )

=u(pq)I &(p2,pi)u(pi), (16)

where
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independently to restrict the form factors. Hermi-
ticity implies

&v2(p2) I J," ' Ivi(pi}&

The left-hand side of this equation is given by Eqs.
(14) and (15) while the right-hand side can be ob-
tained using the substitution rule. In this fashion
we obtain

u V»)1;(p»pi)u(pi)

=—(U(p )I„(—p, —p )U(p ))*,
and using Eq. (15) this implies that F' and G' are
imaginary while f' and g' are real:

ReF'=ReG'=1m f'=Img'=0.

The assumption of CP invariance yields further
conditions. Using the transformation properties in
Eqs. (12), and (4), we can deduce that CP invari-
ance implies

u(p2)l (p2 pi}u(pl)

=(—1)alii)2u(pi)l „(pi,pi)u(pi), (19)

where I p is obtain& from I'p by making the re-
placement y5~ —y5. Equation (19) gives two pos-
sibilities:

(I) i),i)2——+ l. In this case, Eq. (19) implies

(20)

(II) alii)2
———1. In this case, Eq. (19) implies

f'=g'=o.
It is interesting to notice the contrast between this
and the situation in the Dirac case. In the present
case, if the initial and final neutrinos have the
same CP parity i) i

——i)2, then, as Eq. (20} indicates,
the transition magnetic moment is of the type
cr»yq instead of o„The result is the opposite in
the diagonal Dirac case, for which, in analogy with
the off-diagonal Majorana case, CP invariance
yields independent conditions on the form factors
and the CI' parity of the initial and final neutrino
is the same. Also notice that in the off-diagonal
Dirac case, CP invariance does not forbid the
simultaneous presence of the 0'» and cr»y5 terms,
in contrast to ihe situation in the Majorana case.
In the off-diagonal Dirac case the simultaneous
presence of the cr» and cr&„yq terms is forbidden in
a P-invariant theory, in which the P transforma-
tion property of neutrinos is precisely analogous to

I;(p» pi) =),P'+(e'), e,—eh 4'

+io»q "(6'+g'y5) . (23)

However, there is an alternative way to evaluate
the matrix element. The Majorana condition v'= v
[or equivalently, the expansion in Eq. (14)] and the
substitution rule imply that the matrix element is
also given by

( ) Ig(EMi
I

( )&

=—u(pi)l'„( —pi, —p»i (p~) (24}

The minus sign in Eq. (24} is just a reflection of
the Pauli exclusion principle and follows from the
Feynman rules when two external fermion lines are
interchanged. Using Eq. (15), the consistency of
Eqs. (22) and (24) then requires

(25}

Thus, in particular, a Majorana neutrino can have
neither a magnetic moment nor an electric dipole
moment. This statement has appeared repeatedly
in the recent literature, ' but it was not clear to us
under what conditions it holds valid. In the above
proof no assumption was made regarding CP in-
variance; thus CP-invariance violation does not in-
validate the statement. However, we have used
field theory concepts, such as the substitution rule
and the anticommutativity of fermion fields, which
imply CI'T invariance. Although it does not con-
stitute a general proof, this argument suggests that
the existence of a magnetic moment for a Majora-
na neutrino is a signal of CPT nonconservation. A
general proof is provided in the Appendix.

It is interesting to notice that Eqs. (25) and (21)
allow us to recover the well-known results for a
Dirac neutrino, Eqs. (8) and (9), when it is regard-
ed as two degenerate Majorana neutrinos of oppo-
site CI'. In order to demonstrate this fact, let us
consider the matrix element

Eq. (12). However, in that case if the P parities
are equal (opposite), the o»y, (o») term is absent,
opposite to Eqs. (20) and (21). The difference in
the two cases originates in the C transformation
property of J'

I.et us now consider the diagonal Majorana case.
In analogy with Eq. (7) we can define in this case

& (p») l~" 'I (pi)&=u(pz)I„(pz, pi)u(p, ), (22)

where
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where v is a Dirac neutrino, and v~ and vq are two
Majorana neutrinos of opposite CP defined by

v+v' v —v'
V2=

[~e choose the phase of v such that in Eq. (3),
ri =1.] The vi —v2 degeneracy implies that, re-
garded as a 2&(2 matrix in v& —v2 space, J' M'

must satisfy

g —1J(EM)g J(EM)
p (27)

where R. is a 2&(2 rotation matrix. This symmetry
corresponds to the U(1) invariance associated with
Dirac neutrinos. Equation (27) implies that J'
is of the form

Jp ——apI+bpe,

where I is the 2X2 unit matrix and

(28)

—1 0

Equation (28) yields

(v2
I
J„' '

I
v2) = (vi

I
J„' '

I
vi ),

&v,
I

J„""'
I
v, &= —&v, I

J™
I
v, &,

&vl J," 'Iv&=-, [&VI I J,™I»&+&V2 I
J~™Iv2&

+I'(v,
I

J„""'
I
v, &

—i(v2
I Jq '

I vi), (26)

so that Eq. (26) becomes

(v (p )IJ„' 'Iv (p, )=—u(p )l„(p,p )u(p )

for Dirac neutrinos (hence the superscript in I'&)
in the standard SU(2) XU(1) model with the addi-
tion of right-handed single neutrinos. The most
general form of 1 &

is

l q(P2 pi) =(q yp qqq)(PD—+fDys)

+l0'pQ (GD+gDYs) (29)

To lowest order, the diagrams that enter the calcu-
lations are shown in Fig. 1. Let us now extend the
model by giving the neutrinos Majorana masses.
Thus, the mass matrix for the weak eigenstates
neutrinos is the most general Dirac plus Majorana
mass matrix. The mass eigenstates will be Majora-
na neutrinos, with an expansion given in Eq. (14).
The form factors in

(vIJ™Iv)=(v, IJ„" 'Iv, )

—l(v2
I Jp Ivi)

which, together with Eqs. (25) and (21), implies
Eqs. (8) and (9).

It is useful to understand the mechanics that
operate in a specific calculation to yield the results
we have discussed. Let us consider the calculation
of the form factors in

&V2(p2) I

J™
I
VI(pi) & =u(p2»1, (p2,pI »(pi),

1 „(P2Pi)=(q'y„q„q)(P'„+f y—,)+ia„~"(6 +g y )

(30)

«r Maj«ana neutrinos now receive two contributions. The first arises from a set of diagrams Identjcal to
those shown in Fig. 1, and we denote this contribution by

u (P2 )~y, (P29P I )u (P I )

However, the Majorana condition [or equivalently Eq. (14)] implies that for each diagram in Fig. 1 there is
an additional diagram in which each vertex of a given diagram is replaced by its complex conjugate. The
contribution from the set of diagrams thus obtained is given by the substitution rule and the complete ma-
trix element is

(v2(p2) I

Jp'"'
I
vi(Pi ) ) =u(P2)l y(P24 i )u(PI )—U(Pi )1 p( P2, —PI )U(P2»— (31)

where

1'I (P2 PI ) yo[f'I (P2 PI )l yo
D

The relative minus sign in Eq. (31) has the same

origin as in Eq. (24). Using Eq. (15) and identify-
ing the form factors according to Eqs. (29) and
(30) we then obtain
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e

FIG. 1. Lowest-order diagrams for v~~vz+y in the
Dirac case, in the SU(2) XU(1) model with right-handed
singlet neutrinos. P is the standard Higgs doublet and e
stands for a generic charged-lepton field.

fM=fD+fD i gM=gD+gD ~

(32)

that ratifies Eq. (18). Further, substituting Eq. (6)
in Eq. (32) we recover the results in Eqs. (20) and
(21) for the CP-invariant case. Although we have
derived the results in Eq. (32) by looking at the
lowest-order diagrams in a particular model, a lit-
tle thought reveals their general validity, as it must
be according to the arguments leading to Eq. (18).
The only subtle point is to recognize that for any
diagram contributing to I &, the contribution of the
charge conjugate diagram is given by the second
term in Eq. (31). Equation (32) is also very useful
from a practical point of view since it expresses
the form factors for Majorana neutrinos in terms
of the form factors calculated as if the neutrinos
were Dirac particles, for which extensive calcula-
tions exist in the literature.

In summary, if the initial and final Majorana
neutrinos in the process v&~v2+y have the same
(opposite) CP parity, then electric (magnetic) dipole
radiation results. This result is against our intui-
tion acquired by studying the Dirac case, but it is

one of the somewhat peculiar properties of Majora-
na neutrinos that we have tried to understand in
our work.

The present work was motivated in part by a re-
cent paper by Pal and Wolfenstein. In the revised
version of their paper they report results in agree-
ment with ours. We also learned of a paper by
Schechter and Valle (Ref. 10) that discusses the
electromagnetic properties of Majorana neutrinos,
partially overlapping the present paper. We ex-
press our thanks to Palash B. Pal for bringing this
reference to our attention and for a very useful dis-
cussion. After the revised version of the present
paper was prepared we received a paper by
Kayser" which treats subjects similar to ours. We
express our thanks to Professor Kayser for sending
us a copy of his work. Another reference on this
subject has recently appeared: R. E. Shrock,
Stony Brook Report No. ITP-SB-82-2, 1982 (un-

published).

APPENDIX

8
i
v( p, s) }=e'&

[
v( p, —s)},

where

(Al)

8—:CRT . (A2)

Using the antiunitary character of the 0 operator,
Eq. (Al) can be written in the form

8[e'~
~
v( p,s))]=e'~

~

v( p, —s)},

In this appendi~ we supply the proof that the
existence of a magnetic moment for a Majorana
neutrino is a signal of CPT nonconservation.

The basic ingredient in the proof is the appropri-
ate definition of a Majorana neutrino in the ab-
sence of C and CP conservation. The physical de-
finition of a Majorana neutrino is a neutrino for
which the antiparticle is the particle itself. There-
fore, the problem reduces to give a precise meaning
to the antiparticle in the absence of C and CP con-
servation. In the K —E system it is well known
that, because of the lack of C and CP invariance in
the ES=2 interactions, the X must be defined as
the antiparticle of K with respect to the CPT
operation. A similar situation occurs in the
present case. If C and CP are not conserved, the
antiparticle must be defined through the CPT
operation. Therefore, if

~

v( p, s ) ) represents a
Majorana neutrino state of momentum p and spin
s, the Majorana condition can be expressed in the
form
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so that with an appropriate phase convention we
obtain

8
i
v( p, s) ) =

i
v( p, —s ) ) . (A3)

We adopt Eq. (A3) as the definition of a Majorana
neutrino, valid in the absence of C and CP invari-
ance. It represents the fact that the antiparticle of
a Majorana neutrino, defined through CPT, is the
particle itself.

The proof that a nonzero magnetic moment of a
Majorana neutrino is a signal CPT nonconservation
is now simple. In fact, we can use the well-known

g
—ig(EM)g J(EM)

P IJ (A4)

If CPT invariance holds, Eqs. (A3) and (A4) imply

result that CPT invariance implies that particle
and antiparticle, defined through CPT, have oppo-
site magnetic moments. Since particle and antipar-
ticle are the same for Majorana neutrinos, in the
sense discussed above, their magnetic moment
must be zero if CPT invariance holds.

We can make this argument more explicit.
Under CPT the transformation of J&

' is

(v( p', s')
~

J„' '
~

v( p,s))=—(v(p', —s')
~

J„' ' [v( p, —s))*=—(v(p, —s)
( Jz '

~

v( p', —s')) .

(AS)

For the left-hand side of Eq. (AS) we use the expression in Eq. (22) in the text. For the right-hand side we

use the fact that the spinor representing the state
~

v( p,s) ) is

u( p, —s) =gYsu'( p,s) =ir/ysy2u ( p,s),
where q is an arbitrary phase, independent of p and s according to Eq. (A3). Then,

(A6)

(v ( p, —s)
~

J„' '
~

v( p ', —s')) =u( p, —s)l &(p p')u( P
' —s') = —u ( P s)ysl ga(p p )'Ysu ( P

where I'„ is defined in Eq. (23) in the text. Equation (AS) then implies

u( p ',s')I &(p',p)u( p,s) =u'( p, s)ysl'&(p, p')ysu'( p ',s')

while standard manipulations yield

" ( P s)y I „(p p')y u'( 0 '»') =u( p ',s')[ y~'+(e'—y, e,f )y/' —'0'„Z"«—'+g'y ))u( p s),

(A7)

so that only f'+0.
%e have presented a more formal version of the

following, more intuitive, argument due to Wolfen-
stein. ' Let us consider the nonrelativistic limit (v
rest frame) of the various operators:

cr„g""~0'8,

y,o„+""~o"E,

y„3~—+p A,
(AS)

TABLE I. Transformation properties of the various
operators under C, P, and T.

y„ygl'-+0"A .

C
p
T

p The transformation properties of these operators
can be deduced from Table I. (The crucial point is
that for a Majorana neutrino p and o are even
under C. ) Of these four operators only cr A is
even under CPT so that, in particular, a magnetic
moment is forbidden.
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