
PH YSICAL RE VIE% D VOLUME 26, NUMBER 1 1 JULY 1982
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Properties of symplectic groups are reviewed and the gauge structure of Sp(2n) derived. The electroweak

unification of leptons within Sp(8) gauge symmetry and grand unification of quarks and leptons within Sp(10) gauge

symmetry are discussed.

I. INTRODUCTION

The hypothesis that the observed elementary-
particle interactions are low-energy manifesta-
tions of a single fundamental force is central to
current thought in high-energy theory. The dis-
parity in the strengths of these interactions is
attributed to the different symmetries associated
with these interactions at present energies. Em-
pirical evidence, which is in abundance for the
SU(2)z x U(1) structure' of electroweak interactions
and which seems adequate for the SU(3) structure
of strong interactions, supports G = SU(2}J, x U(l)
x SU(3), as the basic underlying symmetry of these
interactions. It is possible that the present elec-
troweak interactions have probed only the ~ part
of the full symmetry G = SU(2)~ x SU(2)„x U(1)
x SU(3), that is required if right-handed currents
of ordinary fermions exist and parity violation in
weak interactions is spontaneous. '

Unfortunately, there are few clues at present as
to what the grand symmetry of the fundamental
force is. Extrapolation of either the SU(2)z,
x U(1) x SU(3), or the SU(2) x SU(2)„x U(1)
x SU(3), symmetries can lead to the parent
symmetriess SU(5) or4 SO(10). These symmetries
embed G or G in a most economical way, where

economy" is taken to mean minimal rank and
simplicity in the choice of fermion representa-
tions. Fundamental issues such as the inclusion
of fermion families, neutral bosons lighter than
the Z' of the Weinberg-Salam theory, and an ac-
ceptable spectrum of neutrino masses has led to
the discussion of "nonminimal" grand unified the-
ories based on the parent symmetries such as'
SU(5+m), SO(10+ 2n), E„and E,.

In this note unity of the fundamental interactions
with symplectic gauge symmetry for nonminimal
unified theories is shown to be an equally viable
alternative. For the sake of completeness, prop-
erties of symplectic groups are first reviewed.
Then the structure of the gauge-boson matrix is
derived and is used to discuss the properties of
fermion representation. Finally electroweak uni-

fication of leptons with Sp(8) gauge symmetry and

grand unification of quarks and leptons with Sp(10)
gauge symmetry are discussed.

II. SYMPLECTIC GROUPS

The set of transformations S that leave a skew-
symmetric bilinear form

x'y =x,y„., -x„.,y, (x =1 to n) (2.1)

invariant constitute a symplectic group. In the
above notation x (y) is a column vector of dimen-
sion 2n and the metric of the bilinear form is

, fO1)
(1O)

(2.2)
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(2.3)

and the Poisson bracket of two differentiable func-
tionsf(p„q, ) andg(p„q, )

) Bf Bf ( 0 B) ~BP,)~g=sp sqk ( 1 O) sg
9q

(2.4)

exhibit the metric G.
lnvariance of Eqs. (2.1), (2.3}, and (2.4) under

the set of linear transformations S amounts to the

where 1 is the n x n identity matrix. Skew sym-
metric metrics of any other form can be brought
into the standard form of Eq. (2.2) by suitable ro-
tation of the bases.

Classical mechanics off ers adequate examples
where metrics of the form (2.2) arise in classical
mechanics. For example, Hamilton's equations of
motion for a conservative dynamical system with
2n degrees of freedom (p„q„ i=1 ton)
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condition

SGS =6 (2.5)

f, n+5 S, n+f j$ ~

I+i j I+) 5
(2.8)

These generators satisfy the commutation rela-
tions

[Au A&i]=«I Aii go~A-» i

[Ai» Bar] =g» B&i +ggi Bio ~

[A,i, C»]= g»Ci, g(,C

[B,» C»] =g»A„+ g&~A»+g»A, »+ g„A»,
[B„,B„] [C„,C„]=0.

(2.9)

(2.10)

(2.11)

(2.12)

(2.18)

For elementary-particle physics it is further re-
quired that the generators be Hermitian. This im-
plies C =B and relation (2.11) is redundant. The
structure of the gauge-boson matrix entering the
covariant derivative

&.4. = ('.4s+2 Zl~„~").a)
0'

is given by

(2.14)

I U X
2 xt -UT

The form of the matrix of Eq. (2.15) exhibits two

things explicitly.
(i) The diagonal gauge fields U represent a uni-

tary matrix with n' parameters. Thus the maxi-
mal subgroup of Sp(2n) is U(n), a result that can
also be derived by other group-theoretic consid-

erationss.

(ii) The gauge-field matrix -U gives particle
interactions that are conjugate to the ones given
by the gauge fields U. Hence the 2n-dimensional
representation g contains one set of n fermions
that is "conjugate" to the other set. (g is not re-

(2.15)

(T indicates transpose). All 2n x 2n matrices S
satisfying Eq. (2.5) form a symplectic group
Sp(2n) of rank n and n(2n+1) generators. Unlike
orthogonal groups symplectic groups are unimodu-
lar, i.e., Det=+1, and hence defined for only
even-dimensional spaces. This follows from
DetG = (-1)"from Eq. (2.2).

Let the infinitesimal generators of Sp(2n) effect-
ing global transformations in the neighborhood of
the identity be o q (o', p =1 to 2n). The generator
o q is represented by unity at the &th row and Pth
column of the 2n x 2n matrix. Using condition
(2.5), the n (2n+ 1) generators o q are redefined in
terms of the diagonal and off-diagonal generators

(2.6)

ducible. ) A consequence of this property is that a
nonminimal grand unified theory based on the
symplectic gauge symmetry Sp(16) containing the
particles and antiparticles of any one of the e, p,
and 7 families will not have weak interactions
since all currents are vectorlike. The reality of
the representations also guarantees anomaly can-
cellation with the exception' of n = 3.

III. UNIFICATION WITH SYMPLECTIC SYMMETRY

go

g+
~ L

The conjugate fields (E', &, &', Eo')i, also form a
family which is "twin" to the electron family. One
noteworthy feature of this twin electron family is
that it has right-handed currents with strength G~.

The diagonal generators of Sp(8) are

T =ii dag(12, -1, , 0, 000, 1, 1),

Tz' = diag 2 (0, 0, 1, -1, -1,-1,0, 0),

(3.2)

T,=diag (—1, —1, 1, 1, -1, -1, 1, 1),

(8.4)

V, = diag (1, 1, 1, 1, -1, -1, -1, —1) .1

2 2
(8.5)

TL, T~, and T, are some linear combinations of
the conventional SU(4) generators' V„V„and

A. Electroweak unification of leptons

Several factors make it worthwhile to consider
unification of just the leptonic interactions. Lep-
tons —at least of the first two generations —have a
pointlike structure. They are free from the myst-
eries of strong interactions and do not face the
electric charge assignment dilemma encountered
in the case of quarks. In the following sections,
it will be assumed that neutrinos are massive
Dirac particles. The fundamental representation
that contains the leptonic fields of the electron
family is that of Sp(8). These fields are assigned
in y,"' [= ,'( 1+@,)q]-, where

Ve
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q,„=r',+r,'+ ~aT, . (3.6)

V». The electric charge of the leptons in gz',
" in

Eq. (3.1) is given by

Let g, be the bare coupling of Sp(8) and

[g,~,g2R, g~,~] be the renormalized couplings of
the subgroups [SU(2)~, SU(2)g, U(1)~,~] in the hj
er archy

Sp(8) = SU(4) x U(1) = SU(2)~ x SU(2)„x U(1)~,„xU(1) = SU(2)~x SU(2)„xU(1)~.~ = SU(2)~ x U(1) = U(1)E„.
Mg

(3.7)

g2L g2R g L+R
(s.8)

e (Mg ) =g2~ (M J ) +g~ (M q) + g~,s (MI ),
(3.8)

The above symmetry breaking can be implemented
by suitable choice of the vacuum expectation values
of two adjoint, one symmetric, and one (two if
mixing between the left- and right-handed weak
gauge bosons is to be avoided) fundamental Higgs
scalar fields.

In terms of the renormalized couplings the pho-
ton field & and the electric charge e are given by

I

the observed neutrino neutral-current interactions.
Its mass can be lighter than the mass of the stand-
ard SU(2)z x U(1) neutral boson. The precise mass
will be determined by measurements on the for-
ward-backward charge asymmetry in the leptonic
reaction' e'e - p, 'p. .

Note that if neutrinos have no right-handed
counterparts the relevant symplectic gauge sym-
metry is Sp(6). The bare value of sin28~ in a gauge
theory of leptons based on Sp(6) is equal to one
quarter. Such a theory will also have a light neu-
tral boson in addition to the one of the standard
SU(2)~ x U(1) theory

B. Grand unification of quarks and leptons

where the renormalization point p, is taken to be
equal to the charged-weak-boson mass ML in the
usual way. From the definition of the weak angle
sin'e~ it follows that the bare value of the weak
angle sin'e~ is 4 at the electroweak unifying mass

The renormalized and the bare weak angles
are related by the expression

The relevant symplectic gauge symmetry that
contains the known SU(3), x SU(2)~ x U(1) gauge
interactions is Sp(10). The fermions of the theory
are split between the fundamental and the antisym-
metric representations of Sp(10), as in the simple
SU(5) model of Georgi and Glashow (Ref. 3). The
contents of the fundamental 10 are

11em (M~) M2, M„sin e~= —,
' —

2 ln + 21n
24m L L

(s.10)
d2

d3

From the experimental value of the weak angle
sin 8~=0.23+ 0.015, e'/4v = —', and Eq. (3.1 0) the

masses M„ML, MR satisfy the constraint 10 (3.12)

M'M -104M ~
2 R L (s.11) E0c

or M2-10"ML for the currently favored value
M~ =300 GeV. The mass scale M, is not con-
strained.

The neutral-current sector of Sp(8) is rich.
There are three massive neutral bosons: one is
the familiar neutral boson of the SU(2)z, xU(l) the-
ory with mass 94 GeV; the second one has a mass
of order 300 GeV to get the right amount of parity
violation in polarized-electron-deuteron inelastic
scattering; the third neutral boson does not affect

LD

while the antisymmetric 45-dimensional repre-
sentation is reducible into a singlet and a 44-di-
mensional representation. ' The rest of the ferm-
ionic fields of the electron family not in (3.12) are
assigned to the irreducible 44 of Sp(10) as follows:
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0

-Q3 Q1 -d; -Q2 F; E„
-ds -Q3 F2 F5

Q3 -Q2 —d1 -Q1 E F E

F

d, d, d, Fc F6 Es F44 F10

= 1
44

Q2

Fc

-F22

-F,
-F

Fc

-F33

-F

Ec

Fc

Ec

-E4
Fc

Fc
4

Fc Fc
7 9 10 55

0 &' U3 U2 U1

0 D3 D2 D

0 U1 Uc

(s.is)

TL ——diag 2 (0, 0, 0, 1, -1, -1,1, 0, 0, 0),

U, = diag (2, 2, 2, -3, -3, 3, 3, 3, -2, -2, -2),1

V, = diag 2 (1, -1,0, 0, 0, 0, 0, 0, 1, -1),

V, = diag (1, 1, -2, 0, 0, 0, 0, 2, -1,—1),1

(s.i4)

T=diag (1, 1, 1, 1, 1, -1, -1, -1, -1,-1).1

10

The electric-charge operator is identical to that of
l

with

F11+F22+ F33+ F44+ F55= 0.
The representations $1O and f44 are anomaly free.

The five diagonal generators of Sp(10) are chosen
to be

I

the standard SU(5) theory [i.e., @=TL3+ (—', )' 'Uo] if
fermion assignments are given by g» and P«.
Hence, the predictions of the renormalized and
the unrenormalized weak angle are identical in
the Sp(10) and SU(5) grand unified theories. Al-
though the extra U(1) generator T3 does not contri-
bute to the electric charge, the fermions in Eqs.
(3.12) and (3.13) do carry the quantum numbers of
T,. The top and bottom halves of $1O have T, quan-
tum numbers 1 and —1 (modulo the normalization).
The fermions in the top and bottom diagonal blocks
in P«carry+ 2 and -2 units of T, quantum numbers
while the off-diagonal F fermions carry+ 4 units of
T0 quantum numbers.

The Sp(10) gauge symmetry can descend to the
low energy symmetry SU(3), x U(1)EM through dif-
ferent intermediate symmetries. The route fol-
lowed here involves SU(5) as one intermediate
stage. ' The hierarchy

Sp(10) = SU(5) x U(1)H SU(3), x SU(2)L x U(1) x U(1)r = SU(3), x SU(2)L x U(l) SU(3), x U(l)H„(3.15)
N M N~ Ngp

is implemented by two scalar multiplets (Po, P) in the adjoint, one antisymmetric tensor scalar field

p H~, and one fundamental p„of Sp(10). The masses (Mc, M, M„,M2) are proportional to the vacuum ex-
pectation values of the scalar fields (Qc, p, p 2„„,$10) which are

(pc) = diag(a, a, a, a, a, -a, -a, -a, -a, -a), (P) = diag(2b, 2b, 2b, 3b, -3b, s-b, sb, -2b, -2b, -2b),

(y„&=( 0, 0, 0, c, 0, 0, 0, 0, 00). (3.15)

The spontaneous symmetry breaking depicted in Eq. (3.15) leads to the neutral-current Lagrangian

LH=4c'(g2L L g1 + gH ) +4%12345 gH ff (S.i7)

where [g2L,g„gH] are the renormalized couplings of the subgroups [SU(2)L„, U(1), U(1)H] and (B,~) are the
gauge fields corresponding to the U(1) generators U, and T,. The diagonalization of I.H is trivial; it leads
to the massless photon A„and two neutral eigenstates (&,„,&2„) with masses (M„,M„), whereN1u N2 u

A = W~ cos6~+B'sin&~, (S.ia)

N, = Z cos& + H' sin&,

N, =H'cos& -Z'sin,
(s.i9)

(s.2o)
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M
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(
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(3.21)

(3.22)

Z' and 8~ are the neutral boson and weak angle of
the SU(2)z x U(1) theory. The bare values of the
couplingsg, and g„rae (s)' 'g» and (s)' 'g» where
g»-——g (Sp(1O)). Ms is the mass of the charged
weak boson 8"I,. The neutrino neutral-current
phenomenology of N, and N, is identical to that of
the standard SU(2)~ x U(1) theory and imposes no
restriction on the masses" of N, and N, . How-
ever the electron neutral-current phenomenology
serves as a probe of the masses of +, and +,. The
forward-backward charge-asymmetry measure-
ment" in polarized-electron-deuterium deep in-
elastic scattering constrains the mass of +, to be
almost that of Z' of the standard SU(2)z x U(1)
theory and that of N, to be of order 350 GeV at the
weak-angle value sin'8~ = 0.23.

IV. DISCUSSION

Unitary symplectic gauge groups are shown
to be viable candidates for nonminimal unification
of the quark and lepton interactions. Two note-
worthy features of the unified models discussed
in the previous section are as follows.

(i) They have a rich neutral-current sector that
is heavily constrained by the existing neutral-
current data involving neutrinos and electrons.

(ii) The fermionic representations contain exotic
fermions that lead to right-handed interactions
with strength G~. These mirror fermions form
twin families to the ordinary e, p, , ~ families and
can carry their own fermion number, a quantum
number possibly violated through mixing of terms
in the fermion mass matrix. Unfortunately mixing
angles and masses of these mirror fermions are
as yet unpredictable, because of the large number

I
of Yukawa parameters producing the mass matrix.

Sp(2n) can be broken down to SU(n) x U(1) with
vacuum expectation values of Higgs fields in the
adjoint representation. This mode of symmetry
breaking satisfies the Goddard-Olive criterion"
of generating monopoles with charges identical to
the gauge bosons. It is interesting to note that the
U(1) field in the SU(n) x U(1) subsymmetry and a
linear combination of the diagonal generators in
the off-diagonal blocks (X, X') constitute an SU(2)
symmetry with correctly normalized SU(2) gener-
ators. This hidden SU(2) leads to gauge interac-
tions between the fermions of the ordinary and the
twin families. Thus the maximal subgroup of
Sp(2n) is SU(n) x SU(2). Finally, the smallest sym-
plectic group that contains the left-right-symme-
tric group SU(2)~x SU(2)„xSU(4)~,„and has the
sixteen fermions and antifermions of any one
family of the ordinary fermions assigned to its
fundamental representation is Sp(32). This con-
tains the subgroup SU(16) discussed in the litera-
ture as the maximal symmetry' underlying the
interactions of any one of the e, p. , or T families.
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