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Tensor-meson dominance in the T system

H. Genz
Center for Theoretical Studies, University of Miami, Coral Gables, Florida 33124

and Institut fiir Theoretische Kernphysik der Universitat Karlsruhe, D7500 Karlsruhe, Federa/ Republic of Germany
(Received 1 March 1982)

Tensor-meson dominance is extended to the bb system and a sum rule to test the validi-

ty of this extension is derived. The sum rule connects the widths PY "~yft, ),
NY "~yfb}, I (fb ~yY'}, I (ft', -+yY}, I'(Y'~yft, }, and I'(ft ~yY } to each other
(with fb and fI, the narrow bb tensor mesons predicted by potential models). The
corresponding result for the cc system is known to predict 1 (f,(3.55)~ylij }=700keV

proportional to the experimental I'(g'~ yf, (3.55) ).

I. INTRODUCTION

It is the main assumption of tensor-meson domi-
nance (TMD) that Zweig-rule-allowed matrix ele-
ments of the symmetric energy-momentum tensor

T& are dominated by tensor-meson poles. For a
given quark content (uu +dd)/W2, ss, or cc only
the ground-state tensor mesons f(1.27), f'(1.52),
and f,(3.55) are known at present. Using these to
saturate the corresponding matrix elements, various
predictions on amplitudes involving them have
been made. ' These are collected, discussed, and
compared to experiment in Table I of Ref. 6.
With a few exceptions, the predictions of TMD are
in reasonable agreement with experiment.

In this paper, TMD is extended to the Y system.
Potential models imply that there are two narrow
bb tensor mesons fb and ft', below the threshold
for explicit b flavor. Since obviously both might
contribute to Zweig-rule-allowed bb matrix ele-
ments of T&„,the results of TMD on the 1( system
with only one narrow ec tensor meson —the

f,(3.55)—are modified in a nontrivial way. In
particular, TMD predicts the width
I'(f, (3.55)~y —tj'j) in terms of I'(P'~yf, (3.55))
if one saturates the t dependences [t =(p —q) ] of
the matrix elements

&4(p) I Tt. I P(q) &

with the only narrow cc tensor meson, the
f, (3.55). As a generalization of this result to the
Y system, we will obtain the sum rule in Eq. (19)
which connects the partial widths of the various y
transitions between the three vector mesons
V, =Y,Y',Y" and narrow tensor mesons
T~=fs,fb of types V, ~yT~ and T~~yV, to
each other. Further possible tests of the scheme
are also pointed out. For the sake of generality,
we derive our results for an arbitrary number E of
narrow tensor mesons and %+1 vector mesons.

The spectrum is assumed to be similar to the bb
spectrum expected in potential models. Namely,
denoting by m ~ (with g= 1, . . . , X) the masses of
the N narrow tensor mesons and by m, (with
a = 1, . . . , %+1) the masses of the 1V+ 1 vector
mesons, we assume

V T . . T VPl ) (Ptl ) ( ' ' (Pl~ (Nl~+&

For the Y system, X =2 and the threshold for ex-
plicit b flavor lies above m~ according to experi-
ment' and below the mass of a possible fb' accord-
ing to theoretical models. We will consider the
transitions V, ~yTg for g &a —1 &% and

T&~yV, for a &g &X. The assumptions to be
used are TMD and vector-meson dominance
(VMD).

II. DERIVATION OF THE SUM RULE AND CONCLUSIONS

We consider the matrix elements of AT&„(with e~' the spin-2 polarization tensor of the tensor meson
Tg) between states of a bb vector meson V, (the e~,ee are the spin-1 polarization tensors):
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(Vg(p) I
&g"Tp~

I Vg(q)) = [Fi(ep eq)+E2(ep q).(eq p)][(p+q) eg (p+q)]

+2F3 {(Ep 'q )[eq 'eg ' (p +q) ]+ (eq 'p )[ep 'Fg ' (p + q) ]j 2E4Ep'e'g '
Eq

+2E7{(ep q)[eq eg (P+q)] (—eq P)[ep eg (P+q)]I ~

The form factors Fi, F2, E3, Eq, and F7 are func-
tions of p, q, and t. Obviously, F7 is antisym-
metric under p ~q whereas the other four form
factors are symmetric. Thus

F7(p, q =p, t)=0, (2)

H= Jd xTOO(x) (3a)

which implies that F7 vanishes if both vector
mesons are on their mass shell, i.e., p =q =(m, ) .2 2

The hadronic Hamiltonian H is

I

with

I'( V, ~electron, positron) =n.m, a /3y,

where a =e l4m =+» and g& is defined by (
I
0) is

the hadronic vacuum)

(0
I

T""
I Tg& =gg&g'. (6)

To define the p and q dependence of the func-
tions I'1 2 3 g 7 we use the electromagnetic current
as an interpolating field to take the vector mesons
off their mass shells. Therefore, the amplitudes

and the third component of the total angular
momentum M3 is

M3 6f X XI TP2 X —X2TO& X

From this, one easily derives'

Fi(p =(m, ),q =(m,"),t =0)=——,

(3b)

(4a)

Gi'f3q7(p =(m, ), q =0, t=(mg) )

for g & a —1 describe the transitions V, ~yTt and
for a &g describe the transitions Tp~yV, If we.
replace at this kinematical point eq by ql", the total
matrix element in Eq. (1) must vanish due to gauge
invariance. This requires

and

(4b) and

(p q)G'~ =—G'~ —G'~+ G'~ (7a)

at the same kinematical point as in Eq. (4a).
Since one-particle states

I
z ) diagonalize the

Hamiltonian, (z
I
H

I
z) vanishes if the particles z

and z' differ. Accordingly, in any effective canoni-
cal theory the part of T„which is bilinear in the
physical particle fields is at the same time diagonal
in these fields. Thus one assumes in TMD that
matrix elements of the type (z'

I T&„I
z) are negli-

gible as compared to (z
I T&, I

z ) if the particles z
and z' differ from each other. Using this property,
we will argue that I:7 approximately vanishes
identically.

For p =(m, ) and arbitrary q and t we define
functions Gi f347 as

G i,'~, 3,4, 7 = [(my ) —t] Ei,2, 3,4, 7
T2 e a

2Xa8g

G'~ —2(p q)(G'~+G'~) (7b)

at the decay points. We therefore may write the
decay widths as

(m ") —(m )
I (V, ~yTg)= q i g (8~'~)

24ir(m, )

(8a)

and

(m~) —(m, )
I (Tg~yV, )= r i g (8'~)

40m(my ) 0

(8b)

with the helicity amplitudes B' o ~ 2 1nvolving the
tensor meson Tg with helicities o. given by

I(m, )2—(mg) I
G3' +G7'—

V

Bi'~=V 2
I
(m, ) —(mg )

I

—r G3'~+
P7l g

T'2
G', ~, S,'~=2I(m')' (m,')'I (G—", +G", )

m.'
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at p =(m, ), q =0, and t=(m~) .

We argue that 67' approximately vanishes. If
p is fixed at (m, ), the VMD saturation of F7
with vector. -meson poles in q can [due to Eq. (2)]
only be nonvanishing if T&, has nonvanishing ma-
trix elements ( V,

~ T&„~V, ) between states of dif
ferent vector mesons V, and V, . This is, however,
excluded by the assumptions of TMD. The width
formulas, therefore, become

( m, ) y, I'( V, ~y Tg )

(mg)2 10m[(m, ) —(mg) ]
~a, g'

3
(14a)

for the physical V, T~y coupling. (F3 is indepen-
dent of q according to VMD. ) Except for their
signs, the I'3' /g~ are given by measurable quanti-a, g

ties as

[(m, ) —(mg) ]
12m.(m,") (10a)

[(m~) —(m, ) ]I (T(~yV, )= r 3
I '~

20m. (m g
)' (lob)

I a, g' 1{) (m, ) —(mg)

(mg)

2 (m, } —(m~)+— T, ( —Gi' )63'
(mg)

1 (m.')' —(m,')'
(mg )

(10c)

(m, ) —(mg)

(mg)2

2(m~ —m~} =0.2,

In the present application, this expression can be
simplified further. Namely, since

6y, I (Tg~yVg)
a[(mg} —(m, ) ]'mg

~a,g
3

Zap +

(14b)

for g(a.
In order to obtain our sum rule, we substitute

the N(N+1) observables Z'~ for the F3'~ in Eq.
(13) and obtain

N

g Za, g

)=1
(15)

These are %+1 linear inhomogeneous equations
for the E unknowns g~. Then we expect one rela-
tion between the Z'~. To derive it, we substract
Eq. (15) for a +1 from Eq. (15) for a (with
a = 1, . . . , N) and find the N homogeneous rela-
tions

N

g (Z'~ —Z'+'~)g, =o, u = I, . . . , N .
/=1

(16)
10

first, we may neglect e as compared to —, in the
main term. Second, since 63' and 61' presum-

ably are of the same order of magnitude [Eqs. (4)],
we may neglect all terms proportional to e and ar-
rive at

For these to have a nontrivial solution we must
have

det (Z'~ —Z'+'~) =0 .
a 1p ~ ~ ~ pN

/=1, . . . , N

(17)

I a, g '0 (Ga, t )z

Saturating the t dependence of I'3 by the tensor-
meson poles at t =(m~ } with residues (m~ ) F3',
i.e., writing

This is the desired sum rule for an arbitrary QQ
system which fulfills our assumptions concerning
the mass spectrum.

For X= 1, the cc system, we have explicitly

F3(p =(m, ),q, t)= g ( g
)'F'~

(mg ) —t

we arrive at the sum rule

I (f,(3.55)—+yg) =—3
5

mf —my
2 2

2 2m y~
—mf

2

3
my~

mf

N
~a, g 1

(13) x &(P' yf ).Vf'

Vf
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The exact formula contains an additional factor

(my +3m' mg +6m' )

X(my +3m~ m~ +6m' ) '=0.85.

Turning to the bb system, the signs of the Z'~
are obviously not determined by Eqs. (14). It is
most plausible, however, that they all agree.
Namely, the contributions of vector mesons to the

T&'„"'"'"'of any effective canonical theory all have
the same sign. In such a theory, the sources
(CI+m g )8&~, of the tensor meson fields H~„are tak-
en to be proportional to T&',

"'"'"' and therefore the
signs of the F3'~ do not depend on a for any given

g. Assuming that renormalization effects do not
change these signs, we can choose the signs of the

g~ by a phase convention for the states
~ T& ) in

such a way that all the Z'~ are positive. Thus we
obtain as our main result the sum ru1e

10' yg I (fb~yY)I'(fb ~yY')
6(mj —m~ ) (m, —m~ )

2 23 2 23
b fb

' 1/2 6' y„-m~ m„-I (Y'~yfb)I (Y ~yfb)+
10m' m, (m~ —my ) (m~- —m, )

3 3 2 23 2 23
b fb b fb

' 1/2

y.'y'' '3~(Y"-yf )~(f'-yY)
+

mf (m'f" mf ) (m, —m'r )3 2 23 2 23
b b fb

2 2 3
1/2

yv yv mv f'(Y'~yfb)I'(fb y»
ltlg (m~~ —my ) (m i —my )

3 2 23 2 23
b b fb

yv-'yv'mv-'I (Y" yfb)I (fb+
m~ (mz —m~ ) (m, —mz )

3 2 23 2 23
b b fb

T

y~'y~- me- I'(Y" yfb )I (fb y»+
r (m~- —m t ) (mI —mr )

3 2 23 2 23
fb fb b

' 1/2

for the V, ~yT~ and T~ +yV, widths—. The sutn
rule contains only measurable quantities.

We conclude with a remark. Just as for the cc
system, the matrix elements of T&„in Eq. (6), i.e.,
the gg, can be computed in analogy to the conven-
tional computation of the yz in potential models.
Namely, in QCD the qq part of T&„is

T ' '"= :Ãy —~+ Py)e:pv

and inserting this into Eq. (6) one finds

9m'

with P~(0) the derivative of the Tg wave function
at the origin. It is therefore obvious that rehable

i

potential models for the bb system would imply
further relations between the widths in Eqs. (14).
The analogous calculation for the cc system, using
the

~ Pf (3 55)(0)
~

of Ref. 10, predicts
I'(P' —+yf, (3.55))=16 keV, in agreement with the
experimental8 15+5 keV.
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