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Symmetry breaking and higher representations in the Cabibbo theory
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The most recent data for semileptonic hyperon decays are compared with the Cabibbo

theory. Two significant deviations from the Cabibbo-theory predictions have been ob-

served. The deviation for I in X ~Aev can be the signal of the symmetry breaking.
The discrepancy for a, in X ~nev cannot be explained by the first-order symmetry
breaking or by admixture of higher representations in the axial-vector current.

I. INTRODUCTION

With the advent of new experiments in hyperon
semileptonic decays (HSD) it has been possible to
test the standard Cabibbo theory' (CT) much more
rigorously than before. A very important conse-
quence of this recent test is that the predictive
power of the CT is clearly established. For exam-

ple, if only the available transition rates are used
the CT has limited predictive power: the three
parameters involved (F, D, and 8) still have enough
freedom left to change dramatically. However
when the electron-neutrino angular-correlation
coefficients are used, then F, D, and 0 acquire
stable values, which do not change when other data
are added to the fit of the CT. The other pieces
of data then provide a test of the CT. Precisely
because of the above features it is possible to estab-
lish deviations from the CT predictions. In partic-
ular, two major deviations * have been established
in the currently available data. Although both
derivations are statistically speaking highly signifi-
cant they may have quite different implications for
the CT.

The deviation from the experimental transition
rate in X ~Aev is big because the error bars are
quite small while the central value is not too far
from the theoretical prediction. In contrast the de-
viation in the electron-spin asymmetry in
X ~nev comes from the central value being far
away from the CT prediction with ample error
bars.

The first deviation may be a signal of first-order
SU(3)-symmetry-breaking corrections to the CT,
which were expected to occur eventually since the

CT was never intended to be exact. The second
deviation may be challenging the SU(3)-octet hy-

pothesis for the axial-vector current A„. It could
mean either that other (10, 10, and 27) representa-
tions are present in Az or that the octet hypothesis
is masked by strong symmetry breaking.

After updating the status of the CT by incor-

porating the most recent data (Sec. II), we shall

study the effect of the first-order symmetry break-

ing in CT, which is what actually puts the CT in
its best predictive position (Sec. III). Next we shall

study a modification of the CT by incorporating
higher representations to A& (Sec. IV). Finally, we
shall discuss our results and draw conclusions (Sec.
V).

II. CURRENT STATUS OF
THE CABIBBO THEORY

We have seen before that in order to compare
the CT with HSD data it is important to include
the radiative corrections and the q dependence of
the leading vector and axial-vector form factors.
New data have been published after our earlier
analysis; we now include them in our comparison
of the CT to experiment, including all the correc-
tions discussed in Ref. 2. In addition to updating
the present status of the CT we also set a point of
reference for our later discussion. The results can
be found in Table I.

We have taken into account all of the new data
of the WA2 collaboration and the recently pub-
lished new world average for n, in X ~nev.

The new data have a negative effect upon the
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TABLE I. Comparison of the data for HSD with the standard Cabibbo model. The ex-
perimental data are from Refs. S—7. The a asymmetries (Ref. 10) A and 8 in X ~Aev
and:" ~Aev were obtained using the same assumptions as in Ref. 5 (see also Ref. 11).
Decay rates are in 10 sec ' except for neutron decay which is in 10 sec

Process

n ~pev (rate)
X+~Aev (rate)
X —+Aev (rate)
A —+pev (rate)
X ~nev (rate)

—+Aev (rate)
~X ev (rate)

A —+ppv (rate)
X —+npv (rate)

~Apv (rate)
n —+pev (a~)
n~pev (a, )

n —+pev (a„)
X+~Aev (a )

X--A- (- )

X ~Aev (A)

X —+Aev {8)
A —+pev (a )

A —+pev (a, )

A —+pev (a„)
A —+pev (a )

X —+nev (a )

X ~nev (a, )

~Aev {A)

Experimental
value

1.091+0.017
0.253+0.059
0.378+0.018
3.165+0.053
7.085+0. 194
3.244+0.218
0.524+0. 122
0.597+0.133
3.086+0.271
1.580+1.580

—0.074+0.004
—0.084+0.003

1.001+0.038
—0.400+0. 18
—0.412+0.062

0.065+0.072
0.853+0.07

—0.009+0.019
0.125+0.066
0.821+0.06

—0.508+0.065
0.279+0.032
0.26 +0.19
0.604+0. 12

Predicted
value

1.068
0.270
0.448
3.222
6.839
2.893
0.515
0.601
3.134
0.876

—0.074
—0.081

0.989
—0.404
—0.412

0.050
0.897

—0.017
0.010
0.976

—0.578
0.330

—0.620
0.454

Contribution
to J~

1.78
0.08

15.18
1.16
1.60
2.57
0.00
0.00
0.03
0.20
0.03
0.87
0.10
0.08
0.00
0.05
0.36
0.18
3.00
6.71
1.16
2.58

21.48
1.55

Total value of g 60.75

I" =1.098 D = —1.458 sin8 =0.228

agreement between experiment and the CT, with
the X increasing to 60.7. In addition to the devia-
tion reported before in the A ~pev spin asym
metrics, the contributions of the X ~Aev rate

2
and of the a, in X ~nev build up to almost —, of
such a highs .

As an illustration of what we meant in the In-
troduction about establishing the predictive power
of the CT, let us compare the new values of F, D,
and O namely,

F= 1.098, D = —1.458, sinO =0.228,

with those obtained before,

F= 1.069+0.023,

D = —1.490+0.014,

sinO =0.225+0.015,

when the earlier values of rates and electron-

neutrino angular coefficients were used. The three
new values remain remarkably close to the older
ones, despite the addition of the two strongly devi-
ating pieces of data.

III. FIRST-ORDER SYMMETRY BREAKING

Certainly one of the most attractive features of
HSD is that they may provide clean experimental
evidence on SU(3) symmetry breaking (SB) other
than that coming from hyperon mass differences.
As we remarked before, the CT was never intended
to be exact and deviations froin experiment are ex-
pected to appear. Therefore, one must first incor-
porate SB corrections to the CT before one may
draw conclusions about its detailed success.
Hence, it is most interesting to see how the predic-
tions of the standard CT are changed once first-
order SB is taken into account.
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The straightforward way to proceed would be to
obtain model calculations of SB, add them to the
CT, and then compare it with experiment. Unfor-
tunately, this kind of calculation is difficult to per-
form and only a few are available. ' Because of
the difficulties involved, the model calculations
contain very particular assumptions and this kind
of approach may not be as general as would be
desirable. We shall take a different point of view.

We shall attempt to extract from experiment the
SB corrections in a form which is as general as
possible. This procedure may allow us to obtain
the improved predictions of the CT. Assuming
that SB comes from the eighth component of an
octet in the strong-interaction Hamiltonian, one
can obtain the most general first-order corrections
to the axial-vector form factors g& and gz. The SB
contributions to g1 mould come from'

A)Tr([A, ;,A,sIBB), 8)Tr(8[A,;,ksIB),

C) [Tr(BA,;BRs) —Tr(BA sBA,; )],

1
g, (n~p)= E

v'6

1/2
3 2
10 3

D+ (8)—C) ),

(A)+C)),
3

1 1g)(:- —+A ) = ,E+ D-
2v'5

v2
(2A) —8) —3C)+6D)),

6
' 1/2

g)(:- ~X )= E —— —Do 1 1 3

2 3 2 5

v2
g, (&+~A)= — D+ (A)+8)+3D)),

5 3

1 1
g)(A p) = ——,F+

2&5

v2+ ( —Ai+28i+3Ci+6D&),
6

' 1/2
1 3

g&(X ~n)= — F
6 10

D

(3)

D& [Tr(BA,;)Tr(BA&)+Tr(BA&)Tr(BA,;)],

E&Tr(BB)Tr(A,;A&), and
g2(n —+p) =0,

+ ( —Bi+Cd)
1

6

and to g2 would come from

AqTr([A, ;,As]BB), 82Tr(8[k;,As]8),

C2[Tr(BA,;)Tr(BA&)—Tr(BA&)Tr(BA.;)] .
(2)

gq(X +-~A ) =—v 2C2,

gp(A ~p) =v 2( ——,A2+82+ C2 },
g, (r-~n)= —v 3A, ,

1
gp(:- ~A)=v 2(Ap ——,82 —C2),

(4)

This will lead to the following expressions for
the axial-vector form factors g1 and g2 in terms
of F, D, and the new reduced form factors
A1, . . . , D1, A2, . . . , C2 for the SB contributions:

~') = —(-, )'"8, .

The form factors are defined as usual by the had-
ronic part of the transition matrix element:

uB[fI (q')y& +f2(q ')io& q'+fs(q ')qN +gi (q ')y~ys +g2(q ')i o~ q "ys+gs(q ')qqys tu~ (5)

Although there should be in all eight new contribu-
tions coming from Eqs. (1) and (2), in practice
there are only seven. The reason is that the term
Tr(88)Tr(A, ;A,&) is diagonal and cannot contribute
to these matrix elements. The new quantities A1,
B„C„D„A2,82, and Cq in Eqs. (3) and (4) can
be used to parametrize the SB in the experimental
data, provided none of them becomes too large.

Before going into more detail it is important to

I

discuss further what is meant by first-order SB in
the CT. Although one customarily says that the
CT assumes that the symmetry limit is a good ap-
proximation, in reality SB is introduced to all or-
ders into CT by keeping the physical masses of hy-
perons, since otherwise the available phase space
would be zero and the decays would not take place
at all. So what is really meant in the CT by the
symmetry limit is that only the form factors are
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TABLE II. Comparison of the experimental data for HSD with the Cabibbo model with
first-order symmetry breaking. {A) incorporates the corrections in g & only, (8) incorporates
the corrections in g2 only, and (C) incorporates the corrections in g t and g2. The parameters
A~, . . . , Di and A2, . . . , C2 come from Eqs. (3) and {4).

Process

(A) (8) (C)

Predicted Contribution Predicted Contribution Predicted Contribution
value to g value to g value to g

n ~pev (rate)
X+~Aev (rate)
X ~Aev (rate)
A ~pev (rate)
X ~nev (rate)

—+Aev (rate)
~Xoev {rate)

A ~ppv (rate)
X ~npv (rate)

—+Aviv (rate)
n~pev (a )

n~pev {a,)
n~pev (a )

X+~Aev (a )

X ~Aev (a~)r--A. (A)

X ~Aev (B)
A~pev (a )

A —+pev (a, )

A —+pev (a„)
A ~pev (a~)
X ~nev (a )

X ~nev (a, )
—+Aev (A)

Total value of X

1.083
0.228
0.379
3.163
7.088
3.242
O.S24
0.601
3.253
0.985

—0.076
—0.084

0.988
—0.404
—0.412

0.054
0.898

—0.002
0.018
0.972

—0.580
0.306

—0.646
0.609

0,20
0.17
0.00
0.00
0.00
0.00
0.00
0.00
0.38
0.14
0.22
0.01
0.11
0.00
0.00
0.02
0.41
0.12
2.60
6.38
1.25
0.73

22.73
0.00

35.47

1.079
0.236
0.390
3.223
6.826
2.856
0.534
0.600
3.196
0.869

—0.075
—0.083

0.989
—0.370
—0.374

0.052
0.890
0.007

—0.006
0.980

—0.592
0.262

—0.592
0.504

0.54
0.08
0.45
1.21
1.78
3.17
0.00
0.00
0.16
0.20
0.06
0.06
0.11
0.03
0.37
0.03
0.28
0.75
3.96
7.06
1.66
0.28

20.09
0.69

43.02

1.079
0.228
0.379
3.145
7.173
3.250
0.524
0.601
3.410
0.921

—0.077
—0.084

0.988
—0.403
—0.411

0.054
0.898

—0.015
0.073
0.939

—0.543
0.294
0.000
0.603

0.46
0.17
0.00
0.13
0.21
0.00
0.00
0.00
1.43
0.17
0.32
0.07
0.11
0.00
0.00
0.02
0.41
0.10
0.61
3.87
0.29
0.22
1.87
0.00

10.46

F= 1.220
D= —1.381
sin8= 0.229

A i ———0.152
Bi ———0.033
C) ———0.036
Di ——0.049

F= 1.195
D= —1.399
sin9= 0.227
A2 ——0.250
B2——0.165

Cp ———0.229

F= 1.453
D= —0.870
sin0=0. 241

A i
——0.143 A2 ——1.660

Bi ——0.329 B2——1.338
Ci ——0.164 C2 ———0.00

Di ———0.006

kept at their symmetry-limit values, while the
difference b,M between the hyperon masses in kept
to all orders. Therefore, incorporating first-order
SB into HSD in the spirit of the CT means that
first-order corrections should be incorporated into

f i(0) and gi(0) only, while f2, gq, and the slopes
of the q dependence of fi and gi should be kept
at their symmetry-limit values. Strictly speaking
one should add all SB corrections in such a way
that the order is well kept. For example, if the q
dependence offi and gI is introduced, then
second-order SB corrections to fi(0) and gi(0)
should be included and first-order corrections to

f2(0) and g2(0) should also be included and

powers of (b,ill ) and higher should be dropped;
this would be a rigorous accounting of second-
order SB in CT. We shall not pursue this ap-
proach in this paper. We shall instead stay close
to the original spirit of the CT. Therefore, by
first-order SB we mean that we shall keep f2 at its
conserved-vector-current value g2

——0 because of
the absence of second-class currents' and fi at its
symmetry-limit value because of the Behrends-
Sirlin' and Ademollo-Gatto' theorems. Thus,
only the changes in gi introduced in Eq. (3) should
be considered.
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Fitting A1, 8&, C1, and D1 along with I', D, and
8 we obtain the results (A) in Table II. They are
quite interesting. Comparing the values of these F,
D, and 8 with those of Table I, we see that they
changed very little, meaning that SB is indeed
small. Also the values of A), 8(, C), and D) are
small enough as to be acceptable as first-order SB.
Looking at the new predictions we can observe that
this pattern of SB leads to fine readjustments of
some quantities. Indeed the rates for X —+Aev
and X ~Aev are reduced by —17% and the rates
for = ~Aev and:- —+A(uv are increased by
-10%. u,„ in X ~nev is decreased by -9%
and a, in X ~nev and A in" ~Aev are in-
creased by -9% and -25%, respectively. All
other changes are fairly small. The most dramatic
change is in the rate for X ~Aev. It is changed
by 3.8 standard deviations and its experimental
value is very well reproduced. But, the new value
of a, in X ~nev still remains totally off, as was
to be expected.

Bemuse of this we shall consider the incorpora-
tions of the g2 form factors. Although it may not
be easy to give an example, it is conceivable that
for some reason SB may be stronger in the g2
terms than elsewhere and thus g2 could be incor-
porated while keeping all other form factors as be-
fore. Besides it is interesting to see how big a g2 is
required by present data. In Table II we give two
more cases (B) and (C). In (B) A), B„C(,and D(
are kept at zero and only A2, 82, and C2 are al-
lowed to vary and in (C) we take the combined ef-
fect of the corrections to g( and g2. Except for
minor details, fit (B) is very similar to fit (A). In
contrast, fit (C) has a very much reduced X but
this requires very large A1, 81, and D1, too large
to be considered a manifestation of first-order SB.

Our main conclusion in this section is that small

symmetry breaking through the g1 leads to very

good agreement with present HSD data except for
the value of a, in X ~nev. Nevertheless, we can
only claim that the incorporation of first-order SB
into the CT is just consistent with present data.
The approach of this section leads to noticeable
modifications in the predictions of the original CT,
which cannot yet be rigorously tested at present be-
cause of the laxity of some pieces of data. For ex-

ample, the substantial reduction predicted in the
X+~Aev rate requires a much more precise mea-
surement of such a rate. Clearly, with a substan-
tial improvement of the precision of the data it
will be possible to extract from the data in a rather
general way important information on SB that

would be of great use in guiding the theoretical
work in this area.

IV. HIGHER REPRESENTATIONS

As we mentioned in the Introduction the new
world average of a, in X ~nev is such that it
may challenge the octet hypothesis for the axial-
vector current Az. As we have just seen in Sec. II,
first-order SB contributions to the CT can do prac-
tically nothing to bring agreement with the experi-
mental value of a, . It is conceivable that it is the
octet assumption for Az that needs revision and
not the assumption on the validity of the symme-
try limit in the CT. This is the issue we shall
study in this section, namely, we shall assume that
A„may be given by an admixture of higher SU3
representations, while the symmetry limit is still
valid. Therefore, in addition to the octet there
may be 10, 10, and 27 in A&, i.e., A& is given by

A A(s)+A(10)+A(10)+A(27)
P P P P

The Cabibbo universality assumes that the full
weak current is obtained from the bS=O current
through a rotation around the 7th axis in the SU(3)
space. ' We assume that this construction is also
valid for higher representations. We thus have

—2iOC F7 — 2iHC F7
Ap ——e Ape (7)

where

Aq Aq '(0, 1, 1)+——Aq' '(0, 1, 1)

+A p(10)(0, 1,1)+Ap(2')(0, 1, 1) .

In Eq. (8) A„'"'(Y,I,I3}denotes the current that
transforms according to the n representation of the
SU(3} group and is the (Y,I,I3) member of this
representation. Equation (8) indicates that in addi-
tion to the SU(3)-invariant form factors F and D
there will be three more form factors F(o, F—,o, and

F2„. After performing the rotation (7) of the
current (8} we obtain the following form of the
weak axial-vector current:
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1/2

Ap ——— l+ cos28C
~Q7) 3 3 ~5 (27)

2 2
sinOcA& ( —1, —,, —,)+ (1—cos28c)cosOcA„(0, 2, 1)P ~2~2 4

' 1/2

+ —,(Scos28c —1)cosO&A„' '(0, 1, 1)— — sinOccos28cA„' '(1, —,, —, )

' 1/2

+ sinOc(3+ Scos28c)A& (1,—,, —, ) — — —cosOcA ~ (2, 1,0)
1 (~7) 1 1 5 1 —cos26rc (p7)

2 6 2 2

1+cos2~ (ip) 3 3 3cos20& —1—v3
2 P 2 2 cosOCA p(10)(0 11)

3cos28c+ 1 1 —cos2(gg
+

2
sinOcA&' '(1, —,, —,)+v 3p cosOcA&' '(2,0,0)

+cosOcA„" '(0, 1, 1)—sinOcA„" '(1, —,, —, )+cosOcA„' '(0, 1,1)+sinO&A„' '(1, —,, —, ) .

The matrix elements of the current (9) can be cal-

culated with the help of the Wigner-EckarI.
theorem. The corresponding Clebsch-Gordan coef-
ficients' are compiled in Table III.

In the case of higher representations we have

performed several fits. We have first tried
separately each of the higher representations, then
combinations of each with A„' ', and finally all of
them together. In neither one of all these options

I

was there any improvement with respect to a, in
X ~nev found. Therefore we shall only display
the results for the last case, they are given in Table
IV. Table IV shows that the discrepancy for
I (X ~Aev) disappears, while the deviation for
cx, in X ~nev is not improved at all. The values
of form factors F&z, Fm, and Fq7 are small in com-

parison with the values of I and D and these latter
two do not differ significantly from the values in

TABLE III. SU(3) Clebsch-Gordan coefficients for HSD. The normalizations are as in

Ref. 17.

Process 8D 10 ]0 27 (I) 27 (I)

n~p 10 3 ( 15 ) ( 1 ) 0 (2)

1

vs
(1)

3vS

1

zv5
—(—)' '(—)15 2

)
1/2

15 (
2 )1/2
15

2 1

(-, )
9v5

2 3——( —)9 2

1

2

1

2VS
1

vs

y0 3

zvS
2

vis
1

vis
——( —)' '( —)9 5 2

—,v2( —, )
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TABLE IV. Comparison of the experimental data for HSD with the Cabibbo model with

higher representations of SU{3) in the axial-vector current. The parameters F, D F]Q F~p,

and F27 are the SU(3) reduced form factors of the axial-vector current.

Process

n ~pev (rate)
X+~Aev (rate)
X ~Aev (rate)
A ~pev (rate)
X —+nev (rate)

~Aev (rate)
~XQev (rate)

A ~ppv (rate)
X —+npv (rate)

~Apv (rate)
n~pev (a )

n —+pev (c,)

n~pev (o.„)
X+—+Aev (a )

X —«Aev {a )

X —+Aev (A)
r-~Aviv (a)
A~pev (a )

A~pev (a, )

A~pev (cz„)
A —+pev (ap)
X ~nev (a )

X ~nev (n, )
—+Aev (A)

Predicted
value

1.083
0.229
0.380
3.164
7.079
3.206
0.609
0.601
3.248
0.975

—0.076
—0.084

0.988
—0.404
—0.412

0.054
0.898

—0.004
0.018
0.973

—0.580
0.306

—0.647
0.599

Contribution
to g'

0.22
0.17
0.01
0.00
0.00
0.03
0.48
0.00
0.36
0.15
0.21
0.01
0.11
0.00
0.00
0.02
0.42
0.08
2.64
6.41
1.24
0.69

22.77
0.00

Total value of g

segno=0. 230 F= 1 123 D= 1 389 F» = 0 122 Fio =0 034 F» = 0-080

Table I. This scheme cannot be discriminated
from the first-order symmetry-breaking schemes of
Table II. We thus see that the presence of higher
representations in A& cannot explain the new world
average for a, in X +nev eithe—r.

V. DISCUSSION

We have compared the most recent data on HSD
with various versions of the CT. The standard CT
is not able to explain the data well. The strongest
discrepancies show up for the rate in X ~Aev
and a, in X ~nev. We have considered two gen-

eralizations of the Cabibbo model to explain the
data. The first modification —a natural one, incor-

porating first-order SB—improves the agreement

significantly and the rate in X —+Aev can be ex-

plained very well, while the prediction for a, in

X ~nev still deviates very much from its experi-

mental value. This situation repeats itself in the
second modification when admixtures of higher
representations in the axial-vector current are con-
sidered.

It is a very remarkable fact that none of these
two approaches can explain the value of u, in
X ~nev It has p.robably got to do with the fact
that for X ~nev decay there is a discrepancy in
the sign and not in the absolute value of the g&

form factor. The difference in the sign cannot be
easily explained by the perturbative schemes nor by
small admixtures of higher representations and this
is exactly why the discrepancy for a, in X ~nev
always remains. ' It is, therefore, a very serious
discrepancy that requires both experimental and
theoretical attention. From the experimental point
of view it is most important to obtain an indepen-
dent determination of the value of a, in X —+nev.
From the theoretical point of view, if the value of
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a, in X ~nev is not changed, it can mean that
the Cabibbo model may need important modifica-
tions. One might suspect that a large second-
class-current contribution would be able to explain
the value of o., in X —+nev. However in a recent
paper it has been shown' that the CT with a
second-class octet g2 term (which brings two addi-
tional parameters) the prediction for a, in
X —+nev is moved only insignificantly from the
standard CT prediction a, = —0.6.

From the analysis of this paper and that of Ref.
19, we are faced with the unique conclusion that, if
the current value of a, in X ~net is confirmed

by future experiments, then strong SB must be
present in HSD. This would be a major change to
the CT. Such strong SB might be very difficult to
be computed perturbatively and, therefore, a dif-
ferent approach that redefines the concept of SU(3)
symmetry might be required altogether. The only

approach of this kind known to us that is in agree-
ment with the present value of a, in X ~nev is
the approach that treats SU(3) as a spectrum-
generating group. In fact, it was already noted
when the data on HSD were much poorer that the

value of a, is X ~nev will be the crucial test
that discriminates between the CT and the
spectrum-generating SU(3) approach. 2

Summarizing, our main conclusion can be stated
in terms of two mutually exclusive statements, de-

pending on the future experimental value of a, in
X ~nev:

(1) If the value a, =0.26+0.19 in X ~nev per-

sists, then the CT will need some essential modifi-
cation.

(2) If the value of a, in X ~nev will move in

the direction closer to the CT-favored value then
the only modification of CT that is required is
first-order symmetry breaking. Future more de-

tailed experimental results on HSD can decide on
the particular SB scheme.
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