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The impossibility of composite models of two or more generations of quarks and lep-
tons is shown using preons with strong SU(3) quantum numbers and either the elec-
troweak SU; (2) X U(1) or SU.(2) X SUR(2) X Up_r (1) quantum numbers. The preon
models considered are the simplest: FFF and FB (F is fermion and B is boson). The con-
straints imposed on the models are the absence of exotics and anomalies in the strong and

electroweak sectors.

I. INTRODUCTION

There are at least two reasons for giving serious
consideration to a common origin of quarks and
leptons': (1) the proliferation of an equal number
of families of quark doublets and lepton doublets
(quark-lepton symmetry) and (2) the pointlike
behavior of both quarks and leptons down to dis-
tances below 10~¢ cm.2 If we had just one fami-
ly, a composite model would be less attractive.
Thus, a composite model of quarks and leptons
must explain why Nature repeats itself at least
three times with rapid changes in mass® and can
only give structure to quarks and leptons below
10~ cm. Most of the composite models proposed
so far are inadequate from this point of view:
preons* (or subquarks and subleptons or whatever)
must repeat themselves to produce generations (or
they have radial excitations, which is very unlike-
ly.>) We do not gain any insight about the genera-
tions of quarks and leptons.

The postulated compositeness of quarks and lep-
tons has led some authors to also hypothesize the
compositeness of gauge bosons® (at least, weak bo-
sons). However, one then loses the beauty of the
gauge theory of electroweak interactions and the
weak interaction becomes a van der Waals-type
force like the nuclear interaction is supposed to
be.” We recall the old flavor group SU(3) where
the symmetry of the composite particles, the had-
rons, was the same as that of the three quarks
u,d,s. Moreover, the SU(3) color force, which is
supposed to bind quarks together, does not disturb
the flavor SU(3). Following this analogy, we pro-
pose to investigate composite models of quarks and

26

leptons where the preons carry strong and elec-
troweak quantum numbers. We hope to reproduce
the generation (or family) structure nontrivially.
From our vantage point, no gauge boson is compo-
site.

Can we invent such a model? We try one exam-
ple. Suppose we have two kinds of preons (Weyl

" spinors) as follows:

T:(3,2,1),,
V:(3,1,2),

(1.1)

where the bracket indicates the quantum numbers
of SU-(3)XSU(2) XSUR(2). Then, we obtain the
following group decomposition of particles con-
structed out of three preons, without attempting to
answer the question of how they bind together:

TVV =(34+3+6+15,2,1+3), ,

TTV =(3+3+6+15,1+3,2), ,
(1.2)
TTT =(1+8+8+10,24+2+4,1), ,

VVV =(14+8+8+10,1,24+2+4); .

The apparent similarity to the Harari-Shupe
model® is illusory. In our model, TVV represents
(u,d); and TTYV represents (u€,d€);, in contrast to
the Harari-Shupe model where TTV is (u,u€) and
TVV is (d€,d) (since T and V are Dirac—not
Weyl—spinors). We then note that there exist no
(3,2,1); and no (3,1,2); in our model while we
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have two (3,2,1); and two (3,1,2),. In addition,
we have two (1,2,1); and two (1,1,2),. Hence, we
have two families of quarks and leptons. Other
composite states are either color exotics or weak
exotics with high-dimension representations.

Note that in our model the origin of the two
families is different for quarks and leptons: dou-
bling comes from the color group for quarks and
from the weak group for leptons. This may indi-
cate that the mass differences among quark fami-
lies are larger than those among lepton families.
These mass differences seem to be a type of hyper-
fine splitting.” So far so good. Unfortunately, this
model has only two families, not three or four
families, and, more seriously, it is not anomaly-free
in the weak sector. The reason is as follows. Using
the fact that the weak hypercharges Y
[=5(B—L)] are Y(T)=— and Y(V)=7, we
get TrI;;2Y=£0. Therefore, our model is not re-
normalizable. We are in trouble. However, be-
cause our model is simple and it will not give any
“normal” exotics such as (3,2,1), nor (3,1,2), it is
worth pursuing further.

In the search for composite models of quarks
and leptons, we can take two different paths: The
Georgi-Glashow way'® and the Pati-Salam way.!!
In the former, we use the SU; (2) X U(1) elec-
troweak group and we construct (3,2), 2(3,1).,
(1,2);, and 2(1,1),. In the latter, we use the left-
right-symmetric SU; (2) XSUg (2) X Up _r(1) elec-
troweak group and we construct (3,2,1);, (1,2,1);,
(3,1,2)g, and (1,1,2)g [or (3,2,1),, (3,1,2);, (1,2,1),,
and (1,1,2); ], where the second and the third in-
dices denote the SU; (2) X SUg(2) quantum num-
bers. The basic assumptions of composite models
with strong and weak quantum numbers are
presented in Sec. II.

Although we can construct quarks and leptons
out of preons in many ways, we restrict ourselves
to the simplest: FFF and FB where F (B) denotes
fermion (boson). In each case, we discuss both the
Georgi-Glashow and the Pati-Salam approaches.
In Sec. III, we discuss the pure-fermion composite
model FFF.'? In Sec. IV, we discuss the fermion-
boson composite model FB.!> One example has al-
ready been proposed'*: preons are fermions
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F =(1,2), and bosons ¥, =(3,1) and ¢y=(1,1).
However, in this model, SU(2) is a global symme-
try and is not gauged.!> This model does satisfy
the ’t Hooft anomaly condition!® for the case of
the SU(4N) binding force, where N denotes the
number of families. Section V is devoted to our
conclusions.

II. BASIC ASSUMPTIONS OF COMPOSITE
MODELS WITH STRONG AND WEAK
QUANTUM NUMBERS

Since we assign strong and electroweak quantum
numbers to the basic preon fields, we naturally
limit the number of such fields. For the pure-
fermion models, we choose two sets of Weyl spin-
ors appropriate to the Georgi-Glashow (GG) and
Pati-Salam (PS) approaches.

Assumption Ia. Preons are of the following
types in the GG approach:

T+: (3,2)L 5 V+: (3,1)L ’
To: (1,2)L 5 V03 (lal)L ’
T_:(32),, V_:(3,1),,

where the numbers in parentheses indicate the
SU(3) XSU; (2) quantum numbers and the +, —,
0 denote the triality of SU¢(3).

Assumption Ib. Preons are of the following
types in the PS approach:

T,:43,2,1),, V,.:(3,1,2),,
T()Z (1,2,1)L 5 Vo! (1,1,2)L N
T_:(32,1),,V_:(3,1,2) ,

where the numbers in parentheses indicate the
SU(3) XSU.(2) X SUg(2) quantum numbers and
the +, —, O denote the triality of SU(3) as be-
fore.

For the fermion-boson models, we use the fol-
lowing.

Assumption I'a. Preons are of the following types in the GG approach:

T,:(3,2)., Vo:3,1), ¢,:(3,2), ¢¥,:(3,1),
To: (1,2)L , Vo (1), ¢0: (1,2), Yo (L,1),
T_:(3,2), V_:(3,1),, é_:(3,2), ¥_:(3,1),
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where T,V (¢,v¥) denote fermions (bosons).

Assumption I'b. Preons are of the following type in the PS approach:

T,.:(3,2,1),, V,«(3,1,2),,
Tol (1,2,1)L ) V()I (1,1,2)L )
T_:(3,2,1),, V_:(3,1,2),,

6,:(3,2,1), ¥,:(3,1,2), ©,:(3,2,2), A, :(3,1,1),

do: (1,2,1), 9p:(1,1,2), Qn(1,2,2),

Ay (1,1,1),

$_:(3,2,1), ¥_:(3,1,2), Q_:(3,2,2), A_:(3,1,1),

where T,V (¢,¥,Q,A) denote fermions (bosons).

The compositeness of quarks and leptons pro-
duce many exotics. There exist arguments why we
should throw away some of these exotics.!” How-
ever, we believe that it is preferable for exotics not
to exist from the beginning. So, we make the fol-
lowing assumption.

Assumption II. No spin-% bound states exist
which have quantum numbers (3,2), or (3,1),.

The possibility of such a model was demonstrat-
ed in the Introduction, although it is not anomaly
free. Assumption II is motivated by the demon-
stration'® that grand unification groups are limited
to either SU(5) or SO(10) if the “observed” quarks
and leptons are only in the (3,2);, (3,1);, (1,2),
(1,1);, representations but not (3,2); or (3,1),.

Our insistence on the SU(3) X SU, (2) X U(1)
quantum numbers comes also from taking note of
the fact that these are the only quantum numbers
that are known at present except masses. If the
grand unified theory is confirmed—e.g., by observ-
ing proton decay at the predicted level of 10°!*!
yr—one could characterize quarks and leptons by
some new quantum numbers or whatever. As long
as we do not have any clear-cut evidence for SU(5)
or SO(10) GUT, it seems reasonable to attempt to
understand the postulated composite structure of
quarks and leptons by using the SU(3) X SU (2)
X U(1) quantum numbers as the tool to distinguish
between quarks and leptons and both from nonex-
isting exotics. Of course, if we had some method
to tell us which composites should be superheavy,
then it would not be necessary to invoke assump-
tion II.

We do not impose the Pauli principle, since its
use requires the complete specification of preon
dynamics, although this may eliminate some exot-
ics. That is the lesson we have learned from the
old SU(3) where the application of the Pauli prin-
ciple to the flavor group SU(3) led to inconsisten-

l
cies.

Finally, we add the following assumption.

Assumption III. No anomalies exist, at least in
the strong and weak sectors of preons.

In the GG approach to model building, one nor-
mally accepts assumption III. In the PS approach,
one usually hypothesizes mirror fermions to cancel
the weak anomalies; we do not accept this hy-
pothesis because it introduces too much arbitrari-
ness into the PS approach.

III. THREE-FERMION COMPOSITE MODELS

We prove that it is impossible to have composite
models of quarks and leptons, based on three fer-
mions, which satisfy all three assumptions above.
We first discuss composite models within the
SU; (2)XSUz(2) X Ug_; (1) framework. The as-
signments of quantum numbers are as follows:

T+5 (3,2,1)L N V+Z (3,1,2)L ’
To: (1,2,1), , Vo: (1,1,2),, 3.1)
T_:(3,2,1),, V_:(3,1,2), .

The SU; (2) X SUg(2) quantum numbers for com-
posite states of three preons are

TTT: 2(2;,18)+(4;,18) ,
TVV: (21,13)+(21,38) ,
TTV: (1,28)+(31,28) ,
VVV:2(11,25)+(1,,4R) .

The color states, 3, 3, and 1, can be constructed as

(3.2)

4+ 3 4+—— L4+4+4

+00 —00 +-0
(3.3

— -0 ++0 ———

000
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where the use of triality helps in the enumeration
of states. Hence, the relevant SU(3) X SU,(2)
X SUR(2) states are

+ + - TTT
B21,=+ 0 0@ |; , |, G4
_ + - - TTV
G12.=|— 0 0@, , |, 65

+ + 0

+ + +

+ — 0 TTT
2= _ _|®@|p ppl, 6O

0 0 0

+ + +

+ — 0 TTV
LL2=|_ _ ||, pp 3.7)

0 0 0

Forbidden states are constructed by
|

- t -~ [rrrT
(3,2,1)y=|— 0 0|® rvvvl> 68
+ 4+ 0
t = rr
3,,2) =14+ 0 0|® % (3.9)
- —- 0
We obtain three possibilities:
(1) T{5#0, To=T_=V_=0, V V=0,
(3.10)
(2) To#£0, T, =T_=V_=0, VoV_=0,
(3.11)
(3) T__:/é()’ T+=TQ=V0=0, V_+_V__ =0,
(3.12)

where T; =0 means that the number of T; type is
zero and V;¥;=0 means that either the number of
V; type or that of V; type is zero. The demand
that we should get particles with quantum numbers
(3,2,1), and (3,1,2), yields finally:

Case I: T, VoVo=(3,2,1);, T, T, Vo=(3,1,2), ,T, T, T, =(1,2,1), VoVoVo=(1,1,2); ;
Case 2: ToV_V_=(3,2,1);, ToToV_=(3,1,2); ,ToToTo=(1,2,1),, V_V_V_=(1,1,2), ;
Case3: T_V,V,=021), T_T_V,=(3,1,2), ,T_T_T_=(1,2,1);, V.V, V,=(1,1,2), .

Now we investigate each case.

Case 1. We have only T, =(3,2,1); and V,=(1,1,2);.

The numbers of quarks and leptons are

nV(nV-H) nT(nT-H)nV
Nq=an——, q:——_i!—_ so that nr=ny,
np(np+1)(nr+2) ny(ny+1)(ny+2)
Ny=2 T 3 d , Nj=2 4 V+3' 4

where n; denotes the number of i-type preons and
N; denotes the number of j-type families. If we
insist that N, =N, (equal number of quarks and
lepton families), the solution is

Ny=N;=40 (3.14

which is highly unlikely. If we allow N,N; (dif-
ferent numbers of quark and lepton families), we
find

(Ng>Np)=(1,2),(6,8), ... . (3.15)

Case 2 where we have only T(=(1,2,1); and
V_=(3,1,2); yields the same solution as case 1.
Thus, we do not have three or four quark families

(3.13)
[
for cases 1 and 2. _
Case 3 where we have T_ =(3,2,1); and
V. =(3,1,2), yields
ny(ny+1) nrlnr+41)
Ny=2nr————, Ny=2ny—— —
so that ny=n,, ,
(3.16)
nT(nT+1)(nT+2)
NI=2 s
3!
ny(ny+1)(ny+2)
N=2 yiny J v+ .

The solution for N, =Nj is
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Ny,=N;=2,
and for N,5#Nj,
(Ng,N))=(12,8), ... . (3.17)

The solution N, =N;=2 is the example in the In-
troduction. In all cases, we have shown that com-
posite models of three preons cannot provide three
or four families of quarks and leptons. Moreover,
in all cases, they are not anomaly-free in the weak
sector. The reason is the same as that given in the
Introduction. Thus, the PS approach does not
work.

One may wonder whether the use of
SU.(2) X U(1) preons (GG approach) works or not.
Since the quantum numbers of SU-(3) X SU.(2)
are the same as in the case of
SU(3) XSU.(2) X SUR(2), we obtain three possibil-
ities as before. However, in the GG approach, we
do not have two distinct (3,1),. We have just
TTV. We cannot have both uf and df, otherwise
we can not assign the U(1) quantum numbers to T’
and V. Thus, we have shown that three-fermion
composite models in the GG approach do not
work.

IV. FERMION-BOSON PREON MODELS

Since the purely fermion composite models are
“no go”, we try the fermion-boson composite
model FB. We note that we forbid composites of
type FB. This is motivated by the following obser-
vation: If the superstrong force which binds
preons is a gauged one with a suitable gauge group
G, the situation may arise where FB is singlet
under this superstrong force; but then FB can not
be a singlet with the assignment of representation »
to fermions F and 7 to bosons B, except SU(2).

To reduce the numerical calculations, we make
an additional assumption which is consistent with
all observations thus far.

Assumption IV. The number of quark doublets
is equal to the number of lepton doublets, i.e.,

N, =N, (quark-lepton symmetry).

A. GG solutions for FB

First, we explain how SU¢(3) XSU, (2) quantum
numbers are constructed out of F and B:

SU.(2) doublet: Ty or V¢ ,
SU.(2) singlet: T¢ or Vi,

4.1)

the color 3: +0 or — — ,

3: —0or ++, 4.2)
I: +—o0r00.

Forbidden quantum numbers arise from

+ o+ T ¢
—0|®|rsg
or (4.3)
+ 0 T ¢
- —|®lry

It is easy to see that at least one of T, ,T,,T_ and
one of ¥V ,V,,V_ should not exist, since otherwise
scalars are not allowed. Moreover, at least one of
T,,T_,V,,V_ should not be present by the same
reasoning. Also, if both T and ¥V, are present and
the rest of the fermions are not, we have
¢.=¢_=v,=v_=0, ie, we cannot construct
colored states. Combined with assumption III,
which requires an anomaly-free strong sector, we
obtain the following possibilities.

Case . T, T_50, To=V_ =V_=0.

Case 2: V, V_50, Vo=T,=T_=0.

Case 3: T, V_50, T_=V,=0.

Case 4: T_V, 40, T, =V_=0.

Case 5: T, T_V 70, To=V_=0.

Case 6: T V., V_50, T_=Vy=0.

Case 7: T, T_V_50, Ty=V_ =0.

Case 8: T_V, V_50, T, =Vy=0.

Case 9: T(50, the rest of fermions vanish .
Case 10: V540, the rest of fermions vanish .

Cases of even number are related to cases of odd
number (among cases 1—8) by T«->V.

Since we could not find a simple method to
solve the above ten cases, we resort to brute force.
For each case, we construct the representations
(3,2)., (3,1),, (1,2);, (1,1); which are listed in
Table I. It is straightforward to see that cases
5—10 should be dismissed since we must have two
distinct kinds of (3,1), (uf and df). In other
words, we cannot assign the U(1) quantum num-
bers of SU; (2) X U(1) to preons. Hence, cases
5—10 must be discussed in the left-right-
symmetric electroweak model.
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TABLE 1. Contents of FB composite states in the GG approach.
Case (3,2), (3,1), (1,2), (1,1),
1 T_¢_,Vod Ti¢y, Vo T,y T ¢,
2 Toy,,V_o¢_ Tod_,Vity Vi V_i,
3 Tyto,V_¢_,Vod Ty¢4,V_tho,Tod_ Tovo,V_o Tyé_,Voth
4 Toyy,VidoT 9 T_¢o, Vi, Voh T_¢,,Vodo Todo, Vi9_
5 T_¢_ Vo T, ¢_ Vi
6 V_¢_ Tod- Vig_ T,¢_
7 Voo + Ti¢y V_o, T ¢4
8 Toy Vs T ¢, Vi,
9 Toty , Tod_ Toth Todo
10 Vod + Vo Vodo Voo
Next we discuss cases 1—4. Y(V_)+Y(d,)= _% ) (4.14)

Case 1. 1t is easy to show that T, ¢, behaves
as df , while Vy_ as uf, by examining the U(1)
quantum number, Y, of SU;(2)XU(1). [The rela-1

tions, Y(Vo)+Y(¢_)=7 and Y(V,)+Y(, )=+
must be satisfied.] Then we have

Ny=n(T_n(¢_)+n(Von(d,), (4.4)
Ny=n(T )n(d,), (4.5)
Ny=n(Von(¢y_), (4.6)
Ni=n(T )n(y_), 4.7
Ny=n(T_)n(¢,) (4.8)
while assumption III yields
n(T, )=n(T_). 4.9)
Equations (4.7), (4.8), and (4.9) yield
n(yp_)=n(d,)
which leads to
n(Vy)=0

by Eq. (4.4). This implies the nonexistence of uf .
Case 2. We make the transformations ¥<>T and
¢<. Then we get n(Ty)=0, which leads to the
absence of uy.
Case 3. The U(1) quantum numbers require

Y(T )+ YW=+, (4.10)
Y(V_)+Y($_ )=+, 4.11)
Y(Vo)+Y($)=7, (4.12)
Y(To)+Y(h)=—75 , (4.13)

If Y(T, ¢, )=Y(T, )+Y($, )=, thatis T ¢,
is df type, then we get Y(V _1)y)= —% (V_1yy is
uf type), using Egs. (4.10) and (4.14). Consequent-
ly, we get Y (Vo) =0 (Voiy is v type). Since we
must have ef type, T, ¢_ must be the solution.
Then Y(To¢_)=5 (Tod_ is df type), using Egs.
(4.10) and (4.13). Summarizing, if T, ¢ is df
type, then V_4q, Voo, T d_, Tod_ are uf, vi,
ef, df types, respectively. Hence, we have

Ny=n(T )n(ho)+n(V_)n(p_)

+n(Von(d,), (4.15)
Ny=n(T n(¢)+n(Ton(d_), (4.16)
Ny=n(V_)n(yy), 4.17)
Ni=n(To)n(¢g)+n(V_)n(d,), (4.18)
Ny=n(T )n(¢_), (4.19)
No=n(Vyn (i) . (4.20)

The anomaly-free condition yields
2n (T )=n(V_). (4.21)

Using assumption IV, namely N, =Nj, and Egs.
(4.15), (4.17), (4.19), and (4.21), we have

n(Vo)n(¢,)=N,—n (T In(h)—n(V_)n(s_)
=N,—5n(V_)n(h)—2n(T  )n($_)
=N, —3N,—2N; <0.

In the same way, we can show that if T, ¢, is uj
type, then V_ 1/}07 VO¢'0,T+¢-—9TO¢— are df, ’e[c,’
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v§,uf types, respectively. Hence,

Ny=n(T )n(o)+n(V_)n(é_)

+n(Voln(d,), (4.22)
Ny=n(T n(¢ ) +n(Ton(s_), (4.23)
N,=n(V_)n(t), 4.24)
Ni=n(To)n(Po)+n(V_In(d,), (4.25)
Ni=n(Vy)n () , (4.26)
No=n(Tyn(é_), 4.27)

and
2n(T)=n(V_). (4.28)
Equations (4.24) and (4.26) yield
n(V_)=n(Vy)=ny . (4.29)

Then, for N, =N;=N, we have
N=n(T )n(o)+nyn(d,)+nyn(d_),

(4.30)
N=n(T )n(¢ )+n(Ton(s_), (4.31)
N =nyn(¢y) , (4.32)
N =n(Ton(po)+nyn(d,) . (4.33)

Using Egs. (4.31) and (4.33), we have

n(¢p )n(T ) —nyl=n(To)ln(¢o)—n(¢_)]
while Eqgs. (4.30) and (4.32) yield

n(Wo)lny —n(T )]=ny[n(d)+n(d_)].
Thus, we have
n(y) <n(d_) (4.34)
or

N=nyn () <nyn(p_)

<n (T In(g)+nyn(d )+nyn(d_)=N .

Therefore, there is no solution for N, =N;.

Case 4. Making use of the transformations
T<V and ¢<>9 we have no solutions.

We conclude that there are no solutions for the
FB preon model in the GG approach.

B. PS solutions for FB preon model

Now, we look for the left-right-symmetrilc com-
posite models involving one fermion (spin-5) and
one boson (spin-0). We construct SU; (2) X SU(2)

quantum numbers for composite states as
(*,2,1): TA,VQ, (*%1,2): TQ,VA,
(%2,2): Ty, Vo, (*1,1): T,V .
Since we do not want quarks and leptons with
(*,2,2) or (¥,1,1), we conclude:
¢=0 and ¥=0. (4.35)
Actually, this equation holds for FB" (n=o0dd),
since ¢ "~(*,2,1) and ¢¥"~(*,1,2) for n=odd.
The forbidden quantum numbers are (3,2,1),
and (3,1,2);, to wit,
+ + T A
~ 0 ] ® [V Q

and (4.36)
[z ol &)

T,.A,=0, ToA_=0, T_Ay=0,
T,Q=0, ToQ,=0, T_Q _=0,
V,Q,.=0, VoQ_=0, V_Q,=0,

ViAo=0, VoA,=0, V_A_=0.

IV, V_T,T_5#0,then A, =A _=Ay=0Q,
=0_=0y=0, i.e.,, no bosons. Hence, at least one
of T, T_,V,, V_ must not exist. Note that the
simultaneous transformation of T<>¥V and Q<A
leaves Eq. (4.37) invariant. The candidates for
solutions are as follows:

or

(4.37)

(1) T, TV, V_ Q_,

(2) T,T_V,V_ Q,,

(3) ToT_V, V, Q,

4) T, T_V, Q.A_,
(5) T, ToV_ Q_A,,
(6) ToT_V, QoA ,
(7) T, V_ Q.0_,
(8) T, V_ Q.0 _A,

and their (T« V) and (Q«>A) conjugates. The re-
quirements of the anomaly-free condition in color
and N, =N; limit candidates to only cases 3 and 7
(and their conjugates). Then, the anomaly-free
condition in the electroweak sector uniquely picks
case 3 and its conjugate as solutions:

(TO’ T— ’ V+ ’ VO’QO)
and

(T, To,Vo,V_,As) .
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TABLE II. Contents of FB composite states in the PS approach.

(a)

Case (3,2,1), (3,1,2), (1,2,1), (1,1,2),
| T+ Ap V_Ag ToAo VoAo
2 V. Q T_Q, Voo ToQ

(b)

Case (3,2,1) (3,1,2)z (1,2,1), (1,1,2)g
1 T, Ao V. Ao ToAo VoAo
2 ToA, VoA, T_A, V_A,
3 T_A_ V_A_ T A_ VoA

Their contents are listed in Table II(a).

The change of the assignment of V as V; — Vy
yields different solutions. They are in Table II(b).
In either case, solutions are trivial and lead to only
one family.

V. CONCLUSIONS

Under the major assumption that preons carry
strong and electroweak quantum numbers, we have
investigated composite models of quarks and lep-
tons of the types FFF and FB in the GG and PS
approaches.!>! Interestingly, there exist no solu-
tions in the GG approach, using the SU, (2) x U(1)
electroweak group. In the PS approach, the left-
right-symmetric electroweak model SU (2)
XSUR(2) X Upg _ (1) does provide solutions of the
FB type that are anomaly-free.

If we were to accept “mirror” fermions!! in the
PS approach in order to cancel the electroweak
anomaly of preons (Trl;;2Y=~0), there would be
additional solutions that become anomaly-free.
However,the allowance for mirror preons intro-
duces too much arbitrariness, in our view, into the
PS approach. In this regard, we note that if we al-
low (3,2); or (3,1), in the pure-fermion composite
models, we can also find solutions in the GG ap-
proach. For example, giving up assumption II
leads to the Casalbuoni-Gatto model'® where equal
numbers of right- and left-handed composite states
appear. However, it is completely unclear why
right-handed particles should become superheavy.
Incidently, ’t Hooft!® also ended up with no solu-
tion in his search for composite models of quarks

and leptons constructed out of fermions, although
our motivation is quite different from that of ’t
Hooft.

Since the pure-fermion preon model with as-
signed strong and electroweak quantum numbers
appeared to be incapable of providing a viable
composite model of quarks and leptons (with at
least three generations), we turned to a composite
model of fermion and boson preons, FB, which was
also unsuccessful. Thus, we can summarize our
finding: no composite model with only strong and
electroweak quantum numbers exists which pro-
duces just ordinary quarks and leptons. This may
imply that we should give up assuming both strong
and electroweak quantum numbers for preons. Or,
it may imply the existence of a rich spectrum of
right-handed particles at higher energies. It is too
early to say which implication will prevail or
whether some new approach will be required at the
intermediate mass scale.

Note added in proof. We have found a three-
preon composite model in SU(4)
®SUL(2) ® SUR(2). See Y. Tosa and R. E.
Marshak, VPI Report No. HEP-81/10 (unpublish-
ed); Y. Tosa, P. Xve, and R. E. Marshak, VPI Re-
port No. HEP-82/3 (unpublished); Y. Tosa, VPI
Report No. HEP-82/4 (unpublished).
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