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Gauge theories on the body-centered hypercubic lattice
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The four-dimensional body-centered hypercubic lattice has a point symmetry group which is

three times as large as that of the simple hypercubic lattice. This enlarged symmetry is imple-

rnented by introducing an action consisting of a sum over triangular plaquettes. Here, the

theory is presented and some of its properties are described.

Most investigations' of four-dimensional lattice
gauge theory have been conducted on the simple hy-
percubic (SH) lattice. That lattice is invariant5 6

under a 384-element subgroup, T, which consists of
reflections and multiples of 90' rotations about any
site. However, it turns out that there is a lattice, to
be called the BCT lattice for reasons to be divulged
shortly, whose point symmetry group has 1152 ele-
ments. This BCT group contains T as a subgroup.
Whereas the SH lattice has 4 symmetry axes, the
BCT lattice has 12 ~

Gauge actions which can be formulated' on the
BCT lattice will be more rotationally invariant than
those formulated on the SH lattice and so might be
expected to have a strong-coupling limit which is
closer to the continuum. There has been much
speculation and study' ' on the relationship of the
restoration of rotational symmetry to the nature of
the crossover region seen in Monte Carlo analyses.
In particular, if conjectures about roughening' are
correct, we would expect, in the BCT theory, a much
smoother transition from strong to weak coupling.
At the very least, it will be possible to study these
speculations in a novel way; at best there may be
some significant improvement in the reliability of
Monte Carlo simulations and, perhaps, of strong-
coupling expansions.

In this paper I will define the BCT theory, show
that it has the correct continuum limit, and then
briefly describe some of its properties at large g. An
especially intriguing possibility to be discussed is that
rectangular Wilson loops (yes, there are also trian-
gles, etc.) may be in a rough phase at g = ~. This
would be a consequence of the fact that rectangular
loops cannot be spanned by planar surfaces of ele-
mentary plaquettes.

The BCT lattice is constructed as follows: pack
four-space with hypercubes, known also as tesseracts, '
and take the lattice sites to be their corners and
centers. The resulting body-centered-tesseract (BCT)
lattice can be seen to consist of two staggered ordi-
nary lattices. Body centers form one lattice and
corners form the other. The origin of the extra sym-
metry is simple. Let +e; be the 8 standard unit vec-

tors (+1,0, 0, 0), etc. , which generate the SH lattice.
Then the body centers nearest to the origin are the
16 vectors (+—,, +—,, + 2, +—,). These can be seen

1 1 1 1

to have unit length —hence the extra symmetry. It is
worth noting that in other dimensions body centers
are not the same distance from the origin as are the
corners. In fact, in three dimensions, no lattice has a
higher symmetry than the cubic lattice. For this
reason amongst others, it is difficult to formulate a
Hamiltonian version of the BCT theory.

Before examining details of the new lattice it is in-
teresting to consider its geometry. The BCT group
happens to be the symmetry group of a regular four-
dimensional solid known as the 24-cell and whose
projection is shown in Fig. 1. Four-space can be
solidly packed with these 24-cells. ' If, after doing
such a packing, the centers of these cells are joined
to the cell vertices, we obtain a web of equilateral tri-
angles whose vertices are the sites of the BCT lattice
and whose edges are the links. All possible nearest
neighbors are joined in this way, An advantage of
this alternate construction of the lattice is that it pro-
vides a geometrical insight into how to implement
periodic boundary conditions which respect the BCT
group invariance. The method will be to fill, with tri-
angles, a finite region whose boundary is a 24-cell.

FIG. 1. A two-dimensional projection of the 24-cell.
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Periodicity is then imposed by identifying opposite
faces of that boundary. In doing Monte Carlo calcu-
lations the above considerations will be important. ",

Next come the details. Points of the lattice can be
specified by a 4-tuplet of integers (nt, n2, n3, n4) corre-
sponding to lattice sites n te t+n2e3+n3e3+n4f,
where e; are the usual unit vectors (1,0,0,0,) etc. ,
and f = ( 3,—,, 2, —,). Each of the 24 unit vectors

1 1 1 1

described earlier lies on this lattice. As an example,
e4 e] e2 e3 + 2f. Those unit vectors form three
sets of orthogonal axes: Ot = (+e;I, 03= (+f},and

03 = (+f, +ft;} The subscripts on the f 's denote
the position of "—

—,
" so, for instance, ft2= (——,,

1 1 1—2, 3, 2
). Elementary triangles are formed by join-

ing nearest neighbors. There are 96 such triangles
(unoriented) touching each site. Furthermore, each
edge is contiguous to 8 triangles. By contrast, on the
SH lattice each site touches 24 elementary squares
and each edge is contiguous to 6 squares. An SU(N)
action invariant under the BCT group is

classical continuum limit and, at small k, has the
standard gauge propagator. No vector-meson dou-
bling occurs. The derivation of these facts is techni-
cally rather complicated and details will be presented
elsewhere. " Here, the only results that I will give
are the explicit closed form for the inverse propaga-
tor, and the propagator itself near k =0.

Begin by defining A„',

U„,„=exp iag X—,(Abb+A„'~+„) uTb
Py5

(2)

where b is the group index, a is the lattice spacing,
and i is 1, 2, or 3 according to whether v is a
member of the orthogonal axes O1, 02, or 03. The
action can be expanded through quadratic order in
the A 's:

where, for SU(N), T(R) = —,. Q is the inverse pro-
pagator and is diagonal in the group indices, which
have been suppressed for the sake of clarity. A
closed form for Q is obtained by transforming to
momentum space, ~

Sacr ——const+ T(R) X A„'"Q„"'~"A'"+O(a'), (3)

Ud Un, [v,wj
= Un, eUn+ti, w Un, +w (lb) Qbg(k' —k) = /exp[ —ia(k n —k' n')]Q . (4)

I

where (n, v) denotes a triangle link pointing from the
site n to the site n + v, U 's are in SU(N) and, as
usual, U„„=U„+„„.This action has the standard

n, n

Qb is the 12 && 12 matrix (rows and columns represent
the i,j indices):

—IIC„—c„'
—0Qp= ' —IIC„-C.' 2+2 IIC„—2 IIS„

—IIC„-c„'
c„+c„'-—Xc„' if p, =v

c.—c„' —IIc„+c„'-—Xc„' 2+ 2 IIC„+2 IIS„

—a& C~C„2C„C„2S~S„~
2 S~S„" S„S„"C„C„

" "- Hs. "-'- Hc-
, :S. C~C„

'"'-' IIs.S„S„

C„C„
"" IIC-

2C„C„2S~S„~S„S„"C„C„

ifibWV . (5)

In Eq. (9), C„=cos(—,ak„), S„=sin(—,ak„), and

sums or products range over indices 1 to 4. Gauge
fixing can be done by imposing the Lorentz condition

(6)

This has the effect" of adding to Qbj'~" a term
o C„S„C„S,81;51,.

The result, Qb, when inverted near ak =0 is, in

[

the Feynman gauge,

111
AF

(Qb ) '""=——,
4

5"" 1 I 1 +O(a)
, 1 1 1,

This shows that at small momenta all 2 "s can be
treated as degenerate and the usual perturbation
theory follows. '4 The propagator at large values of ak
is used only for computing renormalization constants.
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FIG. 2. A triangle of length 3, tiled with elementary tri-

angles (dashed lines).
FIG. 3. (a) A 1X 1 loop spanned by plaquettes. (b) The

"Toblerone graph": a 1 && 2 loop spanned by plaquettes.

If such a calculation is necessary, Q can easily be in-
verted numerically. However, I have not succeeded
in analytically inverting Q .

The above summarizes the present study of the
quantum continuum limit. Clearly, the BCT lattice is
not an elegant way to regularize QCD perturbation
theory and its virtues will lie in the strong and medi-
um coupling regime. A strong-coupling expansion
can be done in the usual way"" but using triangu-
lar, rather than square, plaquettes. We can compute
expectation values not only of rectangular Wilson
loops but also of triangles and various other shapes.
For triangles, an area law can be proven: Let

where U& are the path-ordered links of the boundary
of an equilateral triangle T, whose edges have length
n. T is similar to one of the elementary triangles and
can, in fact, be tiled with n2 of these triangles (see
Fig. 2). The leading I/g contribution to W(A) is
found to be

1 4W(h) =
2

=exp — ln(g X) 4, (9)
(g 2AI' ) n K3

where A is the area of T.
It is less easy to prove an area law for square loops.

These cannot be spanned by a planar surface of pla-
quettes. For instance, the smallest surface of pla-

, quettes whose edges bound a 1 & 1 square is a pyra-
mid as shown in Fig. 3(a). There are four such pyra-
mids each contributing I/(g2%)4 to the strong-coup-
ling expansion of that loop. Larger rectangles are
spanned by 1 x 1 loops and their minimal surfaces
can be constructed by attaching pyramids to one
another. If those were the only possible surfaces
then an area law would be obtained as in Eq. (9).
However, there are other minimal surfaces such as
the "Toblerone" graph of Fig. 3(b), and grand py-
ramids, which are magnified versions of Fig. 3(a).
These will modify the above law in a way reminis-
cent" of the roughening behavior seen in expansions
of off-axis loops on the SH lattice." We are thus
led to the conjecture that rectangular Wilson loops
are rough at P =0 (g = ~). A proof will require a
systematic classification of all possible minimal sur-
faces. In the meantime, various of these ideas are
being tested via Monte Carlo simulations. "
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