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Scattering problem with a complex potential
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A semiclassical method has been generalized and used to study the scattering of a par-
ticle from a complex potential. The accuracy of the method is tested by considering a
simple potential consisting of a repulsive Coulomb part and an attractive imaginary part
of the form i P—/r Th. e complex phase shifts for the problem can be determined exact-

ly by solving the relevant radial equation. The semiclassical results, including terms of
order A, have been found to give good agreement with the exact results.

I. INTRODUCTION

k(r)= k—L(L+1) 2p (Vg+iVt)
p2 $2

1/2

one expands and keeps terms up to first order in

Vl. The resulting JWKB expression for the phase
shifts involves an integration over the real path
from the classical turning point, determined entire-

The extensive use of semiclassical methods in
the study of scattering phenomena and, in particu-
lar, heavy-ion collisions has brought into focus
some limitations of the JWKB method. Though
versatile in nature, the JWKB method has not been
recognized so far as a practical method because of
its lack of accuracy. To overcome the well-known
defects of the method, Miller and Good' proposed
a modification, which has been further generalized

by Rosen and Yennie, Lu and Measure, Wald
and Lu, and Berry and Mount. The accuracy of
this generalized method has also been studied by
Wald et al. The method has already been used in
the study of some problems including the scatter-
ing of electrons from a two-center potential. '

The method, however, cannot be applied in a
straightforward manner to heavy-ion collisions.
The turning points in this case are, in general,
complex and also too many in number. With a
Woods-Saxon potential, which is commonly used
in the optical-model treatment of heavy-ion col-

lisions, the situation is even worse, there being an
infinite number of turning points due to the com-
plex poles of the Woods-Saxon function.

The first attempt to study the complex potential
was rather casual. Instead of writing for the wave
vector

ly by the real potential, the imaginary part contri-
buting only a damping factor to each of the partial
waves. The approximation can be reliable for a
small absorption. However, as the energy in-

creases, more and more inelastic channels open up,
making this treatment completely unsuitable. It
was, therefore, necessary to look for an alternative
way of studying complex potentials in the semi-
classical approach.

Koeling and Malfliet studied this problem and
suggested a generalization of the semiclassical
method which includes contributions from all pos-
sible complex trajectories. This prescription, how-

ever, is neither a working proposition nor a correct
one. A correct solution was given by Knoll and
Schaeffer' "who studhed the problem analytically
and showed that it was not necessary to consider
all the complex trajectories. The relative impor-
tance of the contributions for single reflections
from different turning points and of possible mul-

tiple reflections can be estimated following their
analysis. It has been found that in realistic cases
only a few of the trajectories make dominant con-
tributions. This makes it worthwhile to consider a
generalization of the semiclassical method for com-
plex trajectories as a practical method of calcula-
tion. The inclusion of higher-order terms in st'~

will be another useful step. The semiclassical
method mentioned earlier is fairly accurate and is
a suitable candidate for adaptation for a complex
potential. To illustrate the procedure, we have
considered in this paper a simple complex potential
which is a combination of a repulsive Coulomb
term and an attractive imaginary potential of the
type iPlr We can calc.ulate the complex phase
shifts for this problem exactly by solving the
relevant radial equations. It is then possible to
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study the variation of the phase shifts, in particu-
lar, its real parts as the strength of the imaginary
potential is varied. The semiclassical method,
adapted for complex trajectories, have now been

applied to this problem. The first-order term in A

has also been calculated. A comparison of the
semiclassical results with the exact results gives an
estimate of the accuracy of the method. The
agreement has been found to be very good. The
case of a realistic potential, consisting of a
Coulomb and a Woods-Saxon —type optical poten-
tial, is currently under consideration and will be re-

ported elsewhere.
The presentation of the paper is as follows. In

Sec. II, the problem has been studied exactly. Sec-
tion III gives the semiclassical treatment for the
same problem. In Sec. IV, the semiclassical results
have been presented and compared with the exact
results. Our conclusions are also summarized
there.

II. EXACT COMPLEX PHASE SHIFTS

Let us introduce a potential consisting of a
repulsive Coulomb part and an attractive ima-
ginary part of the form iP—lr . The radial
Schrodinger equation is then given by

2nkr k-
r dr dr r

L(L +1) iP—
r2

xRI (r)=0, (2.1)

l(1 +1)=L (L +1) iP—.
Let us substitute

RL, (r)=r'e'""fi(r)

in Eq. (2.1), which gives the equation

(2.2)

where
Zz' 2n=, k=(2pE/I )'
fi k

Let l =p+iq, p )0, be a solution of the equation

rfi"(r)+(2ikr +21+2)fI' (r)+ [2ik (I+ 1)—2nk]fi(r) =0 .

The solution of this equation can be written as

fi(r)=CI &I" &(1+1+in, 2l+2, 2ikr), —

(2.3)

(2.4)

where CI is the normalization constant. We will have to impose the appropriate boundary condition on
(2.4). In particular, one has to ensure that there is no attenuation of the incoming wave. The asymptotic
form of Ri(r) is then given by

where

I 2i +2 nn/2eqn/2

(2k)Ikr I (p+1+iq in) 2i— (2.5)

and

I (p+1+iq in)—3+IB= e
I (p+ 1+iq+in)

1s=kr —2pm —n ln2kr .

(2 6)

(2.7)

The case of a real Coulomb potential is well known. The corresponding solution has the asymptotic
behavior

e I (2L +2) . Lrr
Rl (r)~CI sin kr n ln—2kr+—O''

L(2k) krl (L+1+in)
where

(2.8)

(2.9)o.r argI (L+1+in) . ——

Since the imaginary part of the potential vanishes for large r, it should be possible to rewrite (2.5) in the
form (2.8) with the inclusion of an additional phase shift. We, therefore, define the complex phase shifts
gL ——p+I.A. through the relation

sin kr — +n ln2kr+p+i A= —.[e"—(A+, iB)e "j .
2 2l

The complex phase shifts r)I are then given by

(2.10)
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(2.11)

The phase shifts gL have been determined for

g =0.5, 2.0, and 10.0 and different values of i. and

P and are given in Tables I—III.
It may be interesting to note at this stage the re-

sults that one obtains by the perturbative treatment
of the complex potential by the semiclassical
method. The real part of the phase shift is ob-
tained by a straightforward application of the
J%'KB method to the problem with the real part of
the potential only. Obviously, the results cannot be

reliable, since the real part of the phase shift is in-
dependent of P, whereas the exact phase shifts
show a fairly good variation as P changes. The
imaginary part also shows a very poor agreement,
becoming worse as P increases.

III. THE SEMICLASSICAL METHOD

d 1t(y)
2 g2

(3.1)

be the relevant radial equation for the given prob-

It will be useful to recall the essence of the semi-
classical method' mentioned earlier. Let

TABLE I. The exact and the semiclassical phase shifts for n =0.5.

Reo.L Imo-L, and Imo-L

0.00
0.25
0.50
1.00
1.50
2.25
2.50
3.00
3.50
4.00

—0.2441
—0.2683
—0.3211
—0.4492
—0.5802
—0.7677
—0.8273
—0.9425
—1.0526
—1.1582

—0.2441
—0.2694
—0.3220
—0.4498
—0.5811
—0.768S
—0.8280
—0.9439
—1.0529
—1.1589

—0.2389
—0.2642
—0.3210
—0.4496
—0.5808
—0.7681
—0.8277
—0.9428
—1.0529
—1.1584

0.0000
0.2069
0.3873
0.6835
0.9254
1.2287
1.3188
1.4869
1.6419
1.7863

0.0000
0.2071
0.3880
0.6840
0.9263
1.2290
1.3190
1.4870
1.6419
1.7863

0.00
0.2S
0.50
1.00
1.50
2.25
2.50
3.00
3.50
4.00

0.2196
0.2173
0.2106
0.1848
0.1449
0.0660
0.0361

—0.0273
—0.0941
—0.1630

0.2196
0.2172
0.2105
0.1846
0.1446
0.0656
0.0357

—0.0278
—0.0946
—0.1635

L=1
0.2200
0.2177
0.2110
0.1851
0.1451
0.0660
0.0361

—0.0273
—0.0942
—0.1631

0.0000
0.1047
0.2089
O.413O
0.6090
0.8843
0.9709
1.1368
1.2934
1.4418

0.0000
0.1048
0.2090
0.4132
0.6093
0.8846
0.9712
1.1370
1.2936
1.4419

0.00
0.25
0.50
1.00
1.50
2.25
2.50
3.00
3.50
4.00

0.4646
0.4640
0.4622
0.4551
0.443S

0.4179
0.4074
0.3835
0.3563
0.3260

0.4646
0.4639
0.4621
0.4550
0.4434
0.4178
0.4073
0.3834
0.3561
0.3258

0.4646
0.4640
0.4622
0.4551
0.4435
0.4179
0.4073
0.3835
0.3562
0.3259

0.0000
0.0688
0.1375
0.2745
0.4105
0.6116
0.6777
0.8083
0.9365
1.0622

0.0000
0.0688
0.1375
0.2745
0.4105
0.6117
0.6778
0.8084
0.9366
1.0622
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TABLE II. The exact and semiclassical phase shifts for n =2.0.

Re'gl Reo.l Reo.L ImgL Imo.L and Imo. L

0.00
0.25
0.50
1.00
1.50
2.25
2.50
3.00
3.50
4.00

0.1296
0.1290
0.1269
0.1188
0.1059
0.0785
0.0675
0.0432
0.0162

—0.0130

0.1295
0.1287
0.1267
0.1188
0.1059
0.0785
0.0675
0.0433
0.0162

—0.0129

0.1293
0.1285
0.1265
0.1186
0.1058
0.0785
0.0675
0.0432
0.0162

—0.0129

0.0000
0.0625
0.1248
0.2487
0.3709
0.5499
0.6082
0.7228
0.8345
0.9433

0.0000
0.0624
0.1247
0.2487
0.3708
0.5498
0.6082
0.7228
0.8345
0.9433

0.00
0.25
0.50
1.00
1.50
2.25
2.50
3.00
3.50
4.00

1.2368
1.2364
1.2352
1.2304
1.2226
1.2054
1.1983
1.1823
1.1639
1.1435

1.2367
1.2363
1.2351
1.2304
1.2225
1.2054
1.1983
1.1823
1.1638
1.1435

1.2367
1.2362
1.2351
1.2303
1.2224
1.2053
1.1982
1.1821
1.1638
1.1434

0.0000
0.0542
0.1083
0.2162
0.3235
0.4825
0.5350
0.6387
0.7409
0.8415

0.0000
0.0542
0.1083
0.2161
0.3234
0.4824
0.5350
0.6387
0.7409
0.8415

0.00
0.25
0.50
1.00
1.50
2.25
2.50
3.00
3.50
4.00

2.0222
2.0220
2.0214
2.0189
2.0147
2.0055
2.0016
1.9927
1.9824
1.9706

2.0221
2.0220
2.0213
2.0188
2.0146
2.0054
2.0016
1.9926
1.9824
1.9705

2.0222
2.0219
2.0213
2.0187
2.0146
2.0053
2.0015
1.9926
1.9824
1.9705

0.0000
0.0450
0.0900
0.1799
0.2695
0.4034
0.4478
0.5363
0.6242
0.7114

0.0000
0.0449
0.0899
0.1799
0.2695
0.4034
0.4479
0.5363
0.6242
0.7114

lem, and let l((y) = &(y)P[s(y)] . (3.3)

d p(s) t2s
( )

$2 g2
(3.2)

be a model equation, whose exact solution is
known. The functions t, (y) and t2(s) should be
qualitatively similar, i.e., they should have the
same number of physical roots (real, non-negative),
similar behavior asymptotically and near the singu-

lar points, if any. Moreover, it will be convenient
if neither of them has any extrernurn beyond its
largest real root. %hen such conditions are met,
we have found a model equation. The function

P(y) is then obtained through a transformation,

The consistency condition among the relations
(3.1), (3.2), and (3.3) gives the difference between

phase shifts. In practice, it is possible to satisfy
the condition only up to a given order of A', so
that one gets a power-series expansion in A of the
phase-shift difference. The method has been used

'by a number of workers to determine phase shifts
for scattering from real potentials. It has been
shown by Lu and %'aid ' and Mukherjee and
Chandel ' that the method gives very accurate re-

sults even if one considers terms only up to order
A.
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%e now generalize this method to the case of a
complex potential. There are two complex roots of
the equation

t1(y) =0

in the present problem. One of these, however,
does not qualify as a turning point because it has a
negative real part. As the model equation, we

choose, at the first instance, the radial equation for

scattering from a point charge, with the same
Sommerfeld parameter n. Thus the turning point,
the trajectory, and the phase shifts are ail real for
the model equation. It is nevertheless possible to
obtain the transformation (3.3). Let y, denote the
complex turning point for the present problem.
Following the method and notation of Refs. 7 and
8 we get the complex phase shift in the zeroth or-
der as

o„~1,„——oL+ lim (s —y n l—n —
)

P—+oo 3'

=o'L+ [y —2ny —(L+—) +ip]'/ —[y 2ny —(L+——) ]'/
3'g 2

+n lnI y n+[—y 2ny (L+——, ) ]—'/ ] —, n 1n[n +—(L+—, ) ]

(L+ —, ) —sin
ny+(L+ —,

' )'

2+(L + 1 )2]1/2

;13, ny+(L+ —, )
sin

2(L + ) y [&2+ (L + 1 )2]1/2

~ ]—sin
n

[tt '+(L+ —, )']
(3.4)

AL = —
12 JI &[T2(s)][t2(s)]' ds

t

+—„I, ~[T (y)][t'(y)l'"dy (3.S)

with oL given by (2.9). The second term on the
right-hand side is obtained by integrating first
along a line parallel to the imaginary axis, and
then along the real axis. y is arbitrary but very
large and real (because of our choice of the path,
any large y is real). Langer's substitution has been
made in obtaining (3.4).

The divergence difficulty that one encounters in
calculating terms of order fi can be solved exactly
in the same manner as in the case of a real poten-
tial. This consists essentially in going over to a
contour from ~ —i e to oo +i@ around the turning

point, avoiding any other complex root and elim-
inating the troublesome denominator by repeated
partial integrations. %hen the integrand is free
from divergence, we may go back to the original
contour. Thus, the first-order correction term AL

is given by

T litt yr ttl T II y II3

0'[T,]= 2
—4, 2 +3 (3.6)

T1 =y t1(y), T2 s t2(s), —— (3.7)

and the primes indicate the number of times the
function is differentiated. The expression for (3.5)
can be simplified to

n

24[n +(L+—, ) ]

" [tt (y)]
8 &~ (y —tt)4

(3.8)

2n (L +-, )
t2(s)=1 ———

s s ~ (3.9)

and easily evaluated along the original contour. In
equation (3.7), t1(y) and t2 (s) are given by

2n (L+ 2
)'—'~

t1(y) =1—
3 y
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0
+L +complex+ ~L ~ (3.10)

The semiclassical phase shifts are then obtained as

with

d $($) t2($)
2 + 2

$($)=0
s

(3.1 1)

It is instructive to repeat the calculations with
another model equation, which is given by the ra-
dial equation for a free particle, viz. ,

( ) 1
L(L+1)

$2

The phase shifts in this case are given by

(3.12)

oL, ——lim ($ —y+n ln2y)
y~ to
S~ cc

y 1

[y 2n—y (L+—, ) +—ip]'/ —n ——[y —2ny —(L+—)2]'
yg 2

+n lnt y n+[—y 2ny —(L+ —,—) ]'/
I

1(L+ —, )—sin
ny+(L+ —, )

sin
y [n'+(L+ —, )'l

n

2+(L+ )2]1/2

ip
2(L+ —, )

sin-' ny+(L+ —, )

y[n2+(L + )2]1/2
—s1n

n

[n 2+ (L + )2]1/2
+b,L (3.13)

where b,t, the first-order correction term, is given

by

n - [t1(y)1'"
(3.14)

(y —n)'

and t1(y) is given by Eq. (3.9). The integration in

(3.13) and (3.14) are to be performed along the
complex path as discussed before.

IV. RESULTS AND DISCUSSIONS

The phase shifts calculated for n =0.5, 2.0, 10.0,
and various p for the two model equations are

given, respectively, in Tables I, II, and III. It may
be pointed out that both the real and the imaginary
parts of the phase shifts agree fairly well with the
exact results. The results for L =1 are, however,
much better than for L =0. The accuracy im-

proves with higher L. From our results we can
draw the following conclusions.

(a) The real part of the phase shift shows a sig-
nificant dependence on the imaginary part of the
potential. For L =1 the real part even changes
sign as the imaginary potential becomes stronger.
The perturbative method, on the other hand, gives
a real part which does not depend on the ima-

ginary potential.
(b) The imaginary part of the phase shift shows

a monotonic increase as p increases, though not as
fast as is given by the perturbative method. With
an increase in L, ImqL decreases. Physically this
means that partial waves with higher L are less ab-
sorbed because of the centrifugal barrier.

(c) The correction term of order fi makes a
small contribution to the phase shift in the present
problem in the case of the first model equation.
But for the second model equation this contribu-
tion is significant. This is easy to understand. In
the case of the first model equation, there is a can-
cellation between the correction terms that does
not happen in the other case. Terms of higher or-
der in A' depend on the higher derivatives of the
function t1(y) which are anyway small for the
present problem. However, one may consider a po-
tential which changes rapidly in the vicinity of the
turning point. The correction terms may be quite
large in that case. For higher L, the correction
term will become smaller.

(d) As is evident from the tables, both model
equations give almost equally good results.

(e) Although the calculations were done by a
particular semiclassical method, there are other
semiclassical methods which may be equally appli-
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TABLE III. The exact and semiclassical phase-shifts for n =-10.0.

RegL Reo.L Reo L II110L and Ima L

0.00
0.25
0.50
1.00
1.50
2.25
2.50
3.00
3.50
4.00

13.8029
13.8029
13.8029
13.8028
13.8027
13.802S
13.8024
13.8022
13.8019
13.8016

13.8030
13.8029
13.8028
13.8028
13.8026
13.8024
13.8024
13.8022
13.8019
13.8016

13.8030
13.8029
13.8028
13.8027
13.8025
13.8023
13.8023
13.8021
13.8018
13.8015

0.0000
0.0125
0.0250
O.OSOO

0.0750
0.1125
0.1250
0.1500
0.1750
0.1999

0.0000
0.0124
0.0249
0.0500
0.0750
0.1125
0.)250
0.1500
0.1750
0.1999

0.00
0.25
0.50
1.00
1.50
2.25
2.50
3.00
3.50
4.00

15.2740
15.2740
15.2740
15.2740
15.2739
15.2736
15.2735
15.2733
15.2730
15.2727

15.2741
1S.2740
15.2739
1S.2739
15.2738
15.2735
15.2735
15.2732
15.2729
15.2727

15.2741
15.2740
15.2739
15.2739
15.2738
15.2735
15.2734
15.2732
15.2729
15.2727

0.0000
0.0124
0.0248
0.0497
0.0745
0.1118
0.1242
0.1490
0.1738
0.1987

0.0000
0.0123
0.0247
0.0496
0.0745
0.1118
0.1242
0.1490
0.1738
0.1987

0.00
0.25
0.50
1.00
1.50
2.25
2.50
3.00
3.50
4.00

16.6474
16.6474
16.6474
16.6474
16.6473
16.6470
16.6470
16.6467
16.6465
16.6462

16.6475
16.6474
16.6473
16.6474
16.6473
16.6469
16.6469
16.6467
16.6464
16.6462

16.6475
16.6474
16.6473
16.6473
16.6471
16.6469
16.6468
16.6466
16.6464
16.6461

0.0000
0.0123
0.0245
0.0490
0.0735
0.1103
0.1226
0.1471
0.1716
0.1961

0.0000
0.0121
0.0244
0.0489
0.0735
0.1103
0.1226
0.1471
0.1716
0.1961

cable to this simple problem. The phase-integral
method of Froman and Froman, ' ' in particular,
could be an alternative method.

(f) The accuracy of the semiclassical results in
the present problem makes us feel confident to
take up a more complicated problem, viz. , that oc-
curring in heavy-ion collisions. This is currently
under our consideration. Knoll and Schaeffer' "
have shown that in a typical problem with a
Coulomb and Woods-Saxon potential, a good ap-
proximation is obtained, for most of the partial
waves, by considering a single reflection from one
turning point only. Even the exceptional cases
were not too difficult. Although in the semiclassi-

cal method each problem has to be studied
separately for its special features, this simple situa-
tion is likely to survive in most of the cases of
physical interest.
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