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A semirelativistic quark model for mesons is proposed, based on a comprehensive treat-

ment of the two-body Dirac equation introduced by Breit in 1929. Sixteen-component

eigenstates of J, J3, and parity are constructed. They are used to obtain radial equations

for the most general local, nonderivative interaction Hamiltonian of order v /c containing

both scalar and four-vector terms. The Breit interaction is a special case of this interaction

Hamiltonian, and the radial equations are considered first for that case. It has been known

since 1930 that there is an ambiguity associated with the Breit equation. It arises because

there are two different ways to reduce the Breit equation to four-component form. In one

method the Breit interaction is regarded as a perturbation and in the other it is not. Only

the first method gives correct results. This ambiguity is resolved by a consideration of the

radial equations for the Breit equation. In addition, explicit solutions of the radial equa-

tions to order e are given for hydrogen and positronium. The conclusion is that the two-

body Dirac equation is unambiguous and correct to order a in QED. The radial equations

are used next in the context of QCD to determine which of the 24 possible combinations of
scalar and vector potentials considered can give rise to quark confinement in a normalized

theory. If the higher-order potentials are no larger than the zero-order potentials in magni-

tude, we show that there are only two possible forms for the confinement interaction: (1)

the scalar interaction S(r) (1 ra, r —a2) p& pz and (2) the combined scalar-vector interac-

tion [V(r)+S(r)p, p2] (1 rct~r —a2) where S) V for large r.

I. INTRODUCTION

It is generally assumed that the internal dynamics
of qq systems can be described satisfactorily by a
static potential and a nonrelativistic wave equation
for the case of slowly moving quarks. Calculations
of the r family of states serve as examples of this
assumption. ' On the other hand, the concept of a
static potential may not be applicable to systems of
rapidly moving quarks that may require a two-body
rdativistically covariant wave equation for their
description. Between these two limits is the inter-
mediate case of systems composed of semirelativis-

tic quarks which are adequately described by a stat-
ic interaction but which require something more
than a nonrelativistic wave equation.

The simplest relativistic wave equation for fer-
mions is the single-particle Dirac equation. It is
useful for qg systems where M& »M&, but cannot
adequately describe two relativistic or semirelativis-
tic quarks of comparable mass. Of course, there is
always the possibility of using the single-particle
Dirac equation, or even a nonrelativistic wave equa-
tion, if an effective potential which takes into ac-

count the motion and spin of the other particle is
available. However, a general description of the re-

lation between an effective potential and the origi-
nal interaction on which it is based is lacking at this
time. In certain cases effective potentials can be ob-
tained. For example, a nonrelativistic reduction of
the Breit interaction yields the effective Fermi-Breit
interaction which has been used to obtain the hyper-
fine splittings of mesons and baryons. However,
the Fermi-Breit interaction neglects binding-energy
effects, and its use for deeply bound systems is
questionable. More accurate effective potentials
must be both spin and energy dependent. An exam-

ple of an effective potential which is "exact" when
the interaction is the fourth component of a four-
vector, and hence not exact, is given in Sec. VI. Its
classical counterpart is obtained in Sec. II.

A noncovariant but approximately relativistic
two-body wave equation with a static interaction is
needed for systems of semirelativistic particles of
comparable mass. In @ED there is such an equa-
tion. It is the Breit equation

(Hp)+Hp2+ Vc+HIt )1' =Etta,
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where Vz is the Coulomb potential and Hz is the
Breit interaction

H~ ————, V, ( a ~ a 2+r a ~r. a2) . (1.2)

As is well known, the Coulomb potential is the
zero-order term in the U/c expansion of the elec-
tromagnetic interaction, and the Breit interaction is
the v /c term. However, the Breit equation, as
written, is not correct to order U /c . This was ori-

ginally noted by Breit in 1930. The reduction of
Eq. (1.1) to four-component form gives rise to a
spurious a /r term in the effective Hamiltonian as
discussed by Baker and Glover and by Feldman,
Fulton, and Townsend. Breit suggested that Eq.
(1.1) be replaced by the equations

and

«pi+&o2+ Vc 4'p =Eofo (1.3a)

E=Eo+ &OpH. Vp & (1.3b)

in which Hz is included only at the level of first-
order perturbation theory. In that case, the spuri-
ous term is not encountered in the reduction to
four-component form. A satisfactory explanation
of why Eqs. (1.1) and (1.3) give different results has
not been given in the literature.

By analogy with QED we propose that the con-

cept of a static potential is valid to order U /c for
QCD and that an appropriate wave equation for
semirelativistic quarks is the two-body Dirac equa-
tion. The formalism needed to separate the angular
and radial dependence of the wave function is
developed in Sec. III and used to derive radial equa-
tions in Sec. IV. The general implications of the ra-
dial equations are considered in Sec. V for a wide
variety of unbounded interaction Hamiltonians, and
explicit calculations of the energy levels of hydro-
gen and positronium to order a are made in Sec.
VII.

Two interesting results follow from a considera-
tion of the radial equations. First, the ambiguity re-

garding the Breit equation is resolved. The central
point is that Eq. (1.1) is found to have no normal-
ized solutions due to a singularity at the point
rp =a /E. Although this singularity is not apparent
from the form of Eq. (1.1), it is clearly present in
the radial equations as shown in Sec. V. It follows
that a reduction of Eq. (1.1) to four-component
form cannot be expected to yield the correct effec-
tive potential, and the spurious term encountered is
a reflection of this fact. On the other hand, the
two-body Dirac equation for the Coulomb potential,
Eq. (1.3a), is not singular at rp, normalized solu-

tions may be obtained, and the perturbation integral
in Eq. (1.3b) is well defined. In this way we can
understand the correctness of Breit's original
prescription, namely that H~ must be included only
as a perturbation. This type of situation is familiar
from nonrelativistic quantum mechanics. Con-
sider, for example, the spin-orbit potential
Vsl ——VcL S/2m r. It is too singular at the origin
to yield results if included directly into
.Schrodinger's equation but when treated as a per-
turbation, it yields correct fine-structure corrections
to the zero-order energy levels. The reason for this
occurrence is that V+L is an accurate approximation
of the energy-dependent effective potential

Vsi. [l+(g —V)/2m] ' only for
~

r —a/2m
~

&&0.
Similarly, the Breit interaction must be regarded as
an accurate approximation only for

~

r rp
~

&&0. —
Second, the type of scalar and vector static poten-

tials that can confine quarks is determined to order
v /c2. It is not sufficient, for example, that the po-
tential increase without bound with increasing
separation distance. A distinctive characteristic of
relativistic descriptions that include negative-energy
states is the ability of particles to move through cer-
tain types of potential barriers without the expected
damping of their wave function. ' A strongly
repulsive potential can lead to an enhancement of
the "small" components of the wave function in re-

gions in which the potential is sufficiently large.
The wave function oscillates through these regions
and avoids confinement no matter how large the po-
tential. This is the familiar Klein paradox. " It oc-
curs for potentials which transform as the fourth
component of a four-vector but not for potentials
which transform as Lorentz scalars. This fact has
been noted for the single-particle Dirac equation
and is found to hold for the two-body Dirac equa-
tion as well. The conclusion is that in this formal-
ism quark confinement requires a Lorentz scalar in-

teraction. Scalar interactions have been included in

many quark-model calculations, ' and their impor-
tance noted by various authors. '

In addition to the difficulties associated with the
Klein paradox, confinement potentials tend to gen-

erate singularities in the wave function which des-

troy its normalization. In fact, we find it impossi-
ble to obtain normalized solutions for any zero-
order confinement potential. Since radial equations
for higher-order potentials have not been given in
the literature, we include such potentials in our con-
siderations. ' All possible local, nonderivative
scalar and four-vector potentials of order U /c are
considered. Several are found that yield normalized
wave functions but there are only two interactions
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for which the higher-order potentials do not exceed
the zero-order potentials in magnitude. They are
the scalar interaction

Hs ——S(r)(1—r a&r. a2)P~P2

and the scalar-vector combination

(1.4)

Hsz [V(——r)+S(r)I3IPq](1 —r a~r az),

where S(r) )V(r) for large r Nu. merical solutions
of the radial equations obtained in Sec. IV for the
above confinement interactions will be presented in
a later publication.

II. THE CLASSICAL EFFECTIVE POTENTIAL

%e begin with the simplest problem of all, that of
constructing the classical effective potential for two
relativistic point masses mi and m2 interacting
through a central potential V(r). The total energy
in the c.m. system is

fective potential in Sec. VI must reduce. It allows

Eq. (2.1) to be replaced by the equation

EI ——U,ff(r)+(p +m& )'/ (2.5)

The tendency of confinement potentials to generate
singularities in the wave function can be understood
in part from a consideration of the effective poten-
tial. For confinement interactions there is neces-
sarily a point ro at which the potential equals the
total energy. At that point both the classical and
quantum effective potentials are unbounded. Al-
though ro is in a classically forbidden region, it will

be reached by the wave function as it tunnels
through the forbidden region. Equation (2.3) is
valid only up to the turning point but it is of in-
terest to consider it beyond that point in the spirit
of the correspondence principle. For m~+m2 it
shows that p is infinite at ro corresponding to a
particle moving at the speed of light. Such a state
is physically unattainable, and it is not surprising
that the wave equation has no physically significant
solutions for a potential which is the fourth com-
ponent of a four-vector, as is shown in Sec. V.

E V+(p2+I 2)1/2+(p2+~ 2)1/2 (2.1)

This gives for the effective potential

U,rr(r) = V,rr(r) m2, —

where

(2.4a)

V,rr(r) = , [E+V+(mg ——I ( )/(E —V)] .

(2.4b)

This is the classical limit to which the quantum ef-

To reduce this two-body problem to that of a
single particle ml of energy EI E —m2 m——oving
in an effective potential U,rr(r), set

U,ff —V —mz+(p +m2 )' and use Eq. (2.1) to
eliminate the p dependence of Ud~. This can be
done by solving Eq. (2.1) for E —V and squaring
both sides of the resulting equation. This yields the
expression

(E —V) —(2p +ml +m2 )

=2[(p +m& )(p +rn2 )]'/ . (2.2)

~hen Eq. (2.2) is squared, the p terms cancel, and
we obtain an expression for p . When it is added to
m2, a perfect square is obtained. In particular, we
find that

(p +m2 )' = —,[E—V+(m2 —m~ )/(E —V)] .

(2.3)

III. TWO-BODY EIGENSTATES OF J,J3,P

1The total angular momentum for two spin- —, par-
ticles can be written as J=Q+S2 or J=L+S
where Q=L+S~ is the total angular momentum of
particle 1 and S=Si+S2 is the total spin. The wave
function g is chosen to be an eigenstate of J, J3,
and the parity P. Each component of P is the prod-
uct of an angular function and a radial amplitude.
The radial amplitudes are labeled by the quantum
numbers j,g, s, l or by j,g, q, l where g is the eigen-
value of P. The number of linearly independent ra-
dial amplitudes is easily determined. Consider the
first set of quantum numbers. Clearly s =0, 1. For
s =1 three values of I are possible, namely I =j,
l =j+1; for s =0 there is only one possible value,
l =j. For each of these four amplitudes there is a
corresponding "small" amplitude resulting in a total
of eight radial amplitudes. For j =0 this number
reduces to four because there is only one way to add
I. and S with s =1 to get j=0. Using the other set
of labels j,g, q, l naturally gives the same result.

Sixteen-component, two-body eigenstates can be
constructed as follows. Consider a spin- —, particle
of mass m] moving under the influence of an in-
teraction which is invariant under spatial rotations
and inversions. It will be described by a four-
component spinor P of total angular momentum Q.
For a given value of q there are two possible values
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1of l, namely l =q+ —,. The normalized two-

component eigenfunctions of Q and Q3 are the
well-known functions"

q3 1 q3 —1/2 p q3+ 1/2
X l =a+(o)I'i +a —(i)I'l

1

for l =q ——, and

(3.1a)

CLA ~qlz +CLB+ql~

CSA ~ql& +CSB~ql&

(3.2)

where lA and l» are the two possible values of l for
fixed q. However, P must be a state of definite pari-

ty. Let the parity of P be ( —1)" and recall that
the space-inverted spinor is PP ( —r ). Then

CLB ——CsA
——0, and we arrive at the usual expression

for P,

q3 1 q3 —1/2 p q3+1/2
Xql = a —(0)Il +a+(1)II (3.1b)

for I =q+ —, where a+ ——[(l+q3+ —,)/(21+1)]'
and YI are spherical harmonics. In both cases, the

parity of Xql is ( —1). Since the orbital angular
momentum does not commute with even the
single-particle Dirac Hamiltonian, the principle of
superposition implies that both the "large" and
"small" components of P can be expanded in terms
of the X functions, i.e.,

spinors of parity ( —1)" are

«jj3 qIA) b+(0)0(qj3 2 IA)

+ b (i) Sp(q, J'3+ —,, IA )

for q =q1 and

Q(j,j,,q, l„)= b—(,') 3p(qj 3 , , lA—)—

(3.4a)

+b+(i) (t'(q, j3+-„IA) (3.4b)

for q =q2 where b+ ——[(q+j3+—, )/(2q+ I)]'
The Q spinors are analogous to the X functions but
differ in that the parity of the 0 spinors is indepen-
dent of the angular momentum being added to the
spin (q for the Q spinors and l for the X functions).
To obtain Q spinors of parity ( —1) merely inter-
change lA and ill in Eqs. (3.3) and (3.4). The
reasoning used in expressing a 16-component spinor
of definite q, i'», in terms of the Q spinors is the

same as was used in going from Eq. (3.2) to Eq.
(3.3). Write the upper eight components of P&z as

biA Q(jj 3qlA )+bi»Q(jj 3qls)

and the lower eight components as

b&A Q(jj 3qIA )+b&&Q(jj 3qIii) .

If the parity of itljqj is ( —1)", then bLii bsA ——0——
and

gqi(&)Xql'„(&, i'�)
N(q q»4)=

ifgl„(&)Xql' (&,P )

(3.3)

where qql„and fql„are radial amplitudes, lA is the

leading orbital angular momentum, and lB is the
secondary orbital angular momentum. The depen-
dence of the radial amplitudes on j,g is suppressed.
To include the second particle in our description we
must construct a 16-component eigenfunction 1(tJJ.JJ3
of J,J3 where J =S2+g. Notice how both the
"large" and "small" components of P were built up
from a combination of the Pauli spin matrices and
the eigenfunctions of L,L3. The next step is com-
pletely analogous. We have eigenfunctions of
Q, Q3. To form both the "large" and "small" (rela-
tive to particle 2) components of QJJ we must com-

JJ3

bine the Pauli spin matrices for particle 2 with the
eigenfunctions of Q, Q3. The "large" and "small"
components of g will be eight-component spinors
which we designate as Q(jj3ql). For a given value
of j there are two possible values of q, namely

1 1

q1 ——j——, and q2 ——j+—,. The corresponding Q

Q (JJ'3ql„)
~h~. ="»3 iQ(JJ3qls)

(3.5)

q& q2
&ii, =&JJ, +&JJ, (3.6)

where the leading orbital angular momentum of PJJ'JJ3
1

is lA &

——qi+ —,, and that of itiJJ is lA2 ——qz+ —,. The

possible values of lA1 and IA2 are j —1,j and j,j +1,
respectively. If lA1 is chosen to be q1+ —,, then the
secondary orbital angular momentum l» must be

q&
——,, etc. The requirement that p/I and itilj have

1 ~ q&

the same parity imphes that l» ——I»——j or that
lA1 ——j—1 and lA2 ——j+1. For the fermion-fermion
problem the parity of 1(tjj as given by Eqs. (3.5) and

(3.6) is ( —1)"' and for the fermion-antifermion

For j+0 QJJ cannot be a solution to the two-body

Dirac equation because Q does not commute with
the Hamiltonian. This means that the wave func-
tion can be expanded in terms of the eigenstates of
Q, as long as they are chosen to have the same par-
ity, i.e.,
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problem it is ( —1)"' due to the opposite intrinsic
parity of the antiparticle. For the qq problem the
wave function with l&1

——l&2
——j and 2)=( —1) +'

describes the states on the exchange-degenerate
pseudoscalar-meson trajectory, and the wave func-
tion with l„,=j—1, l„2 j+——1, and 21 =(—1)i de-

scribes the states on the exchange-degenerate
vector-meson trajectory. The former will be re-

ferred to as the PMT solutions and the latter as the
VMT solutions (even in fermion-fermion problems).
Each of these solutions contains eight radial ampli-
tudes for j+0, namely, gz;, f„;,gs;, and fs; for
i =1,2 where we have simplified the notation by let-

ting gA; ——gq, I, etc. It is also convenient to

represent the P spinor of Eq. (3.3) as Pz (gz, if& ) or
just pz. More generally p~„(g,if) is the p spinor
with leading orbital angular momentum lA„, secon-

dary orbital angular momentum 121„, parity ( —1) ",
and radial functions g and f. Likewise Qq„(g, if) is
the 0 spinor with leading orbital angular momen-

tum lz„, panty ( —1)"",and rad1al funct1ons g and

f. In this notation, for example,

Qa1(g 1f)=
j3—l/2

(g if)
j3+1/2

(g &f)
(3.7)

This is identical to Eq. (3.4a) when g=gq1 and

f =f&1. Similar expressions hold for Q&2(g, if) and

Qs„(g,if) For Q~„(g.z„,if&„) one merely writes

Qz„, etc. Then Eq. (3.6) becomes
r

+A 1 A2

1Q211 1Q82
(3.&)

Notice that there is only one value of q for j =0,
namely, q2 ———,. In that case the first term in Eq.
(3.8) is not present.

IV. THE RADIAL EQUATIONS

The two-body Dirac equation consists of two
Dirac operators Ho; ——a;.p; +m;P; plus an interac-
tion Hamiltonian HI written in the direct-product
space arising from the four-components required
for the description of each spin- —, particle. The
wave function may be written as 16-component
column matrix, and 16& jL6 two-body Dirac ma-
trices may be defined for each particle such that
a1 I S a, P1 I SP,——a2 ——a SI, and 1I3——2 ——P SI
where a,P are the usual 4&&4 Dirac matrices and I
is the 4X4 unit matrix. The two-body Dirac equa-
tion in the c.m. system is

(a1 p+p1m1 —a2 p+p2m2+. HI)l/J =Ey,
(4.1)

where p = —i V „and r = r
~
—rz. The wave func-

tion in Eq. (4.1) has components 1(„,where the first
(second) subscript refers to particle 2 (particle 1);
the components are ordered in the column matrix P
such that the second subscript v varies most rapid-
ly. Breit introduced this equation for the special
case HI ——V, +Hz and applied it to various systems.
However, he did not obtain the corresponding radial
equations. In fact, radial equations for the Breit
equation have not appeared in the literature.

In this section we obtain radial equations for a
very general interaction Hamiltonian which con-
tains the Breit interaction as a special case. The
greater generality is required since we are interested
in qq states, and the Klein paradox suggests the
presence of a scalar confinement interaction which,
to zero order in U/c, is of the form S(r)p1p2 The.

development of singularities in the radial equations
necessitates the consideration of higher-order terms
in HI. As corrections to the zero-order scalar
interaction we include the u /c terms
S1(r)r'a1"' 2P1P2 and S2(r)a1'a2P1P2' as correc-
tions to V(r) we include the terms V1(r)r a1r1a2
and V2(r)a1. a2. This results in a six-term interac-
tion Hamiltonian

HI ——V+ Vtr. a &r.+2+ V2a &.n&

+(S+Slr a1rl a2+S2a1 a2)P1P2 ' (4.2)

The above is the most general form for HI to order
u /c containing both scalar and four-vector poten-
tials that may be constructed from the vectors r, a ~,

and cx2.

The derivation of the radial equations is compli-
cated by the necessity of introducing three different
sets of radial amplitudes: (1) the eight linearly in-

dependent lower-case amplitudes defined in Sec. III,
g„;, fz;, g21;, and fz; for i =1,2 (hereafter referred
to as the LC amplitudes), (2) an intermediate set of
eight linearly dependent upper-case amplitudes
(hereafter referred to as the UC amplitude), and (3)
a set of four linearly independent I' amplitudes.
The LC amplitudes have the advantage of being the
amplitudes most directly related to the radial ampli-
tudes of the single-particle Dirac equation and the
disadvantage of satisfying a relatively complicated
set of radial equations. The radial equations are
much simpler when expressed in terms of the I' am-
plitudes. The UC amplitudes are defined in terms
of the LC amplitudes as follows:
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G~. =g~. [(—1—)"fa. Pf—ak]~~

F~. =f~.+[(—1)"ga.—Pgak l ~~

Ga„——ga„+ [(—1)"fq„—pf~k ]IA, ,

Fa. =fa. [( —1)"g~—. Pg~k—]~~

(4.3)

for n =1,2 where p =2[j(j+I)]'~, A, =2j+ I, and
k =3—n. It is easily verified that for n =1,2 and
k=3 —n

Fi =~iF~ i+&i +1Ga2

F2= ~ZG~i+v'J+1Faz

F3 =&i+ IG~ i &JFa»—
F4= &i +I+~i—&i Ga2. —

(4.5)

The derivation of the radial equations has two
parts. The first is the application of the
separation-of-variables method based on the eigen-
functions of J, J3, and P obtained in Sec. III. This
requires the expansions of the various matrix prod-
ucts in Eq. (4.1} in terms of the 0 spinors. These
expansions are given in the Appendix. Although P
has 16 components, this method yields only 8 radial
equations bemuse each is obtained twice. The re-

sulting radial equations contain both LC and UC
amplitudes and, what is more important, they are
not linearly independent. The second part of the
derivation is the reduction of the eight linearly

dependent radial equations to four linearly indepen-

dent ones. This can be done by eliminating the LC
amplitudes or by eliminating the UC amplitudes.
In the former case we obtain four radial equations
for the UC amplitudes which we simplify by intro-

ducing the F amplitudes. In the latter case we ob-
tain four radial equations for the LC amplitudes.

Equation (3.8) is the basis of the separation-of-
variables method. Different results are obtained de-

pending on whether the PMT solution or the VMT
solution is used. A sign convention is used to dis-

tinguish between the two cases, the upper sign cor-

Gq„———[(—1)"Fa„PFak]—/k,

F~. = [(—1)"Ga. PGa—k] &~,

Fa„=—[(—1)"Gz„PG&k ]I—A, .

It is clear from Eq. (4.4) that no more than four of
the UC amplitudes can be linearly independent.
For example, Gz &, Ez &, Gzz, and F&2 are a linearly
independent set of amplitudes. The F amplitudes
are defined in terms of this set as follows:

responding to the PMT solution, and the lower sign
to the VMT solution. Using Eq. (3.8) and the ex-
pansions in the Appendix, one can show that Eq.
(4.1) can be rewritten as

I4)(h),ih2) I42(hg, ih6)

lpga](h3, ih4) iQa2(h7, th&)
=0 (4.6)

G~. +(I+&~~)G~.« =c~.

F~.+(1—&~. )F~.« =d~.

Ga„+(1+Ira„)Ga„lr =ca„,

(4.7)

etc., where cz„, d~„, c&„, etc., are functions of r, the
LC amplitudes, and the potentials. The four ~'s are
defined in accordance with their definition
in the single-particle Dirac equation. In particu-
lar, aq ~

——+j, aa, =+j, ~2 ——+(j +1), and

ira2 ——+(j+1),the upper (lower) sign corresponding
to the PMT (VMT) solution as indicated previously.
This sign convention is used throughout the
remainder of the paper, Equation (4.4) implies that
the eight radial equations of the form indicated in

Eq. (4.7) are not linearly independent. If we dif-
ferentiate Eq. (4.4) and replace the derivatives of the
UC amplitudes by their values from Eq. (4.7), we
obtain a set of eight algebraic relations between the
UC and LC amplitudes. Consider, for example,
the derivative of the first equation in (4.4),
A, G& &

——F~] +pF~2,. Using the values of the K's and
Eqs. (4.7) and (4.4), we find that

cg )
—(da )+pda2) IA, =+PFa2lr .

This is the first of eight algebraic relations that can
be obtained from Eqs. (4.4) and (4.7). These alge-
braic relations may be regarded as a system of eight
equations for the eight linearly independent LC am-
plitudes. When this system is solved for the LC
amplitudes, one finds that for n = 1,2 with
k=3 —n

for the interaction Hamiltonian of Eq. (4.2) where

h;, i = 1,8, are linear combinations of the radial am-
plitudes and their first derivatives. Since the angu-
lar functions defined in Eq. (3.1) are orthogonal,
Eq. (4.6) can be satisfied only if each h; vanishes.
This yields eight rather complicated radial equa-
tions. The details of these equations are not impor-
tant for our considerations but a knowledge of their
general form is needed. It can be shown that for
n =1,2
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4gA =2GA +m
GAn +FBn GAn +FBn „EP EAk 68k+ +( —1)"

1 2 r D)

4fg„2'„——p rr4
GAn +FBn GAn +EBn z Ej9 EAk GBk FAk +GBk

4gB~ =268~ +md

r

FAn +GBn FAn +GBn z P GAk +FBk GAk FBk
+( —1)"(1—e)— +

r D3 Dg

(4.9)

4f~n =2F~.—md
FAn +GBn EAn +GBn

D3 D4
—( —1)"(1—e)—

r D3

GAk EBk

D4

where @=0 (1) for the PMT (VMT) solution, m,.=I&+mq, and md ——m~ —mz. The denominators in (4.9)
are defined as follows D.

~
——(x++3+ —8+ )~8+, D2 D~ —2——8+, D3 ——(x +A —8 )+8, and

D4 —D3 28 where x+ F —( V——+S), A+ ——Vz —V& +(S2 —S& ), and 8+ ——Vz+S2. Radial equations for the
four linearly independent UC amplitudes, Gz &, Fz &, 6~2, and F~2, are obtained by using Eq. (4.9) to eliminate
the LC amplitudes from the right side of Eq. (4.7). Then the UC amplitudes are written in terms of the Fam-

plitudes by inverting Eq. (4.5). In this way we obtain the following radial equations for the F amplitudes:

F', /(2/r)F, = —,(x+ —2++48+)F2 —
2 (mz /U4+p /r U2)F2~(mop/2rU2)F&,

F2 ————,(x- —A —)F]+(mo /2U] )Fi+(mop/2rU& )F3,

F3 +( 1/r)F3 = —
2 (x ~

—2 ~ +28+ )F4+ (mo /2U2 )Fq+(mop/2rU2)F2
1 1

F4, +(I/r)F4 ———,(x+ —2++28+)F3 g (mg /U3+p /r U&)F3.q(mop/2rU~)F~,

(4.10)

where mo ——m
& ~m2, mz ——m

&
+m &, U& ——x- ~A -,

U2 ——x —+3——28—, U3 ——x ~ +3~ —28~, and

U4 ——x++3+ —48+. Note that for j =-0 all the LC
and UC amplitudes corresponding to q =q& vanish.
It follows from Eq. (4.5) that F3 F4 0, and ——Eq. ——
(4.10) reduces to a set of two radial equations for F&

and F2.
A principal advantage of the radial equations for

the E amplitudes is the fact that for the equal mass
case the first two equations for the PMT solution
decouple from the last two (since m0=0). In that
case, the first two equations are called the radial
equations for the exchange-degenerate ~ trajectory,
and the last two the radial equations for the
exchange-degenerate A ] trajectory. The reason for
this identification stems from the work of Suura'
who has constructed qq eigenstates of J,J3,I' and
charge conjugation for the equal-mass case. Al-
though the qq wave equation introduced in
Ref. 15 is not of the same form as
Eq. (4.1), the qq wave function X of Ref. 15 and P
also differ. When the relationship P=y2rX is

used, the wave equation of Ref. 15 can be shown to
be the same as Eq. (4.1) with Hz ——V(r). If we set

mg ——V) ——V2 ——S =S) ——S2 ——0 in Eq. (4.10) and
derive the second-order equations satisfied by Fz

+ V'/r(F. —V)]F3——0, (4.11)

which are identical to Eqs. (2.24) and (2.38) of Ref.
15. It follows that F~,F2 refer to the ~ trajectory
and F3,F4 to the A

~ trajectory. It is also convenient
to refer to the VMT radial equations as the equa-
tions for the p trajectory when m& ——m2. Notice
that the equations do not decouple in this case.
Hence four F amplitudes are needed for the p trajec-
tory.

Equation (4.10) can also be compared to the radi-
al equations obtained by Krolikowski and
Rzewuski' for the interaction HI ——V(r). Two sets
of radial equations are given in Ref. 16, one set for
the amplitudes

fir f2 «f3 «f4 «gl «gz «Ã3 «g4

and. one set for

I

and F3, we find that

F2' ~ [2/r + V'/(F. —V ) ]F'i

+ [ , (F. —V ) m—p/4—r2]F2——0,
F3'+ [2/r + V'/(E —V)]F3

+ [ , (E —V ) m —p/4r— —
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fl «f2 «f3 «f4 «gl «g2 «g3 «gZ

Presumably the first set corresponds to our PMT
solution and the second to our VMT solution, no
mention being made in Ref. 16 of the parity of a
given set alternating with j. At any rate, if we
make the following identifications for the PMT
(VMT) amplitudes, F3 if-3—-( —f2 ), F2 if2——(f3 ),
F3 — g2 (ig 3 ), and F4 g& (———ig2 ), Eq. (4.10)

can be shown to be equivalent to the radial equa-
tions of Ref. 16 for V~ ——V2 ——S =S)——S2 ——0.

Radial equations can also be derived for the LC
amplitudes by differentiating the algebraic relations
like Eq. (4.8) and eliminating the UC amplitudes
and their derivatives from Eq. (4.7). However, they
are very co~plicated for the general interaction
considered in this paper and are only needed for the
case Hl ——V(r). For that case we find that

gA1+(1+KA1)gA1/r =(E—Verr+m1)fA1+ U+gA1 DUO—(pfA1 —fA2),

fA1+(I KA1)fA1/ (E V ff™1)gA1+U —fA1+(I ~)UO(pgA1 gA2)

gA 2+( I+KA 2)gA2« =« Vea+m—
1 )fA 2+ U+ gA 2+DUO(fA1+pfA»

fA2+(I KA2)fA—2/r (E Veff m 1 )gA2+ U fA2 (I— e) UO(gA1+pgA2) «

(4.12)

where

UO =p V'/(E —V+ m, )(E —V md )A,r-
U+ m, V'/(E———V )(E —V+m, ),
U = md V'/(E——V )(E —V md ), —

and V,rf is defined by Eq. (2.4b).

V. THE INCLUSION OF UNBOUNDED
POTENTIALS

(4.13)

where

+ (constant terms)F,

0 48+ —C+

(5.1)

C— 0
T= 0 0

form. If we let F be a four-component column ma-

trix with elements F; (i = 1,4), we have

F'+(J/r)F=TF+(pole terms)F

The singular points of the differential equations
satisfied by the I' amplitudes are at r=0, r= co,
and the points at which the denominators U; in Eq.
(4.10) vanish. If the latter occur at positive, real
values of r, the wave function is too singular to be
normalized. Therefore, the presence of the pole
terms in Eq. (4.10) poses a problem for potentials
the maximum value of which equals or exceeds the
total energy. Problems can also arise for potentials
whose minimum value equals or is smaller than

In this section we are interested in the implica-
tions of the pole terms and in the type of potential
that can produce permanently confined qq bound
states. The criterion for the inclusion of an un-

bounded potential in Eq. (4.10) is that it not lead to
singular points at r & 0. If this criterion is not satis-

fied, the potential may still be included but only as
a perturbation term. The criterion for permanent
confinement is simply that all solutions of Eq.
(4.10) vanish exponentially as r ~ eo.

It is convenient to rewite Eq. (4.10) in matrix

(5.2)

V—3 &S&A+ —V,

V—A +48 &S&A+ —V—48+ .

Note that the inequality

V—~ +28 &S&2+ —V—28+

(5.3a)

(5.3b)

is automatically satisfied if Eq. (5.3) is satisfied.
Consider the case of the Coulomb plus Breit in-

teraction in QED, HI V, +H21. Then V——=V„

and C+ ——( V+S)+A+ and J is a constant 4)&4 ma-
trix. The pole terms are associated with the vanish-

ing of the denominators U; in Eq. (4.10). These
denominators are of the form U;=E+8' where

IV; is a combination of potentials. Since E may be
chosen to be arbitrarily large, U; will necessarily
vanish for some ry0 if 8';~ —co as r~ ~.
Therefore, each 8'; must be non-negative for large
r. This results in a set of inequalities that the in-

teraction amplitudes must satisfy. They may be
written most succinctly in the form
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Pz=(S~ Vq-A+ 28+)(S——V—A ~28 ) .

(5.4b)

Bound-state solutions correspond to positive P and
negative 13. Equation (5.4) shows that P is the
product of two factors. Hence there are two ways a
priori to make P &0. Both factors must be positive
or both must be negative. However, the latter possi-
bility is excluded because it is inconsistent with Eq.
(5.3). Consider Eq. (5.4a) for the VMT solution, for
example. The condition S+V& —3+ is incon-
sistent with S+V&A+ from Eq. (5.3a) since both
S and V are assumed to be positive for large r. We
make this assumption because we wish to maintain
as close a connection as possible with previous qq
calculations. Similar arguments can be made for
Eq. (5.4a) for the PMT solution and also for Eq.
(5.4b). We conclude that both factors in the expres-
sions for 13 must be positive. In comparing these
conditions with those in Eq. (5.3), we find that there
are only two new conditions,

S& V+3 and S& V+2 —48 (5.5)

1S=S)——Sz ——0, and V) = Vz= —
2 Vc

(5.3a) implies that V, &0 and (5.3b) that V, )0.
Therefore, Eq. (5.3) is not satisfied for V,+0. Us-

ing the definitions of U~, we note that in the case
U] —E V Uz —E—U3 U4 —E+ V, . The trou-
blesome factor is the latter since it vanishes at
r =a/E. We conclude that the Breit interaction is
a good approximation of the non-Coulombic part
of the electromagnetic interaction only for

~

r a/F—-
~

&&0 and that it is incorrect to include it
directly in Eq. (4.1). Instead it must be treated in
first-order perturbation theory. When this is done,
the usual results for hydrogen and positronium are
obtained to order n as is shown in Sec. VII.

In the remainder of this section we consider con-
finement potentials for @CD which increase
without bound as r —+ Oo. The asymptotic behavior
of I' is controlled by the matrix T. For simplicity
we assume that the magnitude of the confinement
potentials increase linearly with r. In that case

1F~ Foexp( 4Pr) for large r where P=Por, Po is a
constant, and I'o is a constant matrix. Substituting
this expression into Eq. (5.1) yields an eigenvalue
equation for P, namely TFo ———,PFo. The vanishing
of the determinant of the coefficients yields two
values of P and hence four values of 13. The form-
er are easily found to be

Pz=(S+ V+A++48+)(S~ V~A-)

In the following analysis it is understood that the
higher-order terms V), Vz and S), Sz are nonzero
only if the respective zero-order interaction ampli-
tudes V and S are nonzero.

Our first conclusion is that the interaction must
contain a scalar term. If it does not, S=O and the
inequalities V&A and V& —A from Eqs. (5.3}
and (5.4) cannot be satisfied by a positive V, with or
without the higher-order terms V& and Vz. There-
fore, a four-vector interaction cannot give rise to
normalized quark confinement.

The simplest interaction containing a scalar term
in PiPzS. It is consistent with Eq. (5.4) and can
produce confined, bound states but it does not satis-

fy Eq. (5.3), i.e., it does not give normalized solu-
tions.

Consider the five two-term interaction Hamil-
tonians, (SV), (SS~), (SSz), (VVi), and (VVz)
where we designate a particular interaction Hamil-
tonian HI by a set of parentheses enclosing the
nonzero interaction amplitudes Hl contains, e.g.,
( VVz }= V+ a i az Vz, etc. The interaction (SV) is
inadequate since V&S& —V is not satisfied. For
the next interaction (SSi), A+ ——~Si and 8+ ——0.
From Eqs. (5.3) and (5.4), S & —Si, S)—Si, and
S&S&, all of which are satisfied if S& is negative
and S= —S~. The corresponding interaction Ham-
iltonian is satisfactory and is given by Eq. (1.4).
For (SSz), A+ ——8+ ——+Sz, and Eq. (5.3) requires
that S=Sz ———3Sz which is impossible. The last
two interactions are inadequate since they do not
contain S.

There are six three-term interaction Hamiltoni-
ans, namely, (SS~Sz), (SSi V), (SSz V), (SVVi ),
(SVVz), and ( VV, Vz). We consider each in turn.
For (SSiSz), Ap ——+(Sz —Si), 8~ ——+Sz, and Eq.
(5.3) implies that S=Sz —Si ———3Sz —Si which is
impossible for Sz+0. For (SSi V), A+ ——~Si,
8+ ——0, and the condition V—S~ &S & —S~ —V
from (5.3a) is not satisfied. For (SSz V),
A+ ——+Sz8+, and Eq. (5.3) implies that
S=Sz———3Sz which is impossible. For (SVVi),
A+ ———Vi, 8~ ——0, and Eqs. (5.3) and (5.4) imply
that V—V& &S& —V—V& which cannot be satis-
fied for V& 0. For (SVVz), A+ ——Vz 8+, and Eq. ——
(5.3) shows that —Vz+ V&S & Vz —V and
3Vz+ V&S& —3Vz —V. The former is valid only
if Vz & V, and the latter, only if —3Vz & V. Hence
Eq. (5.3) is not satisfied. As indicated earlier
(VVi Vz) cannot satisfy Eq. (5.3) because it does
not contain S.

There are six four-term interaction Hamiltoni-
ans, (SSi VVi), (SSzVVi), (SSi VVz), (SSzVVz),
(SSiSz V), and (SVVi Vz). It is easily shown that
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the first two obey Eqs. (5.3) and (5.4) whereas the
others do not.

There are four five-term interactions,
(SS1S2VV1 ), (SS1S2VV2}, (SS1VV1 V2), and

(SS2VV1 V2). Of these only the first is consistent
with Eqs. (5.3) and (5.4) as is readily verified.

Finally the six-term Hamiltonian of Eq. (4.2) can
also be shown to be consistent with Eqs. (5.3) and
(5.4). However, even in this general case the four-
vector terms cannot enter in the form V+Hz as is
the case in @ED.

This makes a total of five acceptable con-
finement Hamiltonians, namely, (SS1) with

S1———S, (SS1VV1), (SS2VV1), (SS1S2VV1), and

(SS,S2VV1 V2}. Since V1 and V2 are the potentials
for higher-order corrections to the zero-order poten-
tial V, it is not unreasonable to assume that V~ and

V2 should not be larger in magnitude than V. This
assumption reduces the number and arbitrariness of
the acceptable interactions. It is easily verified on
this basis that only the first two interactions are ac-
ceptable and that V& in the second one is no longer
arbitrary, i.e., we have (SS1) with S1———S and
(SS1VV1) with S1———S and V1 ———Vwhere S(V.

The corresponding interaction Hamiltonians are
given by Eqs. (1.4) and (1.5).

VI. LIMITING CASES,
AN EFFECTIVE POTENTIAL,

AND THE COULOMB-LAMB SHIFT

In this section we consider only the single-term
interaction Hamiltonian Hz V(r). For j——=0 the
radial equations for the LC amplitudes, Eq. (4.12)
reduce to

F2+[(1+KA2)/r]Rw2

Veff+m1 )fA2+ U+gA2 i

fA 2 + [ ( 1 K~ 2 }«1f~2—
(~ V.« —m1}g—»+ IJ—f»

These equations are reminiscent of the radial equa-
tions obtained from the single-particle Dirac equa-
tion. In fact, they imply that the four-component P
spinor defined by Eq. (3.3) satisfies the effective
single-particle Dirac equation

[Ca (P+'0/~)+m1c }l)+V ff)42 EAA2

(6.2a}

where

0 U
U=Ac

U 0 r
+

(6.2b)

This equation can be reduced to Schrodinger form
by eliminating the "small" components of pz2 in
the usual manner. Neglecting the smaller spin-
dependent terms for simplicity, we obtain the re-
duced mass equation (P /21u+V)Pz Egr where——
pJ is the "large" component of pz2.

The simplicity of Eq. (6.2) suggests its applica-
tion to some standard problem e.g., the hydrogen
atom. A very simple calculation shows that there is
a Coulomb-Lamb shift of order m1 a /m2 accord-
ing to Eq. (6.2). Set V= —a/r and consider the
k =2 term in Eq. (6.3). We retain only the
V /2m2 term since the others do not contribute
to the Lamb shift. We use first-order perturba-
tion theory with Ho ap+ m1p —a /r ——and

H~ ——0,'/2m2r . Consider, in particular, the 2P&&z

and 2S~~2 states. The zero-order wave functions are
the 2S~~2 and 2P&&2 Dirac wave functions for a
Coulomb potential but the corresponding

and appropriate factors of h, c have been inserted to
facilitate evaluating the effective potential in the
classical limit. Note, in particular, that U —+0 as
h —+0 whereas V,rr is independent of h. Since the
effective potential in Eq. (6.2) consists of the three-
vector U and V,rr —m2 [rePlacing E in Eq. (6.2) by
E1+m2j, the quantum effective potential is seen to
reduce to the classical value, Eq. (2.4a), as h ~ 0.

It is instructive to consider two other limiting
cases, first, the single-particle limit and second, the
nonrelativistic limit. In the former, we let m2~ Do

in which case U~ 0 and E—V,~f~ E& —V. See
Eq. (6.3} below. Thus Eq. (6.2) reduces to the
single-particle Dirac equation as expected. In the
latter, we assume the masses m& and m2 are much
larger than ~g —V~ and

~

V'~ where (is the bind-

ing energy. It is easily seen that U is of the order
V'/m2 or smaller and that

E V,rr =m1—+(p/m1)(g —V)

1
00——,(m1 —m2) g (g —V)"/(m1+m2)

k=2

(6.3)

where p is the reduced mass. If we keep only the
first two terms in Eq. (6.3), Eq. (6.2) simplifies to

a 0+m1P+ " V 62= m1+ "
k 62.

Pl ) Pl )

(6A)
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Schrodinger wave functions are adequate. The ex-
pectation value of H, in the state P„~ is

(m~ a /mqn )(21+1) '. This produces a Lamb
shift of a m

~ /12m2 between the 2P&&2 and 2S»z
states. This is a surprising result, at least at first
sight, because there is not supposed to be a Lamb-
shift contribution of this order. The agreement be-
tween theory and experiment on the value of the
Lamb shift is excellent, and a m

~ /12m 2 is not one
of the terms included in the comparison. In the fol-
lowing section we show that the resolution of this
apparent discrepancy lies in the inclusion of the
Breit interaction.

VII. APPLICATION TO HYDROGEN
AND POSITRONIUM

There are two problems for which the radial
equations obtained in Sec. IV can be solved analyti-
cally to order U /c and compared with well-

established results. One is hydrogen, and the other
is positronium. In this section we calculate the en-

ergy levels of hydrogen to order m& o, "/m and of
positronium to order u, including both the
Coulomb and Breit interactions. Both calculations
are based on the radial equations for the LC ampli-
tudes given by Eq. (4.12). Notice that these equa-
tions have the structure of two coupled single-
particle Dirac equations. When Uo ——0, the first
two equations correspond to a Dirac equation with

q=qi and leading orbital angular momentum lz &,

and the second two equations to a Dirac equation
with q =q2 and leading orbital angular momentum
l&2. The size of the coupling between q~, lq ~

and

q2, F2 can be estimated from the average value of
Uo. The coupling is small for nonrelativistic sys-
tems and vanishes in the single-particle limit.

Consider first the calculation for hydrogen. In
that case (Uo), (U+), and (U ) are of order
m, a /m2 where m, (m2) is the electron (proton)

mass. They are, therefore, negligible. Dropping
these terms, we are left with two effective single-
particle Dirac equations of the form given by Eq.
(6.2). They reduce to the form given by Eq. (6.4)
when only the first two terms in Eq. (6.3) are kept.
This defines the zero-order problem. The zero-
order eigenstates are therefore characterized by a
definite q and a leading l. The solutions of the
Dirac equation for an attractive 1/r potential are
well known. The zero-order energy $0 is obtained
from the equation

m )+ ~ go-—-m ) [1+(pa/m ) ) (n'+s) ]'~,
Pl i

(7.1)

where n'=n —(q+ —, ) and s =[(q+ —, )'
—(pa/m&) ]'~. Since we are only interested in
terms of order m& a /m or smaller, it is con-
venient to expand go in powers of a and m ~/m2 to
obtain

go
———, p(a—/n )

——,m&(p/m~) [n/(q+ —, ) ——,](a/n)

(7.2)

There are only two perturbation terms to evaluate.
The first is the term encountered in Sec. IV, i.e., the
k=2 term in Eq. (6.3). The average value of this
term is the Coulomb correction g, where

f, =(m~ /mq)[n/(21+1) —, ](a/n—) . (7.3)

The second is the Breit interaction. We have ex-
plained in Sec. V that the correct way to include Hz
is as a first-order perturbation. Therefore, we need
the average value of H~ with respect to the full 16-
component wave function as defined by Eq. (3.8).
Using the results in the Appendix we find that for
the PMT solution

~(Ha &pMr = I [F 2[&afar & 2(J+2)fa2] F2(S'—gs i+2jgaz)+—g~ &[&pfa2 —2(J —1)fa i]

—f~ ibes2+2V+1)gs i]]~,r'« . (7.4)

The expression for A, (H~)vMr can be obtained
from Eq. (74) by multiplying Eq. (7.4) by —1 and
then interchanging corresponding g and f ampli-
tudes. The zero-order LC amplitudes are solutions
of the single-particle Dirac equation (6.4), and it
turns out to be sufficient to use the more convenient

nonrelativistic forms for gq;. This makes possible
the analytic evaluation of all the integrals in (Hs ).
The result is that for both the PMT and VMT solu-
tions (Hs ) cancels out the l-dependent term in g,
which is the one responsible for the Lamb shift. In
particular, we find that for both PMT and VMT
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solutions,

(Hs) = —g, +Smi ~ ™2n
1—(mi a ™2n)(q+ —,) '+(Hp,

(7 &)

where (Hp is the well-known term for the hyperfine
structure, i.e.,

er than (mia/m2) as for hydrogen, and this is the
same order of magnitude as the first-order perturba-
tion term. Therefore, Eq. (6.4) must be modified so
the energy difference between different zero-order
states is of order u . This is done by subtracting
out the q-dependent terms in Eq. (7.2) and choosing
the zero-order Hamiltonian

Ho a—p—+mP+ —, V+(ma /32n )(q+ —, )

3

m, 'a' j(j+1)—, q(—q+—1)
kHp 1

2m2n q(q+1)(I„+—)

(7.6)

where

1

Hollo= Eodo

(7.8)

Since the two-body Dirac equation does not account
for the anomalous magnetic moment, (Hp must be
multiplied by the factor I+a& ——2.79 for the
proton's magnetic moment. Then the binding ener-

gy to order m
&

n is given. by the sum

(=go+(, +(Hs). This result can be written in
various forms, perhaps the most convenient of
which is in terms of the correction factor of Breit
and Brown, ' (mi —W )/2m2 where 8'is the total
energy of an electron in the single-particle Dirac
equation for V= —a/r. It is easily shown from
Eqs. (7.2), (7.3), and (7.5) that

g= ——,mi(a/n) ——,mi(a/n) [n/(q+ —, )——,]

+gHp+(mi —8' )/2m& . (7.7)

The first term gives the Bohr energy levels, the
second the fine structure, the third the hyperfine
structure, and the fourth is the relativistic correc-
tion term. This may be compared, for example,
with the result obtained by Lepage' from the
Bethe-Salpeter equations. It is easily shown that his
result agrees with Eq. (7.7) to order mi a ™~.

The next application is to positronium. It is in-

teresting to determine how the singlet and triplet
states of positronium emerge from radial equations
written in a representation which emphasizes the to-
tal angular momentum Q of particle 1 rather than
the total spin of the two particles. The critical
difference in the hydrogen and positronium prob-
lems is that (Uo) is of order a for the PMT state
of positronium. This causes a mixing between q&,

iz &
and q2, l&2 in zero order and has a bearing on

the choice of the zero-order Hamiltonian. The
zero-order Hamiltonian cannot be Eq. (6.4) as it was
for hydrogen because the eigenstates of Eq. (6.4) for
different q; are nondegenerate with an energy
difference of order a . See Eq. (7.2). Second-order
perturbation terms of the form
(n ~H'~ k) l(E„Ek) would be of ord—er a, rath-

and

Eo ——2m ma—/4n +3ma /64n

This has the effect of making states of different q;
degenerate to order n . The perturbation consists
of the negative of the term added to Eq. (6.4),
namely Ho —— (ma—/32n )(q+ —, ) ', the Breit in-

teraction, and the terms in Eq. (4.12) containing Uo,
U+, and U . We designate the latter effects col-
lectively as HU. For the p trajectory (Uo) -=0(a )

and q ) lg ) and q2ig2 are not mixed.
First-order degenerate perturbation theory cou-

ples the q& and q2 PMT states to give the zero-order
eigenvectors

~e =~i(o) @NA1 —~2+1(1)@NA2

~A'=&1+ 1(o) @6i+~i(i)42
(7.9)

where f, is the singlet state and p, is the j=l triplet
state. The contributions of the various perturbation
terms are given in Table I. Combining these contri-
butions with the zero-order energy, we find that

E, =E,+ma /kp n =e —ma /2A, n', (7.10)

2n (2l+1)

(31—5k+9)
(I+2—k)(21 —4k+7)

s 1 —3n/A,

t (1—4k /p )n/+1
p& 1 —(3j+1)n /jA,

p2 1 —(3j+2)n /(j +1)$

—n/k.
—(1+4/p )n/A,
—n (j—1)/j (2j —1)
—n (J +2)/(J +1)(2J +3)

TABLE I. The contributions of the perturbations Hq
and Ho+HU in units of ma /8n for the singlet state
(s), the triplet state (t), the p-trajectory solution with

q&, lz &(p&), and the p-trajectory solution with qz, l&2(p2).

Ho+HU
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for k =1,2 where e =2m —mu /4n
+11ma /64n and E~k is the energy on the p tra-
jectory with q =qk, I =I&k. The Coulomb and Breit
interactions correspond to instantaneous, transverse
photon exchange. Therefore, Eq. (7.10) does not in-
clude the annihilation energy corresponding to the
annihilation diagram. %hen this contribution is in-
cluded, Eq. (7.10) is in complete agreement with the

results given by Ferrell and by DeBenedetti and
Corben. '
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APPENDIX

The derivation of many of the results given in this paper are too lengthy and cumbersome to reproduce in
their entirety. However, it is possible to give the operator and matrix expansions that are needed in the deriva-
tions. These identities have not been given elsewhere and are offered without proof. In the following, ltd is de-
fined by Eq. (3.18) and Sz ———,X SI where X is the usual 4)(4 generalization of the Pauli matrices. For PMT
and VMT solutions,

az p1( = ir" az — +—li +—(L.S2)(r".az)g,Bg 2 i--
Br r r (A 1)

r o!21)j=
1QA 1 (gB I +PgB 2 ~ lf8 1 +Plf8 2 )

QB1(RA 1+PEA 2 ifA 1+PlfA 2)
+-

r

«A 1 (lf81+Plf82~g81+P'RB2)
(r al)(r az)1(1=-

Q81(lfA1+PlfAz gA1+PgAz)

1QA2(g82 PgBl~lf82 Plf81)

Q82(gA2 PRA1 lfA2 PlfA1)

1QA z( &f82+Plf81 —g82+Pg81)+-
QB2( 1fA 2+Pl fA 1 gA 2+PgA 1)

(A2)

(A3)

For VMT solutions,

1QA1(~&f81~2Pg82+(2 ~)g81)
1 1QA2(~lf82~2PR81 (~+2)g82)

&1'&24= . +Q81(2P1fA 2+(2 —A )1fA1, AgA1) A Q82(2pl fA1 —(2+ A )1fA 2, AgA 2)

J+ J-'QA1(gBn lfBn)
( +1)(2. I) 1QA 1(0 lfBn) 1QAz(0 lfBn)

'
Q81(gAn &fAn) x Q81(gAn o) x Q82(gA. o)

iQA1(g8„,0)

Q81(o lfA. )
r

I. S2 J J+i QA 2(gB„,1fB„) .
(2

.
3) 1QA 2(0, 1f8„) 1QA 1(0,1fB„)

QB2(gAn~lfAn )
J A, Q82(gAni0) A, QB1(gAn~0)

lQA 2(g8„,0)
(j+2) Q (0 f ) (A6)

For the PMT solutions,

(A7)

«A 1(2Plf82+(2 —~)lf81 ~g81)
1 «Az(2P&f81 —(~+»lfB»~g82)

Q81(AifA1, 2Pg„z+(2 —A, )gA, g Q82()1ifA2, 2PgA1 —(2+A, )gA2)
+

The identities for the PMT solution analogous to Eqs. (A5) and (A6) for the VMT solution can be obtained
from Eqs. (A5) and (A6) by means of the following prescription: (a) interchange the first and second argu-
ments of all the Q spinors on the right side of Eqs. (A5) and (A6) and (b) make the following replacements
gAn~lfAn and gBn~ifBn
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