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Many-quark problem in two-dimensional gauge theory
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General theorems are given for enumerating and constructing the singlet eigenstates of
interaction energy for an arbitrary number of static quarks in SU(E) gauge theory in 1+1
dimensions.

I. MAIN RESULTS + 4 ~ ~

In this paper we discuss diagonalization of the
interaction energy for an arbitrary number of fixed
quark sources in two-dimensional SU(N) gauge
theory. Here quark is meant to be a carrier of
SU(N) quantum numbers (in any representation in
general) and refers to both quark and antiquark
unless further specified. We will explicitly restrict
ourselves to overall SU(N) singlets because other
states would have infinite energy. The relevant
Hamiltonian is

n

II= —g —A, ' 'A, ,
'"

~xk —xi ~, a=g'/2 (l)
k, /=1
k&l

in the Coulomb gauge, and this expression is exact.
[The )(, s are the SU(N) matrices appropriate to the
quark or antiquark representation. ] Although the
problem looks almost trivial, it nevertheless leads
to some interesting consequences. For one thing,
we shall find a simple interpretation of the elegant
algorithm given by Bralic and others for evaluating
Wilson loops. In the following we will first state
the main results in a sequence of theorems.

Without losing generality, one may choose the n

quarks to be well ordered in position, so that

x1 &x2 « x„. Other configurations can be
obtained by relabeling the quarks, but our con-
siderations will be restricted to one such sector I
at a time.

Theorem 1. In I, one may remove the absolute
sign in the potential function in Eq. (l). H be-

comes a sum of separable linear potentials which
one can write as

—H = —a"'(A,(2)+)(,(3)+ +)(,("))r
4

+X("))r

+ tr (g(1)+. . . +g(n —1)) )„(n).r

~k+1,k =Xk+1—Xk & 0
(2)

This follows from writing

Xk Xl ~k, k —1+~k —1,k —2+ +~l+1, l

(k ) I)

and regrouping the terms in Eq. (l). Each line in

Eq. (2) represents a partition of n quarks into left
and right subsets L and R, which then couple
through their respective SU(N) generators,

gL, k Z(1)+p (2)+. . . +Z(k)

gR, n —k g(k+1)+g(k+2)+. . . +g(n)

So Eq. (2) may be further rewritten as

n —1

H= QHk,
k=1

+ gL, k.gR, n —k

a
rk+)—k[—C(L+R, n) —C(L,k)

C(R, n ——k )],

where C(L,k) is the quadratic Casimir operator
for L:

C(L+R)=0, C(L)=C(R},

and so on. But because of the restriction to overall
singlets, the eigenvalues of the Casimir operators
are restricted to
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and (L,k) and (R,n —k) are conjugate representa-
tions of each other. This is not always possible for
an arbitrary composition of the system, but when

it is, knowledge of a left subsystem (L,k) uniquely
determines the right subsystem (R,n —k), and vice
versa, as far as the representation is concerned.
But the Casimir operators of all left subsystems
(L,k) commute. One thus has theorem 2.

Theorem 2. Let (L, l)C(L,2)C C(L,n) be
a hierarchy of subsystems of quarks as defined
above. One can construct an irreducible represen-
tation (IR) for the whole system by first specifying
an IR(L, 1) for (L, 1), then adding a quark to form
an IR(L,2) for (L,2), and so on, ending finally in a
singlet IR(L,n). The resulting state is an eigen-
state of H with eigenvalue

n —1

E=a g C(L,k)rk+, k .
k=1

(4)

Enumerating all such hierarchies of IR's (and tak-

ing due account of their multiplicities), one ex-

hausts all the singlets of the system. The last
point is obvious if the above steps are followed
backward starting from (L,n). Physical interpreta-
tion of the procedure is also straightforward: The
energy of the field flux residing in the interval

rk+, k is determined by the SU(1V) quantum num-

bers of the subsystems to the left and right of it.
Note that one does not need any additional mag-
netic quantum numbers since one is dealing with

singlets. Also note that the same IR(L,k) for a
given k may come in a multiplet, in which case
one must count them as distinct choices.

The above procedure is clearly quite general, but
we will for the moment specialize to SU(2) and

SU(3), with the quarks in the fundamental repre-
sentation. An IR of SU(2) is labeled by isospin I,
or p—:2I =0, 1, . . . , whereas an IR of SU(3) is la-

beled by two integer parameters p, q )0. [Essen-
tially, an IR(p, q) behaves like a tensor product of
p quarks and q antiquarks, each in a totally sym-
metric configuration, and zero under contraction of
a pair of quark and antiquark indices. ] The
respective Casimir eigenvalues are

SU(2): C(p) =p'/4+p/2,

SU(3): C(p, q) = —,(p'+pq+q')+p+q . (6)

The IR's in theorem 2 form a correlated sequence
because adding a quark to an IR for (L,k) leads to
a branching of IR's for (L,k+1). The branching
rules are (subject to positivity restrictions)

SU(2): p~p+1,p —1,

SU(3): (p,q)~(p+ l, q), (p, q —1),(p —l,q+1) for adding a quark (1,0),

(p, q)~(p —l, q), (p, q+1),(p+1,q —1) for adding an antiquark (0, 1) .

Each of the final IR's has a multiplicity of one.
An interesting question that arises at this point is
the number of singlets, or the dimensionality of
physical states, for an n-quark system. Obviously
it can be derived from the above branching rules.
We give the answer below, leaving the proof to the
Appendix.

Theorem 3. The number of linearly independent
singlet states A„ formed by n quarks in SU(2) (Ref.
1) is

nt

(n /2)!(n /2+ 1)!

In SU(3), the number A„ for a system consisting

only of quarks (p, q ) = (1,0) or of antiquarks (0, 1)
1s

2(n! )

(n /3)!(n /3+ 1)!(n/3+ 2)!

3n+1/2
(n =0 mod3) .

~ (n/3)

The asymptotic forms given above are subject to a
simple interpretation. The building up of tensor
products of quark states may be regarded as a
random-walk process in the vector space of group
generators. This space is 1V —1 dimensional for
SU(N). The number A„ is equal to the number of
ways one can come back to the starting point after
n steps. Each step has X possible choices of direc-
tion, and after n steps the end point will on the
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average lie within a radius of v n .The number of
possibilities leading to the origin is thus

3 -N"/(Vn )n

S-in% — inn +0(N 1) — 1

2' n
(10)

provided that n »1V . In the strict thermodynam-
ic limit, the second term is zero, implying that the
restriction to singlets may be ignored.

One also expects that in this limit there will be no
difference between quarklike steps and antiquark-
like steps. Their X allowed directions are equal
and opposite, but in the continuum approximation
either set may be considered isotropic and
equivalent for the present purposes. Thus theorem
4.

Theorem 4. For large n, the entropy
S =(InA„)/n per quark in SU(N) is

III. COMMENTS

Many of the results obtained here are due to the
peculiarities of linear potentials in one dimension,
which are additive and separable within a sector
characterized by a specific ordering of quarks. In
a given sector one may choose a particular singlet
state. Since the corresponding eigenpotential is ad-

ditive, one can plug it into a Schrodinger or Dirac
Hamiltonian and solve it for individual quarks
separately. Unfortunately, difficulties arise in join-
ing the solutions in different sectors (except for the
trivial case of two quarks). So one does not gain
much advantage by making use of the present
method in tackling the many-quark problem. For
Dirac quarks, moreover, the problem of Klein's
paradox would persist; it could be dealt with only

by treating the quarks as quantized fields.
On the other hand, the insight gained here may

prove useful in a statistical treatment of large
numbers of quarks. This will be pursued in later
communications.

II. WILSON LOOP AVERAGES
ACKNOWLEDGMENT

A Wilson loop describes the gauge field action
induced by a quark source following a closed tra-
jectory. A general algorithm was derived by Bral-
ic and by Kazakov and Kostov for evaluating the
action for an arbitrary number of Wilson loops.
The present Hamiltonian approach gives a simple
interpretation of their results.

If a configuration of Wilson loops is viewed in

its time sequence, various pairs of quark and anti-

quark are created, recombined, and eventually an-

nihilated. At creation and annihilation, each pair
is in the singlet state. At any time slice, the
quarks are spatially ordered in a definite way. So
one can, for example, start from a singlet state
composed of pairs separated from each other. Its
energy is the sum of the energies of the individual

pairs. At the instant when a crossing of quarks
from different pairs occurs„ the system goes over
to a different space ordering, which defines a new

set of singlet eigenstates. The initial state should
then be decomposed into new eigenstates and each
of them will develop with its own energy eigen-
value. Repeating this process until all quarks are
annihilated in pairs, one gets a sum of terms carry-
ing different action factors. It is not difficult to
see that each such action can be expressed in terms
of weighted areas enclosed by the various quark
lines.

This work was supported in part by the National
Science Foundation Grant No. PHY-79-23669 and

the Department of Energy Grant No. AE-AC02-
81ER 10957A.

APPENDIX: GENERATING FUNCTIONS
FOR DECOMPOSITION OF

TENSOR PRODUCTS

The counting of the number of singlet states
contained in an n-quark system can be done for
SU(2) or SU(3) by elementary methods, but here

we follow the more general method of generating
functions. Let a quark correspond to the funda-
mental representation of U(N). The Young tableau

with N rows of length nj &n2. » nN specifies
an IR of U(N), of which the sequence n~ n2, —

2 n 3 . nN —1 nN stands for an IR of
SU(N). A quark (not an antiquark) represents a
block in the tableau. The number of times an IR
with (n&, . . . , n~) occurs in a direct product of
n=n~++2+ +nN quarks is equal to the
number A(n~, n2, . . . , nz) of ways the correspond-

ing tableau can be built by adding a quark one by
one. A quark may be added to any row of the tab-

leau if the restrictions n& &n,2& - . are not
violated. So define a generating function with X
variables
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f(x;)= QA(n;)x, '. . . x
I n,- I

TABLE I. Selected list of the numbers A(n', n")
=A(n", n') of SU{3) singlets formed by n' quarks and
n" antiquarks.

An addition of a quark contributes a factor
x~+x2+ . . - +x~ except for the above restric-
tions. These restrictions are effectively met if one
can force f to be zero whenever n;+~ n;——+1 for
some i, which in turn can be realized if
fXx ~ x2 . . .x~ ~ is extended to a totally
antisymmetric function. Now the function

f(x;)= g 1—
i&j

= QA(n;}x~ '
xN (A2)

satisfies the required antisymmetry. %hen the
first factor is expanded in powers of x;, the nth
power clearly generates n-quark states, whereas the
second factor is homogeneous of degree zero, and
does not disturb this power. It follows that f coin-
cides with f in those terms satisfying the power re-
strictions.

The number A„of SU(N) singlets made of n

quarks is the coefficient of the term with

n) =n2= ' =ntv =n/N. Direct evaluation gives

1!2! (N 1)!n!—
(n /N)!(n /N+ 1)!..(n /N+N 1)!—

(n =0 modN). (A3)

n =n'+n"

10

1

3
2
4
6
3
5
7
4
9
6
8
5

10
7

12
9
6

18
15
12
9

24
21
18
15
12

1

0
2
1

3
2
1

0
3
2
5

1

4
0

6
0
3
6
9

3
6
9

12

A{n',n")

1

1

2
3
5

6
11
21
23
42
47
98

103
210
225
462
498
513

87 516
91 091
93 500
94 359

23 371 634
23 959 494
24410 334
24 695 139
24792 705

In order to incorporate antiquarks, one notes that
addition of an antiquark amounts to removal of a
block from the tableau, or multiplication by a fac-
tor g (1/x;). To be more precise, the correspon-

dence is x;—+ I/x,v;+~ under which the antisym-
metrizing factor is invariant. So Eq. (A2) is gen-
eralized to

F(x;,t) = 1 1

1 tax; 1 t g—(1/x;)—

= QA(n;, m) gx; 't

Here m counts the total number of quarks and an-
tiquarks, and g n; counts the number of quarks
minus the number of antiquarks, with n; now run-
ning over both positive and negative values. [The
Young tableau must obviously be generalized to al-
low negative numbers of blocks, but still keeping
the restrictions n t ) n2 ) . .] Numerical values
of A for SU(3} are computed in Table I. One sees
that for a fixed total number n =n'+n" of quarks
and antiquarks, A (n', n") is larger for more even
mixture as may be expected, but the variation be-
comes smaller as the number increases.
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