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Phase structure and renormalization trajectories of lattice SU(2) gauge theory
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We indicate how the phase diagrams of lattice gauge theories are easily obtainable

through real-space renormalization techniques of the Migdal-Kadanoff transform type. As
an illustration, we work out the phase boundaries for an SU(2) single-plaquette action with

variable components of spin —(the Wilson form), spin 1 [SO(3)], and spin —.In this

three-dimensional space, we study the renormalization flows for the couplings, thereby

determining the infrared-stable forms of the action. We discuss their dependence on the

phase boundary and their import to the continuum limit of the lattice theory.

I. INTRODUCTION

The extraction of physical information from lat-
tice gauge theories is complicated by the nontrivial
phase structure recently observed in the space of al-
ternative actions. Specifically, without altering the
naive continuum limit of the theory, one may define
single-plaquette actions which contain varying corn-

ponents of the Wilson action (i.e., the trace of the
fundamental representation of the gauge group) as

well as additional higher representations. For the
SU(2) gauge theory, Bhanot and Creutz' have ob-

served through Monte Carlo techniques an interest-

ing first-order phase boundary in the space spanned

by the Wilson action and the adjoint action [SO(3)].
They have also noticed an alarming variability of
A~,«,«, emphasized in further papers. '

There is another method for establishing the
phase structure of alternative actions, which, unlike
Monte Carlo methods, addresses the significance of
the phase boundaries to the renormalization process
by its very nature. In addition, it is not inherently
limited by finite lattice sizes. The method relies on
the real-space renormalization-group transforma-
tions proposed by Migdal and extended by Kadan-
off, and Martinelli and Parisi. The renormaliza-
tion recursions available so far are inexact for more
than two spacetime dimensions: they project the ef-
fective action relevant to a larger-scale lattice ob-
tained by each recursion onto the space of single-

plaquette actions. Even though the most general
plaquette action is accommodated in that space, the
nonlocal terms induced in the renormalization pro-
cess cannot be included without drastic losses in
computability.

In this paper, we point out that the Migdal recur-
sion technique, even though it is known to miss the
order of the phase transition investigated in most
cases, ' ' ' provides a fast and efficient method to
obtain the critical couplings, and hence the phase
diagrams in which one is interested. Because these
phase diagrams can be obtained with a small frac-
tion of the computer time required for a Monte
Carlo study of the same action, it is possible to
study alternative actions of greater complexity. We
illustrate this by considering the SU(2) lattice pure

gauge theory in the space spanned by a Wilson ac-
tion component (spin- —,), an adjoint component

(spin-l), and a spin- —, component, parametrized by
their relative inverse couplings Pz= 13cz, Pz

—=Pc—z,
and P3

—=Pc3, respectively. We have been consider-
ably aided in our analysis by the study of the pure
Wilson theory through this technique by Nauenberg
and Toussaint (also see Ref. 10).

After iterating the renormalization recursions a
large number of times to find the effective single-

plaquette action pertaining to a lattice with corre-
spondingly larger spacing, we can perform the func-
tional integration to a good approximation (Sec. II).
Having thus obtained the free energy density, we

may differentiate with respect to the appropriate in-
verse coupling P to obtain the intensive thermo-
dynamic functions of the theory, like the energy
and the heat capacity. Identifying the location of
the heat-capacity peak with the critical coupling P„
we obtain the phase boundaries for the positive

Pp Pg P3 octant of the manifold studied here (Fig.
1).

In the Pz-Pz subspace of that diagram, it is re-
warding to find striking agreement with the Monte
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Carlo results for that region' (Fig. 5). The extended
phase boundary is a roughly flat surface which con-
nects this boundary to a similar structure we find in
the Pz-P3 subspace (Fig. 6). Several of its interest-

ing features are conveniently located through an
analysis of the single-plaquette classical minima
(SPCM) for the action (Appendix A). We find that,
in agreement with the observation of Bachas and
Dashen, " some of these phase-transition features
appear not to be underlied in any way by the center

Z2 of the group. '

As mentioned, the correct order of the phase
transition cannot be established by the Migdal tech-
nique. (In fact, part of the first-order phase boun-

dary is seen here as third order. ) Thus, in general,
such a study of a phase boundary can be usefully
supplemented by very few Monte Carlo runs.

Since the method discussed relies on the renor-
malization process of the single-plaquette action, it
is relatively easy to monitor the evolution of the ef-
fective action with increasing lattice spacings (Sec.
IV). We do this by fitting its functional form to

1 3
components of spin —,, 1, —,, and 2, the last one

serving as an indicator of the degree to which the
effective action has "leaked out" of the space in
which it was defined.

We find very little leakage, with some special ex-
ceptions. The phase boundaries determined through
the heat capacity peaks are also observed to distin-
guish the different domains of renormalization
flow. All renormalization trajectories of the cou-
plings avoid the phase boundaries and terminate at
the origin P~ Pq ——P3 ——134

————0 (Fig 8). H.owever,
if they happen to start from regions separated from
the origin by phase boundaries (e.g., IVVX in Fig.
1), they do not cross them. Instead, they develop a
comparatively large component of spin-2 (and
perhaps higher spins), and approach the origin
through a window, which appears to be present in
the manifold which includes spin-2 or higher.

A similar, more standard, approach to the origin
through a phase-boundary window which we have
mapped out is evident in Fig. 8. It can be seen that,
regardless of their point or origin, the trajectories
are attracted to and eventually coalesce with either
of two stable fixed lines. These lines are located
along the SO(3) axis Pz, and, more usually, the
Wilson-action axis 13F, with a 16%%uo negative com-
ponent of P~, respectively. In addition to represent-
ing the universal limit for long distances of the vari-
ous bare alternative actions defined on a lattice with
very small spacing, these universal fixed lines sug-
gest the path of fastest approach to the continuum

limit, since they appear to exhibit markedly im-

proved scaling behavior, in comparison to other tra-
jectories with even smaller continuum couplings
(Sec. V).

A brief discussion of alternative recursion formu-
las and lattice spacing increments is provided in
Appendix B.

II. DESCRIPTION OF
THE MIGDAL RECURSION TECHNIQUE

We briefly review the Migdal transformation for-
malism. To the extent convenient, we try to align
our notations and conventions with those of Nauen-
berg and Toussaint who study SU(2) with a Wilson
action in somewhat greater detail than Migdal's ori-
ginal treatment.

The central object studied is the functional in-
tegral of a Euclidean lattice gauge theory:

—QS ( U, a)

z= J[dU„„k]e (2.1)

where U~ denotes the product of U~;„q's along the
perimeter of the plaquette and a is the lattice spac-
ing.

P,

FIG. 1. The phase-boundary surfaces in the positive

PF)PQ P3 octant, consistent with our trial runs. The
lightly shaded portion SZYU indicates a "window", i.e.,
absence of a phase boundary. The various shadings cor-
respond to different heat-capacity signals. See Sec. III
and Appendix A for details. We are also depicting a
typical renormalization trajectory which starts from (0,
0.8, 0.8), moves off the figure, curves back near (8.6,
-1.1, -0.7), and returns through the window, to reach the
origin on a universal path close to the PF axis, i.e., the
Wilson action (see Sec. IV).
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The gauge-invariant one-plaquette action S~( U, a)
is a class function, i.e., it does not depend on the de-

grees of freedom of U which can be "gauged" away:
it is completely determined by those specifying the
equivalence class of U. A complete basis for a gen-
eral class function is the set of characters of the
group. The character X„(U) is the trace of U in the
irreducible representation indexed by r. Since U is
unitarily diagonalizable, the character is the sum of
its eigenvalues. The dimesionality of the represen-
tation is d„=X„(l.). The identity (singlet) represen-
tation is denoted by r =O.

Given a group-invariant integration measure dV,
normalized so that JdV=1, the complete set of
characters constitutes an orthonormal basis by vir-
tue of the relation

MigdaVs transformation (2.5) reduces to the iden-

tity for i(, = 1, as it should, and, in practice, two suc-
cessive transformations by A, are not precisely
equivalent to one by A, . Upon N iterative transfor-
mations of this kind performed numerically, we

may monitor the evolution of the functional form
of S~( U, A, a) and thus study the renormalization of
the action with an increase of scale. fhis we do in
Sec. IV.

After a large number of transformations, volume
effects in each cell overwhelm boundary effects-
the integral (2.1) virtually factorizes, so that each
large plaquette may be readily integrated over in-

dependently of its neighboring ones. The free ener-

gy per plaquette is then

Id VX„(UV)X,*(IV"V) = X„(UW),
Gp

(2.2)

a = lim a)v, where J')v —— lnF„O(& a) .
N —+ao gNd

(2.6)

e ~ ' =QF„(a)d„X„(U), (2.3)

analogous to the orthonormality relation for finite
groups. We thus character expand the exponential
of the single-plaquette action,

From the computational standpoint, when iterat-
ing (2.5) numerically, we wish to avoid taking loga-
rithms of very large or very small numbers in (2.6).
To this end, we normalize after every iteration, fol-
lowing Ref. 9,

F„(a)= JdUe ~ ' X'„(U) .
T

(2.4)

A,
d —2

e ' ' = QF„(a) d,X„(U) (2.5)

d is the dimensionality of spacetime; for d =2 the
transformation is exact. Motivation and assessment
of the performance of this transformation and its
variants are discussed in Appendix B. We find
below that it provides a fast and efficient heuristic
description of the system.

If one decimated a number of the links in (2.1) by
performing the group integrations over the ap-
propriate links so as to end up also with a hyper-
cubic lattice, the resulting exact effective action
would not, in general, be describable in terms of a
sum over single plaquettes. However, Migdal has
proposed the following renormalization which
yields an effective single-plaquette action
S&(U,Aa)—in general different from S&(U,a)—on a
lattice whose spacing is scaled up by a factor l, (not
necessarily integral). For more than two spacetime
dimensions, the transformation is inexact, since it
does not generate interactions more complex than
the general single-plaquette interaction.
Nonetheless, it is believed to preserve the essential
features of the dynamics of the system. It reads

C,(a) =—F„(a)/e

& ( U, a) =—QC„d„X„(U)

(2.7)

=exp[ —i(, "S(U,Aa)+)(, S(l,a)],

a iv
———Sz(l,a)+ g &

1nR(3., i(, a)
N —1

m=0 ~

(2.8)

+ ~&lnC, (A, a),
gNd

(2.9)

(2.10)

which converges rapidly in E.
We proceed to apply this formalism to SU(2). In

SU(2), the characters are all real and the representa-
tion index is just the spin. Since the rank of the
group is 1, they depend on only one angle 0 (corre-
sponding to the azimuth P of the L, eigenfunc-
tions). An arbitrary element U of SU(2) is unitarily
diagonalizable to a (2r + 1)X (2r + 1) unimodular
matrix whose eigenvalues sum to

i8r+ ie(r —1)+.. . + i8(r —1)+e !8r— —

sin(2r + 1)8/2
sin8/2



BITAR, GOTTLIEB, AND ZACHOS 26

Xt( U) =Xt/2( U) Xt/2(U) —Xp( U) =2 COSH+1,

X3/2( U) —Xt/2( U) Xt( U) —Xt /2( U)

=2(cos38/2+ cosH /2)

=4cosH cosH/2,

X2( U) X3/2( U) Xt/2( U) —Xt( U)

=2 cos20+ 2 cos0+ 1, etc.

(2.11)

In this paper we will restrict ourselves to an ini-
tial single-plaquette action consisting of linear
combinations of spin —, (Wilson form), spin 1 [the
SO(3) action], and spin —,, parametrized as follows:

Sp
———[PF(Xt/2( U) —2)+Pg (Xt( U) —3)

+P3 (X3/2( U) —4) 1 . (2.12)

We may further suppress the overall constant
normalization terms, since shifting the plaquette ac-
tion by a constant does not affect the specific heat
we will be computing;

—Sq(H, t2) =2(PFCOSH/2+PgcosH+2P3cosH cosH/2)

—:2P(czcosH /2+ c„cosH

Even in the absence of the above closed form (as
would be the case for higher groups) the character
of the fundamental representation X&/2( U)
=2cos(8/2) may be Kronecker multiplied with it-
self to decompose into the standard sums of all
higher irreducible representations (addition of angu-
lar momenta). Naturally, all such character identi-
ties reduce to the dimensionality formulas at the
identity (U = I., i.e., 8=0);

so that the character ("Fourier") coefficients (2.4)
are readily given by

F„(A, t2)= — J dHsin (8/2)
(2r + 1)2m

Xe ' ' "X(8)

(2.16)

The reader may note that this measure identifies the
X„(8)with the (hyperspherical) Gegenbauer polyno-
mials C2„(cosH /2).

We may thus compute the dependence of the
family of functions S(H, A, t2) on N, given a triplet
of values (PF,Pq, P3):P(—c~,cq, c3) In . the large-N
limit we obtain the free energy density a (P), Eq.
(2.6). We may then take successive derivatives with

respect to P to obtain the average plaquette action

(Sz/P ) and its variance, the specific heat 4',

Sp = ( 2cpcosH /2+ 2' cosH
P dP

+4c3cosH COSH/2), (2.17)

(2.18)

Note that Ã is independent of the absolute normali-
zation of P. In a first-order phase transition 4'(P)
should be singular like a 5 function at P„while it
should be discontinuous in a second-order transi-
tion, its slope should be discontinuous in a third-
order transition, etc. We study C(P) for several
values of (cF,cz,c3) with special attention to such
structure.

+2c3cosH cosH /2 ) . (2.13)

(Note that our couplings are normalized differently
from Refs. 1 and 3, i.e.,

& ~Creutz & ~Dashen

III. THE PHASE STRUCTURE OF SU(2)
IN A THREE-DIMENSIONAL SPACE

OF ACTIONS

go

F

2
+2P„+5P3 . (2.14)

The Haar measure in this parametrization is
r

J[dU1 f err dH
sin2

0 2% 2
(2.15)

p
t

p creutz t

p Daahen
)3 A 4 A

The bare coupling of the continuum field theory
is read off from the coefficient of the 8 in the
above action (8 is proportional to the trace of the
field strength squared);

Starting with the action (2.13), we perform a
number of Migdal transformations until ~~ con-
verges to a constant. We take A, =1.1 which is a
priori reasonable since it reproduces the known'
critical coupling of the SO(3) phase transition fairly
well (V on Fig. 1). In Appendix 8 we discuss the
variability of our results with A, or with using alter-
native recursion formulas. We keep 20 characters
in the expansion (2.3), since we have not encoun-
tered nozero coefficients for r&20. Convergence
takes typically from 20 to 150 iterations, corre-
sponding to scaling up by a factor A, =6.7 to

=-1.6)& 10, respectively, depending on the point
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FIG. 2. The free energy per plaquette ~, for
c =(0.1, 1,0). 16.2

14.3—
(b}

P —=P c =13(cp,cg—,c3) studied.
We run along rays of fixed c—:(cF,cq, c3), vary-

ing P sequentially by EP=0.01 to obtain & (P).
We then differentiate once to obtain the average
plaquette action (2.17), and once more to obtain the
heat capacity ÃIp) Eq. (2.18). Sample shapes of
these curves are provided in Figs. 2, 3, and 4. Al-

though the phase transitions on the (cF,c&,0) are
known to be first order from Monte Carlo' studies,
we find no discontinuities in the average plaquette
action; this comes as no surprise, since, due perhaps
to the implicit averaging of links involved, the Mig-
dal technique is known to often miss the correct or-
der of a given phase transition. ' ' ' In fact, the
most singular behavior observed in our study has
been cusps in the specific heat which, taken at face
value, would signal a third-order phase transition.
Nevertheless, as also observed in the past, ', the
critical coupling of a phase transition is predicted
fairly accurately through the Migdal technique: the
centers of the C peaks on the (cF,cq, 0) plane fall re-

markably close to the phase boundary established

by Monte Carlo techniques (see Fig.. 5).
We thus perform 46 radial runs whose results are
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FIG. 3. The average plaquette action —(S~/P), for
c =(0.1, 1,0).

FIG. 4. The heat-capacity density @ for c: (a) (0.1,
1,0), a typical peak (~); (b) (0, 0.2S, 1 ), a typical cusp

( && ); (c) (0, 1, 0.1S), a typical peak-cusp doublet (o /X )

defining two different phase boundaries; (d) (1, 0.2S, 0),
illustrative of the wide bumps (U) which indicate ab-

sence of a phase boundary, predicated on the Monte
Carlo results.
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given in Table I. We indicate the location of the K
peak, its height, and its shape (i.e., whether it is a
cusp, &&; a peak, 0', or a very wide bump, U. A

slash, /, separates two peaks on the same radial run
(see Fig. 4). (In two runs the peak required by con-
tinuity from nearby points falls outside our running
range. )

Gn the basis of the regularities of our results and
some theoretical guidelines provided by considera-
tions of single-plaquette classical minima" (SPCM,
see Appendix A), we have chosen our points to cov-
er the regions that appear to have the most interest-
ing structure. The phase boundary in the octant
studied emerges as on Fig. 1, which we proceed to
describe and discuss.

The 18 runs performed in the PF-Pz plane repro-
duce the SO(3)-SU(2) phase diagram (Fig. 5) already
available from Monte Carlo studies. ' As the slope
cq/c~ is increased, the very wide, low bumps turn
into higher narrow peaks (Fig. 4)—the highest one
is at P=(0.35,0.69,0). Although we observe a swi-
ft narrowing of the peaks from c =(1,0.25,0) to
c =(1,0.30,0), we cannot locate the critical end

point as precisely as the Monte Carlo study':
P=(0.74,0.30,0). In any case, by comparison to
this study we will be interpreting wide bumps (U)
of this type to signal the absence of a phase boun-

dary, while the peaks (0) and cusps ( &() will be in-

terpreted to demarcate a first-order boundary.
With increasing slope, we observe the peak

separating itself past the triple point
8':P=(0.29,0.79,0) into a peak and a cusp (Fig. 4).
This bifurcation of the phase boundary is dictated
by consistency with the well-known SO(3) phase
transition" V on the Pz axis, and the Z2 transition

Q at the self-duality value P~ ——2.22 (Refs. 5 and
14) and sufficiently large Ijq. Large 13~ freezes out
all degrees of freedom except those in the center Z2,
viz. U=+3. ~I9=4m, 2m, O.

Following Bachas and Dashen, " we observe that
the window in the phase boundary is almost exactly
in that region of the plane (BOF) in which there are
no nontrivial SPCM's —see Appendix A. To the
left of 08 there is always one minimum in addition
to the vacuum, corresponding to the center element
U= —I.

A similar diagram is also obtained through the 10
runs covering the P3 —Pq plane (Fig. 6). The peak-
cusp structure for larger Pz is analogous to that ob-
served on the PF P„plane, with -the Z2 phase tran-
sition 8 appropriately scaled down to P3-1.11 for
large Pz, due to our normalization (2.13).

In contrast to the previous triple point 8', the txi-

1.4—

1.2—

1.0—

I Q

l

!
1

1

1

1

g 08—

0.4—

0.2—

0 0 2 0.4
I

0.6 0.8 1.0 1.2

pie point X=(0,0.76,0.40) essentially lies on the
SPCM line EO (/3&

——2.5P3). Significantly, to the
left of this line the SPCMS's lie in the center Z2-
this region includes the Z2 phase transition R—
while to the right of it the nontrivial SPCM's cease
to lie in the center Z2. This may also account for
the fact that past the triple point the phase boun-

dary is demarcated by cusps of increasing height
and continues uninterrupted to the P3 axis. T has,
in fact, the highest cusp observed in our study. The
reader may wish to contrast this to the point S on
the Pz axis, where no nontrivial SPCM's exist.

The diagram on the Pq-P3 plane (Fig. 7) is con-
siderably simpler, possibly due to the absence of any
underlying Z2 structure. We observe the phase
boundary TU demarcated by cusps to terminate on
or near the SPCM boundary OD (133

——0.50@~); for
higher slopes there are no other minima except for
the vacuum. In the window SU the cusps turn to
peaks of decreasing height/increasing width and
then rapidly into low, wide bumps of the type iden-
tified above to signal the absence of a phase boun-
dary.

Given these intersections of the phase boundary
surface with the three planes p3 ——0, )33~=0, and

P,
FIG. 5. The P~ ——0 subspace of Fig. 1. The dashed

line represents the phase boundary obtained through
Monte Carlo techniques by Bhanot and Creutz. Our
scaling parameter has been adjusted to A, =1,1 so that
the SO(3) transition coupling coincides with 0.83; no
other adjustments are made. For sufficiently large Pq,
the point Q demarcates the Z2 phase transition. The
point 5 represents the location of the heat-capacity peak
of the Wilson action, and it lies on the continuation of
the first-order phase boundary WZ. The critical point
Z lies very near the SPCM line 08.



PHASE STRUCTURE AND RENORMALIZATION TRAJECTORIES. . . 2859

TABLE I. Peaks of the heat capacity 4 for the trial runs performed. The location of the peak (coordinates of the
phase-transition point) is given by (P,cF,P,c&,P,c3). X denotes a cusp, ' a peak, and U a very wide bump. indicates
that the peak and the cusp are hard to resolve.

CF CA C3 P. Shape Height CF CA C3 P. Shape Height

0 1 0 083
0.10 1 0 0.82/) 1.89
0.20 1 0 0.82/) 1.28
0.23 1 0 0.81/1. 17
0.25 1 0 0.81/1.08
0.30 1 0 0.81/. 92
0.35 1 0 9.81/. 84
0.40 1 0 0.77
0.42 1 0 0.75
0.50 1 0 0.69
0.75 1 0 0.58
1 1 0 050
1 0.75 0 0.57
1 0.50 0 0.67
1 0.30 0 0.80
1 0.25 0 0.84
1 0.20 0 0.89
1 0.10 0 1.02
0 1 0.15 0.82/1. 26
0 1 0.25 0.80/0. 91
0 1 0.30 0.78/0. 82
0 1 0.40 0.72
0 1 0.50 0.64
0 1 1 0.46
0 0.50 1 0.60
0 0.25 1 0.73
0 0 1 093

o/X
o/X
o/X
o/X
o/X
o/X*

U
U
U

o/X
o/X
o/X

X
X
X
X
X
X

1.75
1.80/
1.95/
2.00/1. 75
1.20/1. 82
2.25/2. 10
2.45
2.80
3.00
3.00
2.70
2.40
2.00
1.65
1 ~ 35
1.25
1.20
1.03
2.10/2. 25
2.95/3. 10
3.55/3. 70
5.20
6.40
9.00
9.50

13.80
16.50

0.25
0.20
0.15

2

2

2
1

1

2

1

0.50
0.25
0.15
0.05

1

1

1

1

1.30
0.50
0.10

—0.10

0.25
0.15

0.10
0.50
0.40
0.03
0.10
0.02

1 1

0.6 0.8
0.8 0.6
0.25 0.97
0.97 0.25
0.99 0.15

0.32
0.53
0.73
0.95
1.08
1.20

0.33
0.41
0.41
0.44
0.42
0.46

0.67
0.79/0. 81
0.80/1. 0
0.28
0.27
0.41
0.96

) 1.80

U
U

X
X
X
X

X
o/X*
o/X

0

X
U
U
U

9.00
6.00
3.20
1.92
1.47
1.08

5.30
4.70
4.00
5.50
3.00
2.70

4.70
3.20/3. 30
2.34/2. 39
2.45
2.50
1.30
1.40
0.80

Pz ——0, we perform 13 more runs to obtain a con-
sistent picture of this surface (Fig. 1). The surface
appears fairly flat (roughly pz +p~+ p3-1) except
for the structure attendant to Zq to the left of the
SPCM plane EOB. This plane intersects the surface
along XYZ, while the SPCM region which contains
no nontrivial minima intersects the surface along
UYZS (see Appendix A).

The region YXTU (which is presumably not con-
trolled by Z2) is characterized by cusps. The win-

dow enclosed by UPS contains very wide bumps
and we therefore do not regard it as a phase boun-
dary. The region XZS' is typified by narrow peaks
and lies within the SPCM region dominated by the
center. The reader may wish to contrast the ray
c =(2, 1.30,0.40) which has a sharp cusp and lies
outside the window UYZS, to the rays (2, 1,0.5),
(2,0.5,0.03), and (1,0.10,0.10) which lie inside this
window and exhibit a peak and very wide bumps,
respectively (Table I).

The region XZ8 continues down to 8'XV, which

is also characterized by peaks. The surface XZS'
interfaces with the surface QRXW along the flat
curve O'X; the latter surface is characterized by
cusps and connects to the Z2 phase transition.

Finally, motivated by the trajectories discussed in
the next section, we ran along the ray
(1,—0.10,0.02) which is very close to the major in-

frared attractive fixed line of actions; the heat capa-
city is extraordinarily flat, with a bump barely dis-
cernible. Perhaps significantly, the elevation of this
bump is the lowest in the entire diagram. In this
connection, we point out to the reader that the only
other local minimum in the height of Ã in our oc-
tant is located on the P~ axis, i.e., close to the minor
[SO(3)] fixed line of actions.

The technique illustrated here could be easily ex-
tended to study the three other octants of the space
discussed whose structure is not identical to the one
investigated; the remaining four are connected to
these by the symmetry pz ~pz, pF~ p~, —
p3~ p3—
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FIG. 6. The PF=O subspace of Fig. 1. The phase
boundary resembles that of Fig. 5, except that here there
is no window: the phase surface continues all the way
to T on the spin- —axis. For large P& the point R

represents the Z& critical coupling predicted by self-

duality. To the right of the line OE, the center is not
involved in the SPCM's.

IV. THE RENORMALIZATION TRAJECTORIES
OF THE COUPLINGS

In order to read off the thermodynamic functions
in the previous section, points in the (pF, pq, p3)
space of actions were chosen and then the
equivalent single-plaquette action system on a lat-
tice with spacing A, a was obtained through N suc-
cessive renormalization transformations. As the
scale of the spacing expands, the single-plaquette
action Sz(8,A, a) differs from the original one

Sz(8,a). Not only do the renormalized inverse cou-

plings P ultimately decrease, but the functional
form itself of the action S~(8) varies with N, as a
consequence of the additional interactions intro-
duced by the renormalization process.

We monitor this evolution of Sz(8) as follows.
Every few iterations (2 or S) we fit
exp[ —Sz(8,A, a)+S~(O, A, a)] with the four-

parameter family of functions

xp[pF(&1/2(8) 2)+p&(&t(8) 3)

+p3(X3/p(8) —4)+pg(X2(8) —5)] (4' 1)

through the fitting program MINUIT. Our periodic
viewing of the values P~,P„,P3,P4 which best

FIG. 7. The Pz ——0 subspace of Fig. 1. The phase

boundary terminates at or near U, on the SPCM line

OD, so that SU represents part of the window on the
boundary surface, and corresponds to ZS of Fig. 5.

describe the effective action of the system does not
interfere with the operation of the iteration process
or alter the renormalization of the action in any

way.
Of all the higher spins which are in general gen-

erated through the renormalization process, we only
choose to read off the spin-2 component, which we

parametrize by p&. In most cases (with a few not-
able exceptions) it is relatively very small and it
may serve as a crude indicator of the amount of the
action which "leaks" out of the three-dimensional

space (pF pg p3) in which we start.
Table II provides the sequence of inverse cou-

plings for 4 out of the 25 sample trajectories stud-

ied. %ith the apparent exception of the last one, all

trajectories in the table avoid phase boundaries, and

to this end sometimes temporarily increase their
distance from the origin while curving around to
flow to the origin through the "window" on the
phase boundary below Z. They are all attracted to a
line which represents a one-parameter family of ac-
tions, that is, a universal functional form (close to
the form of the Wilson action), along which they
flow to the origin.

The last trajectory in Table II starts on the ad-

joint axis and is separated from the origin by the
phase boundary VW in the pF, p~, p3&0 octant.
Since half-integral spins cannot be produced from
spin-1, symmetry should constrain every other char-
acter to be zero. %e could thus expect to interpret
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TABLE II. Four typical renormalization trajectories for the couplings. In each trajectory
the first entry represents the initial (bare) values for the couplings, and the second entry
represents the values after the first iteration; subsequently, we give the values after AX (2, 5,
10) successive iteration intervals. The last four points of the third trajectory have been

patched in from a nearby one.

Trajectory
number

1.200
1.256
1.338
1.362
1.327
1.247
1.138
1.011
0.877
0.735
0.596
0.456
0.322
0.201
0.102
0.039
0.010
0.001

0.100
0.058

—0.025
—0.097
—0.137
—0.151
—0.144
—0.127
—0.105
—0.087
—0.058
—0.037
—0.020
—0.007
—0.002
—0
—0
—0

0
—0.003

0.001
0.017
0.032
0.039
0.038
0.032
0.024
0.016
0.010
0.005
0.002
0
0

—0
0

—0

0
—0.001
—0.004
—0.008
—0.010
—0.010
—0.009
—0.006

0.001
—0.002
—0.001
—0
—0.001
—0
—0
—0

0

0.400
0.415
0.445
0.471
0.486
0.483
0.453
0.391
0.299
0.194
0.101
0.038
0.009
0.001

0.580
0.566
0.518
0.447
0.359
0.264
0.169
0.092
0.040
0.012
0.002

—0
—0
—0

0
—0.007
—0.019
—0.027
—0.031
—0.029
—0.020
—0.011
—0.004
—0.001
—0

0
—0
—0

—0.010
—0.021
—0.022
—0.017
—0.011
—0.004
—0.001
—0

0
0
0
0
0

0
0.064
1.080
4.779
5.095
5.306
5.514
5.729
5.943
6.169
6.403
6.614
6.842
7.089

0.800
0.916
2.015
2.873
2.857
2.843
2.819
2.792
2.622
2.500
2.389
2.218
2.059
1.907

0.800
0.829
0.895

—0.165
—0.260
—0.327
—0.395
—0.467
—0.545
—0.624
—0.705
—0.770
—0.842
—0.922

—0.032
—0.395
—0.390
—0.371
—0.372
—0.370
—0.366
—0.298
—0.251
—0.209
—0.146
—0.087
—0.028
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TABLE II. (Continued ).

Trajectory
number

Same (3~

Same (patched)

10

10

7.328
7.600
7.735
7.915
8.107
8.286
8.490
8.571
8.539
8.542
8.558
8.498
8.283
8.096
7.576
6.957
6.314
5.676
S.034
4.396
3.745
3.094
2.438
2.143
1.510
0.817
0.152

1.720
1.543
1.230
0.947
0.661
0.364
0.046

—0.255
—0.515
—0.782
—1.067
—1.297
—1.375
—1.478
—1.501
—1.388
—1.252
—1.116
—0.981
—0.839
—0.708
—0.570
—0.431
—0.351
—0.237
—0.097
—0.005

—0.994
—1.085
—1.082
—1.104
—1.127
—1.135
—1.153
—1.082
—0.929
—0.793
—0.653
—0.462
—0.200

0.056
0.495
0.693
0.732
0.580
0.498
0.416
0.337
0.258
0.179
0.135
0.081
0.022
0

0.042
0.116
0.208
0.296
0.385
0.470
0.569
0.612
0.593
0.582
0.546
0.515
0.349
0.196

—0.121
—0.298
—0.353
—0.259
—0.219
—0.184
—0.143
—0.106
—0.070
—O.OSO

—0.026
—0.006
—0

0
0
0

—0.001
—0

0
—0.001
—0.002
—0

0
0
0
0

1.100
1.172
1.484
1.S64
1.485
1 ~ 358
1.211
1.045
0.847
0.599
0.290
0.042
0.0002

0
0.001
0.010
0.015
0.015
0.013
0.011
0.010
O.OOS

0.002
0
0
0

—0.035
—0.189
—0.248
—0.243
—0.218
—0.187
—0.153
—0.111
—0.063
—0.017
—0
—0

the pF, p3 components (which are always &0.02) as

a rough indication of the aggregate error in our
iteration procedure and the fitting routine. [The
MINUIT routine is useful for fitting with any type of
function specified through adjustable parameters.
However, since the characters are a set of orthogo-

nal polynomials, we could equally well character ex-

pand Sz(o,a)—instead of its exponential —by per-
forming integrations. Either approach yields the
same set of character coefficients within 0.01.]

Even this trajectory, 4, does not cross the phase
boundary: instead it rapidly develops a spin-2 com-
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ponent (and possibly higher ones) and it leaks

through a window in spin-2 and/or higher spins.
Even though we have not studied the continuation
of the phase diagram to the space of higher spins, a
window in the Pq-P4 plane is not implausible, given
the absence of a Z2 phase transition and the boun-

dary connecting to it. We further find that within a
smaller region around the adjoint axis pz, all trajec-
tories are attracted to another [SO(3)] stable line

quite close to that axis.
In Fig. 8 we plot the evolution of the two dom-

inant components pF and pz for several trajectories
starting from points on the f3F P„p-lane —the com-
ponents P3 and P4 are usually smaller by at least
one order of magnitude. The plot illustrates the
basic pattern observed in all our runs.

Trajectories curl around and avoid the phase
boundary by going through the window below the
end point Z (or as is the case for the trajectory
starting at PF ——0. 1, Pz ——0.9, the window for
P&-0, nontrivial P4, 13&-0.8, not depicted here).
Their approach to the origin is eventually along the
universal stable lines which lie very close to the Pz
and the pq axes, respectively. The major [SU(2)]

stable line is not entirely straight and has an ap-
proximate slope of —0. 16. We illustrate this in
Fig. 9, on which the Pz and P3 components of three
trajectories are scaled up by one order of magnitude.
This plot of couplings versus iteration number indi-
cates how trajectories coalesce to the stable line.
Observe that the shape of the sequence of PF coeffi-
cients is somewhat different from that of the

Pz )&10 sequence, i.e., the stable line is not exactly
straight for strong coupling (small P; see Ref. 8).

We may observe that, very qualitatively, the tra-
jectories appear to flow to regions of decreasing
heat capacity S. Although we could not establish
the precise relation of X to a potential of a gradient
flow for the couplings, it still appears significant
that the doubly unstable point on the )r)z-PF plane
(i.e., that point to which no trajectory flows) seems
to be located near the highest 4' peak found on this
plane: at 13F-0.33, P&-0.72, in the neighborhood
of the triple point W. If a line were drawn between
that point and the origin, it would, together with

the phase boundary QR', divide the plane into two
regions. The two trajectories in the right and left
regions eventually join the SU(2) and the SO(3)

1.0

—=02
go

FIG. 8. The renormalization trajectories which start on the p3=0 plane of Fig. 5, projected onto the plane. The tra-
jectories curve around the phase boundary and are driven to their appropriate stable fixed line: the major [SU(2)] fixed
line has slope ——0. 16, while the minor [SO(3)] fixed line is pretty much aligned to the pz axis. The trajectory start-
ing in the apparently isolated phase bounded by VS' and WQ does not in fact cross the phase boundary. Instead, it
develops a substantial component of spin-2, and curves around to join the adjoint axis for Pq s smaller than ~.80.
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(pF, P, )

FIG. 9. The evolution of the effective couplings PF, I3& &&10, and P3X10 versus iteration number X, for the three tra-

jectories starting at (PF,P&,P3): (1.2, 0. 1,0)X(1.5,0,0) 0, and (0.8, 0.25, 0) I, respectively. Coalescence of all P3 com-

ponents occurs at a scale too small to depict. The large-N behavior is consistent with the strong-coupling results, while
the roughly straight portions of P~ and Pz 0& 10 exhibit approximate perturbative scaling —see Sec. V.

stable lines, respectively. As remarked in the last
section, both of these fixed lines go through "val-

leys, "i.e., regions with lowest heat capacity peaks.
All trajectories we have studied which start from

points on the octant of Fig. 1 outside the shaded
phase boundary eventually curve around in oc-
casionally large arcs and reach the origin along the
major SU(2) stable line. For instance, the third tra-
jectory in Table EE, a portion of which is plotted in
Fig. 1, starts with PF 0. It rapidly ——develops a
large Pz component, curves around near

(8.6,—1.1,—0.7), and flows to the origin with slope
——0.18 to —0.16. We discuss the significance of
these trajectories in the next section.

We might further observe that both the major
and the minor stable lines are not too different from
periodic Gaussian actions of the Villain-Manton

type,
' ' ' with periodicity 1 and 2, respectively.

For large P, these actions are described most con-
veniently by Manton's action, defined by a parabola
in the interval [—2', 2m'] and periodic beyond it. It
has the following character expansion:

. 2=6 periodic

2
—2[(—, ) —( —, ) ](2cos8/2)

+2(1—2 )(2 cos8+ 1)—2[(—, ) —( —, ) ](4cos8 cos8/2)

+2(2 —3 )(2cos28+2cos8+1)+

= —7. 11[(2cos8/2 —2) —0.21(2 cos8 —2)

+0.08(4cos8cos8/2 —4) —0.04(2cos28+2cos8 —4)+ . ] (4.2)
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This does not disagree much with the character
coefficients of the major fixed line for large 13 (e.g.,
see Table II: 1,2,3). If the periodicity of the Man-
ton action is doubled —interval [—ir, ir]—the odd
harmonics in the expansion (4.2) are absent, and the
even ones alternate in sign and decrease as above.
These also agree with the coefficients of the minor
fixed line (e.g., see the middle entries of the last tra-
jectory in Table II).

V. DISCUSSION AND CONCLUSIONS

We have illustrated (in Sec. III) how the phase
boundary of a gauge theory can be located quickly
and efficiently through the Migdal renormalization
technique. Since it requires considerably less com-
puter time, the recursion method allows surveying
larger multiparameter spaces of alternative actions
than those routinely accessible to Monte Carlo
analysis. Our particular analysis is also facilitated
by the study of SPCM's, as several special points
(X, U, Z) and lines (XZ,ZYU) of the phase boundary
lie on its intersection with SPCM planes. We may
thus agree with the observation of Bachas and
Dashen" that the topological features associated
with the center Z2 are not the unique, exclusive
feature which controls the phase structure of the
theory investigated.

In general, once the phase boundary of a model
has been determined, it is desirable to supplement
the picture by a few Monte Carlo samplings so as to
specify the order of the phase transition. In the
model studied here, it does not appear implausible
that the entire phase boundary is first order, like its
intersection with the PF-Pz plane, a fact known
from previous Monte Carlo' analysis. However, in
our picture, part of this boundary appears as third
order, in agreement with the critical exponent
v =0.66 of the Zz limit of the theory (Q, and R of
Fig. 1), as computed in the Migdal scheme; the
critical exponent of 4 is 2 —vd =—0.64.

The above critical exponent v controls the repul-
sive strength of the unstable fixed point on the Z2
phase transition boundary, in agreement with the
pattern of renormalization flows observed in Sec.
IV. One might object that since the Migdal pro-
cedure misses the order of the transition and the
critical exponents, the pattern in which the actual
renormalization trajectories are affected by the
phase boundary might be intrinsically different
from the one observed in Sec. IV. We choose not to
argue at length about the degree to which the re-

suits of Sec. IV are representative of the actual
flows. We wish to simply state the features ob-

served in the framework of the Migdal approxima-
tion, and ask whether evidence for these features
can be obtained through other techniques, including
Monte Carlo. Such a program appears to us well

worth pursuing, considering its implications for the
continuum limit.

Successive renormalizations which produce the
effective theory applicable to longer distances drive
all points in the space considered away from the
phase boundaries and towards either the SU(2) fixed
line close to the Wilson axis PF, or else the SO(3)
fixed line close to the adjoint axis Pq (Fig. 1). As a
consequence, any point with sufficiently small cou-

pling [large 1/go =13F/2+2' +5P3 viz. (2.14)] at
a small length scale will correspond to points on its
appropriate fixed line with larger coupling at longer
distance scales. For instance the points around
(0.65,-0.06) in Fig. 8 represent physics defined
equally well through: an action with (0.8,0.25) and
a lattice spacing smaller by 1.1' =3.S, an action
with (1.91,-0.25) and a spacing smaller by
1.1 =6.7, or an action with (0.4,0.75) and a spac-
ing smaller by 1.1 '=49.8. Thus points on the
fixed line represent the universal long-distance
behavior of the theory. Ideally, in order that the
lattice spacing be much smaller than the physical
object studied, the bare coupling of the theory
should be defined at very large
1/go ——P~/2+ 2' + 5133. However, practical con-
straints in Monte Carlo studies restrict one to rela-
tively small 1/go . How small can this quantity get
without losing agreement with perturbative scaling?

Let us inspect the first trajectory of Table II,
which appears to join the SU(2) fixed line fairly
rapidly. The effective lattice spacing after X itera-
tions is az ——A, a =1.1 a. The lowest-order
strong-coupling result for the approach to the origin
in the PF Pz plane is-

) ~('+'~~) 2—ln =o.a 1.1
2

(5.1)

where N is the number of iterations (zeroed arbi-
trarily). Indeed, the logarithm of the left-hand side
of (5.1) evaluated at the end of this trajectory varies
almost linearly with N/2, with roughly the expect-
ed slope.

In some contrast to the above, the points on the
beginning portion of the same trajectory are not
described as well by the perturbative scaling formu-
la:
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3013~ 102—12(P~+4/3q )+ + ln(PF+4P~ )
F+4 g 11~

lnA a~
11 22
~2

(lnA2a +2N lnl. 1) . (5.2)
~2

If we consider the first ten points of trajectory 1 ( X
in Fig. 9), g0 lies between 1.25 and 5.17, fairly
large. The left-hand side of (5.2) evaluated at these
points does not vary exactly linearly with N, as
would be expected for constant A. This indicates
that these points are not yet in the weak-coupling
regime, or that A is not a constant. ' However, the
slope of an eyeball straight fit through them is only

slightly higher than the slope predicted, which is a
familiar feature of the P functions obtained through
Migdal recursions. ' For smaller couplings (e.g.,
g0 &0.80) on the SU(2) stable line, we find that
scaling through (5.2) works quite well. (Also com-

pare to Fig. 3 of Ref. 3, especially for small nega-
tive pz. ) However, several other trajectories off the
fixed line simply cannot be fit by (5.2), even though

they cover ranges of lower couplings g0.
We therefore consider it worthwhile to ask

whether the SU(2) stable trajectory always ap-
proaches perturbative scaling faster than trajectories
with comparable g0 s, a fact which may have prac-
tical applications in Monte Carlo calculations. '

It appears likely that, even beyond the framework
of our approximation, the SU(2) universal line
(which consists of a small negative component of
adjoint action superposed to the Wilson action
Pz- —0. 16PF) furnishes the optimal pathway to
the continuum limit.
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APPENDIX A: LOCAL MINIMA OF
THE SINGLE-PLAQUETTE ACTION

Bachas and Dashen" have observed that the
phase structure of lattice gauge theories in the man-

ifold of alternative actions is often demarcated by
those regions of that manifold which contain stable

classical local minima of the single-plaquette action,
in addition to the trivial one (which corresponds to
the vacuum). They speculate that excitations made

up of single-plaquette configurations condensed in

these local minima are responsible for the discon-
tinuous change in energy characteristic of a first-
order phase transition. Some, but nat all, of these
minima correspond to the nontrivial element in the
center [Zq for SU(2)], which is associated with the
fluxon/monopole multiplaquette configurations

conjectured to govern the thermodynamics of con-
finement. ' Even though this type of analysis does

not anticipate the full phase structure of our sys-

tem, we still find it useful in locating several non-

trivial features in our phase diagram.
Our classical action

5= —2(P~cos8/2+ Pz cos8+ 2P3cos8 cos8/2)

(Al)

is extremized through the condition

8 P„[P„'+6P,(P, —P,/2)]'"—
-'2+

6p3

(A2}

aS . 8 8 P. +[0,'+613,(I3, 13,/2)]'"—
Bt9 2 2

=0=12P,sin —cos—+
6@3

The condition for stable minima is

BS A 8
Qg2 2 2

cos—+2Pqcos8+P3(5 cos8 cos8/2 —4sin8 sin8/2) &0 . (A3}

In the octant under study (13~,Pq, P3 & 0) there is

always a stable minimum at the vacuum 8=0, 4m.

Moreover, there is always an extremum to be found
at 0=2+, which corresponds to the nontrivial ele-

ment of Zq. However, it is a minimum only for

Pr
2P~ ———503 &0 .

2
(A4)

The plane EOB of Fig. 1 defined by the equality
limit of the above (A4) leaves all center minima to
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its left. It intersects the Pz-P3 plane (PF ——0) along
OE (defined by Pq ———,P3); the Pq -Pp plane (P3 —0)
along OB (defined by PF ——4P&), and the 8'XTS
phase boundary (found to be roughly planar,

Pg +Pp +P3 1) along XYZ (roughly 2 1PF+ 10
=14p„,p3 =1—(6'~ pF )—

We find that the triple point X of the Pz -P3 dia-

gram lies on the intersection of OE with the phase
surface WXTS, and the well known' critical end

point of the Pz-PF diagram lies very near Z, the
intersection of OB with the same phase surface.

To the right of the plane EOB, the center element
8=2m. converts to a local maximum, which may
well continue to influence the functional integral,
and be associated with the wide heat-capacity
bumps found along ZS.

To the right of the OE on the P~-P3 diagram, the
minimum splits into two symmetric ones about 2m. ,
which migrate continuously from 2~ to
2 arccos( —1/U 6) along

[6+(pg/p3) ]' —pg/p3
0 =2 arccos

6

On the Pp-P3 plane these minima migrate on
with increasing Pp /P3 along

8 =2 arccos[ —( —, —Pp /12P3)'~ ] (A6)

until they reach +mr, where they vanish for PF & 2P3
(line OD).

The region where there can be no extrema at real
angles other than 0, and 4m is determined by the ar-
gument of the square root in (A2),

pA +6p3(p3 pF/2) &0 . — (A7)

+(03 pF /4)'=(p—F /4)' .
6

(AS)

This is the interior of a slanted cone with its apex at
the origin and an elliptic intersection with the

PF ——constant planes:
T 2

are not & —1 and thus do not correspond to a real
angle.

We have found no local minima structure to ac-
count for the location of the triple point 8'.

The minima boundaries thus found demarcate
our data points quite distinctly.

(a) Points inside the boundary UXZS are charac-
terized by wide bumps —and are thought to corre-
spond to no real boundary.

(b) Points to the right of XY outside the cone cor-
respond to remarkably sharp cusps.

(c) Points on XZW are fairly narrow peaks.

APPENDIX 8: ALTERNATIVE RECURSION
FORMULAS

We remarked in Sec. II that Migdal's formula
(2.5) is exact in two spacetime dimensions (d =2)
for k=2. This may be seen directly by decimating
the lattice, i.e., integrating out all links which lie on
alternative parallel lines of these planes, by use of
(2.2). Unfortunately, this procedure cannot be ex-

tended to lattices of higher dimensionality because
the integrals do not yield local, one-plaquette ex-

pressions. Migdal proposes to avoid this problem

by averaging over loops in adjacent planes, after de-

cimating half the links on these planes. Thus the
effective theory arises as the average of actions in

adjacent planes which cover the entire lattice. In
general, on a highly correlated lattice, the error in-

troduced by this averaging should not be very
large.

Kadanoff has proposed a variant of this
prescription in which the link shift/averaging pre-
cedes decimation. This enables him to gain some
insight into the accuracy of the approximation. An
effort to improve these formulas systematically by
incorporating the nonlocal interactions, so far pro-
jected out at every step, is too cumbersome for our
numerical approach.

We generalize the recursion formula (2.5) through
the introduction of a parameter b,

This slanted cone is tangent to the EOB plane along
the line OG defined by

—S VaA, "s
p

( U ka ) g 1
d y

s
p

( v 0 )~
y p

( y )
dp

'A, 2

Pa =6P3 PF =14P3 (A9)

The phase boundary intersects the cone and this
tangent along the curve UYS and the point Y
[roughly (0.65, 0.30, 0.50)], respectively.

Finally, the very small region bounded by GOB,
BOF, and the surface of the cone does not contain
local minima, since both (A2) solutions for cos8/2

x d,X,(U)

This formula interpolates between the Migdal recipe
used here (b =0), and the Kadanoff prescription
(b =d —2). The exponent A, continues the result
obtained by decimation on a plane (k=2). The ex-
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FIG. 10. 4 versus P for c =(0.23, 1,0) and varying recursion step parameters b and A. . The critical inverse couplings

P, are specified for each case. (ai b=0, it=1.05, (hi b=0, A, =1.10. This is the Migdal prescription used consistently
throughout this work; (c) b =0, A, = l. 15; (d) b =2, A, =1.03; (e) b =2, A, = 1.05; (f) b =2, A, =1.10; (g) b = 1, A, = 1.05. Note
that the vertical scale is compressed in (b) and (c).
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ponents A,
" and A, result from link

shifting/averaging before and after decimation,
respectively. One may observe that a succession of
several transformations (Bl) depends on b only
through the first and the last exponents in the nest-
ed parentheses of the combined transformation. We
note below that the variation of our results with b is
not dramatic. We do not study here successions of
variations with alternating b's.

As remarked in Sec. II, a succession of two
transformations with a given lattice-spacing expan-
sion factor A, is not in general equal to one with A, ,
unless A, =1. This, of course, is the reason why we
iterate many transformations with a A, only slightly
above 1. (Actually, A, ~1 can be studied as well:
through the method of Sec. IV, we observed re-
versed fiows for A, =1/1.10, but, naturally, the
series for the free energy does not converge. )

In this study we have worked with A, =1.10, be-
cause that value reproduces the SO(3) critical cou-
pling with the Migdal formula. Once this parame-
ter has been chosen, no further adjustments have
been made to obtain agreement with the Monte Car-
lo data (Fig. 5). How much would we expect the re-

sults to vary if no critical coupling were available
on the outset of our study?

To discuss this question, we perform some runs
on the same ray c =(0.23, 1,0) with variable X and
b (see Fig. 10). We note that in the Migdal recipe
[b =0, Figs. 10(a)—(c)], the critical P and the heat-

capacity peaks increase with increasing A, . Even
though the location of each peak varies by =10%
between A, =1.05 and k=1.15, the distance between
two peaks varies by less than 4% in the same A, in-

terval. This is smaller than the error bars for this

quantity in the Monte Carlo calculation' at the
same region.

In contrast to the above, p, and the height of the
@ peaks decrease with increasing A, for the Kadan-
off recursion formula [b=), Figs. 10(d),(e),(f)].

Even for fairly small A, 's [e.g., A, = 1.03 in Fig. 10(f)]
the labile values of p, obtained by the Kadanoff
presciption are underestimated. Thus, since smaller
A, 's require considerably larger numbers of iterations
for convergence, the Migdal formula seems prefer-
able for our purposes.

For a given k, the Kadanoff prescription yields
lower p, 's than those obtained through the Migdal
prescription. This may not be surprising, since a
succession of Kadanoff tran sformations with a
given A, is equivalent to a succession of Migdal
transformations with the same A, where the initial p
is scaled up by 1(, (in d =4). If, after sufficiently
many iterations (when the final p is very small), the
final downscaling is less important than the initial
upscaling, the heat capacity computed by
Kadanoff's recursion would correspond to a higher
Migdal p. This is in fact what is observed: all p, s

observed in the Migdal approximation exceed those
obtained in the Kadanoff approximation, for the
same phase transition.

One may also interpolate between the two
prescriptions discussed so far, e.g., by taking b =1
[Fig. 10(g)]. Predictably, the location of both in-
verse couplings p, obtained through b =1, A, =1.05
lies between those for the corresponding couplings
obtained through the Migdal and the Kadanoff re-
cipes for the same A, .

Depending on the particular demands of the
problem at hand, one may adjust A, (and even d, by
a small amount) to establish contact with known re-
sults. Even if no critical couplings are available, we
may still see that the variablity of such results with
respect to adjusting these parameters is not too
large so as to cast doubts on their reliability. For
the purposes of the problem investigated here, we
are led to choose the Migdal formula, since its op-
timal A, is reasonable in the sense that it does not re-
quire excessively long iteration sequences.
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