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A variational approach to the study of four-dimensional lattice gauge theories is initiat-

ed. We illustrate the technique by first analyzing the simpler SU (2) chiral model. A sys-

tematic treatment of the SU(2) lattice gauge theory with a mixed fundamental-adjoint ac-

tion is presented next. This leads to an improvement over the standard mean-field (MF)
results; in particular, a "second-order deconfining transition line" in the negative SO(3)
coupling region previously identified by a MF technique now disappears. All transitions

found are first order. The procedure is then generalized to the large-N limit. In particu-

lar, a first-order transition line corresponding to the breaking of a (local) U(1) symmetry

(at vanishing fundamental coupling) is again identified.

I. INTRODUCTION

Much has been learned about various lattice
gauge theories by the use of the Monte Carlo (MC)
method. However, because of its numerical nature,
it is often difficult to extract physical insights
from those quantitative results. It is thus desirable

to have on hand analytic methods, even if they are
only approximate, for exploring various aspects of
lattice gauge theories. One promising approach
has been the large-N expansion where a semiclassi-
cal treatment can be applied.

For directly analyzing theories at finite N, the
mean-field (MF) approach can also be used provid-

ed that a proper interpretation is supplied to ensure

local gauge invariance. ' Although the general reli-

ability of a MF analysis is problematical, it has
recently been used to yield impressive results for
various lattice gauge theories when compared
with the MC data. The method has also been ap-
plied to study the large Nlatt-ice QCD described

by a mixed "fundamental-adjoint" (FA) plaquette
action. Furthermore, the corresponding mixed
SU(2)-SO(3) model was analyzed using the MF
method by Drouffe '; surprisingly, a "second-
order deconfining transition line" was found in the
region of negative SO(3) couplings.

In this paper, we begin exploring the use of vari-
ational methods for studying lattice gauge theories.
The use of a variational approach in a path-
integral formalism has recently been advocated by
Sakita, who has verified that the method can pro-
vide an accurate description for the matrix models
for the whole range of coupling strength. We
now generalize the method to lattice gauge

g [trU(aP)+H. c.],
2 p

where the trace is for an SU(N) matrix in the fun-

damental representation and the sum is over all

plaquettes with U(t)P) the product of U's along
the boundary of P. Since the partition function

e
—~=Z—:f gtIUtes

1

(1.2)

cannot be evaluated analytically, one now replaces
S by a trial action, So(Ut,'J ), where I J I are
variational (matrix) parameters. Denote a statisti-
cal average with respect to the trial action by

(1.3)

where Zo is obtained by replacing S by So in (1.2).
It follows that an upper bound for the free energy
1s

where 8'= —lnZO. Given a class of trial actions,
the best estimate for the free energy is then ob-

theories. For clarity, we concentrate on providing
a systematic treatment for the SU(2) case. In par-
ticular, we demonstrate that the second-order tran-
sition line found by Drouffe is actually absent.
The analysis is then generalized to the large-N lim-

it.
The essence of the variational method is the in-

equality for statistical averages, (e~) )e ~). For
definiteness, consider the SU(N) lattice theory in d
dimensions described by the standard Wilson ac-
tion,
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tained by minimizing 8'df with respect to J . By
analyzing the P dependence of the variational free
energy IV,tt(P), information on the phase structure
can be obtained.

The choice of the trial action Sp is partly dictat-
ed by the ease with which the averages (1.3) can be
performed. On the other hand, it is reasonable to
expect that the variational estimate improves when

Sp better approximates the true action, (1.1). In
this paper, we consider the simplest class of trial
actions

Sp ——Qtr(U J +U J ) . (2.2}

We distinguish two types of variational Ansatze.
Type A: Global Ansatz where J =Jfor all sites

The (trial} partition function Zp now factorizes so
that it is given by a product of identical external
source integrals, (1.6), one for each site. Similarly,
the averages (S )p and (Sp )p can also be evaluated
since they are now given as sums of integrals in-
volving at most neighboring sites, e.g., (S)p is a
sum of integrals of the type

Sp ——g [tr( Ut Jt + Ut Jt )],
l

(1 5)

where the sum is over all links. With (1.5) both
Zp and (S)p, (Sp)p can be evaluated in terms of
an external source integral,

0 '
dU tr(UJ +V I):—e e (1.6)

Clearly, much improved Ansiitze than (1.5) can
easily be introduced.

In (1.5), Jt and Jt are arbitrary matrices which
can depend on the link position. For SU(2)
described by the Wilson action, a further simplify-
ing assumption on J~,J~ then directly leads to the
standard MF result. However, for the case of a
mixed fundamental-adjacent [SU(2)-SO(3)] action,
an improvement over the standard MF analysis '

is obtained.
To illustrate our procedure, we first treat in Sec.

II the simpler case of an SU(2) chiral model. A
systematic analysis of the SU(2) lattice gauge
theory with a mixed FA action is carried out in
Sec. III. An extension of the variational procedure
to the large-X limit is presented in Sec. IV. We
comment on the relation of our result to that of
the standard MF approach in Sec. V.

II. CHIRAL MODEL IN d DIMENSIONS

S =—g (trU~Ur+H. c.),
2& y&

(2.1)

where the sum is over all links (a,y) and a
periodic boundary condition can also be imposed.

Consider a trial action

We apply first the variational method to the
SU(2) X SU(2) chiral model, which is of interest in
its own right. The analysis also serves as an illus-
tration of our procedure in a simpler setting. With
an SU(2) matrix variable U on each lattice site,
the action is

BE() BEp
(S)p= VdP

BJ,~ BJ-,.

BE, BE, ,(Sp)p ———V Jg+ t J~j.f) BJ IJ

(2.4)

(2.5)

where V is the total volume (lattice spacing a = 1),
and ( Vd) is the total number of links. Therefore,
once Ep(J,J ) is known, an upper bound for the
free energy per site is obtained:

E(PJJ )= =Ep —((S)p—(Sp)p)/V.
V

(2.6)

Type 8: Loca/ Ansatz We again. consider (2.2)
but choose J = V J, where V is an arbitrary
SU(2) matrix for each site a. We now treat both

[ J,J j and [ V, V ] as variational parameters.
Because of the invariance of the group integra-

tion measure, we can rotate J to J so that the par-
tition function Zp is again given by a product of
(1.6), the same as that for the type-A global Ansatz
Similarly, since Sp is a sum of single-site terms,
(Sp)p remains given by (2.5). However, the aver-
age (S)p involves neighboring sites; the effect of
rotating J to J modifies (2.3) by replacing the fac-
tor tr(U Ur + H.c.) by tr(U~ U&V~& + H.c.) where
V~r= V~Vr. Instead of V~ for each site, we can
introduce an SU(2) variational matrix V r for each
link, (a,y), and the average (S)p can again be
written as

p (}Ep (}Ep
(S)p———g t V;k(l)+H. c.

2
&

BJJ BJk

(2.7)

(2.3)

These single- and double-link integrals can be ob-
tained from (1.6) by differentiations so that
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Ep(J,J)=ln[z/I ) (2z)], (2.8)

where I& is the modified Bessel function. Note
that the dependence on J and J is only through a
single parameter z, where z =tr(JJ )+detJ
+detJt. Defining an auxiliary function

where the sum is over all links. Since setting
V(l) =I reduces (2.7) to (2.4), the type-A Ansatz is

a special limit of our more general type-8 Ansatz,
which we consider in what follows.

The single-link integral (1.6) has been evaluated

previously for general SU(Ã) and U(N); in the case
of SU(2), it gives

z~ zIp(2z)
Fq(z) =— —1

2 I i(2z)
(2.16)

We plot Fz(z) in Fig. 1(a); it is clear that this
second solution exists only if Pd ) 1. When it
does, the free energy E is negative [Fig. 1(b)] so
that P, =1/d corresponds to a phase-transition
point where the system changes from E =0 to
E (0. In fact, for the chiral model described by
the action (2.1), our variational result coincides ex-

actly with the MF result of Ref. 9.

1
Wp(Z): — Ep(Z)

2 dz
(2.9)

III. SU(2) LATTICE GAUGE THEORY
WITH FIXED FUNDAMENTAL-AD JOINT

ACTION
we obtain from (2.5) and (2.7)

(S)p——PWp(z) ytrvt,
I

(Sp )p =2 Vz Wp (z )

(2.10)

(2.1 1)

Since Vt is an element of SU(2), tr Vt ——2 cos(gt /2),
i.e., in addition to z we have an angular variational
parameter 0~ for each link.

To further simplify the problem, we restrict our-
selves to the case where Ot =8 for all links so that
an upper bound for the free energy per site is

E(P;z,8}=Ep—2PdWp(z) cos—+2ZWp(z) .0

%e adopt the normalization where the action for
the SU(2)-SO(3) lattice gauge theory is

S =—g tr[(U(BP)+H. c. )]
2 p

g tr„U(BP), (3.1)
3 p

where U(BP) = U& Uz U3U& is the product of SU(2)
matrices around a plaquette, trz is the SU(2) trace
in the adjoint representation, and the sum is over
all plaquettes. Much has been learned about this

(2.12)

The stationary conditions 6E/5B=O and 5E/oz
=0 yield

(o)

PdWp(z) sin —=0,0
2

0—2Pd Wp(z)cos —+z =0 .
2

(2.13)

(2.14)
0.5—

From (2.13), we see, in general, 0=0, reducing the
problem to the type-A case. However, this turns
out not to be the case if the action is mixed
fundamental-adjoint; thus our effort here will not
be in vain.

With 0=0, (2.14} leads to a variational free ener-

gy

Z Z2
E =Ep(z)+ =1n[z/Ii(2z)]+

2Pd 2Pd

(2.15)

-3 -2 -I 0

(b) E „

I l

2 3

The solution to (2.14) has two branches: (1) z =0,
corresponding to E =0 for all P; (2) z+0, which is
a solution to the equation Pd =Fz(z), where

FIG. 1. (a) Fz(z) of Eq. (2.16). (b) Variational free
energy for the chiral model.
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system either by analytic and MC analyses' '" or
by various MF methods, ' and a rich phase struc-
ture has been identified.

%e present here a systematic variational treat-
ment of this system. In order to compare and con-
trast our approach with the standard MF method,
we shall carry out the analysis in three stages with

increasing richness in structure.

where O'= VEo, V is the total volume, and Eo is
given by (1.6). In (3.3), we have also separated the
action (3.3) into the "fundamental" and "adjoint"
pieces. The evaluation of the averages in (3.3) can
be carried out just as in the case of the chiral
model. In analogy with (2.4), we find

Eo BEo BEo M'o
(Sf )o———,pd(d —1)V tr

aJ aJ gJ~ gJ~

A. Minimum scheme + H. c.

I.et us consider the trial action

So ——g tr( UIJt+ U( 1),
I

(3 2) =Pd (d —1)VWo(z) (3.4)

W.«= W —(Sf).—(S.&.+(S,&. , (3.3)

where J is an arbitrary 2)&2 matrix. The upper
bound W,«, (1.4), can be written as

1

where Wo(z) = —, dEoldz, a—nd Eo given by (2.8).
The evaluation of the adjoint piece (S, )o, is

more involved. Using identities such as
4(8 detJ/BJkp) Jkl =(detJ)5pl, we find, using (1.6),

(S, )o ——
p,

r

p.
6

r

~(a 1)V f-'—
QJ;QJ ~ ()Jk (jJ~ QJIkQJ p (jJl()Jp

2 4 - r

dEo d Ep dEo
d(d —1)V3 E —K + E

dK dg ~ dK
—K —2

dK

where K—:z and Eo ———lnf. However, from
UU =1, we have an identity,

T

E
dK

dEo—2 =1,
dE

so that (S, )o simplifies to

(S, )o ———,P,d (d —1)V Wo(z)'+ — ( Wo/z)

(3.5)

z =2P(d —1)Wo (z) (3.7)

whose solution again has two branches: (1) z =0,
corresponding to E =0; (2) z+0, which is a solu-
tion to the equation p(d —1)=I'4(z) where

I

first enforcing the stationary condition 6E/6z =0.
Anticipating our subsequent improved treatment,
we now only consider the limiting case where

P, =0.
With p, =0, the problem reduces to that for the

usual Wilson action; the condition 5E/6z =0 leads
to

Finally, (So)o can be evaluated in analogy with
(2.5); we thus arrive at an upper bound for the free
energy per link,

F4(z) =
2

zro(2z) —1I i (2z)

—3

(3.8)

E:(1/Vd) W,rr—
=Eo+ 2z Wo(z) —P(d —1)Wo(z)

4
1 ~o——,P, (d —1) Wo ——Wo+

2z 2

(3.6)

The variational free energy can then be found by

In Fig. 2(a) we plot F4(z) exhibiting the fact that
F&(z) is bounded from below. Therefore, this
second solution exists only for p) p, where

p, (d —1)=3.35. For d =4, this leads to p, =1.12
which is precisely the MF result previously found
by Greensite et al. However, the free energy on
this branch remains positive in the neighborhood
of p„' the actual transition does not take place un-
til p,'=1.41 where E turns negative. In fact, two
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sets of solutions exist [Fig. 2(b}]; the "lower"
branch corresponds to a lower free energy.

Fq (z)

B. Local variational Ansatz

Following the analysis of the type-8 Ansatz for
the chiral model, we consider the situation J~ ——VIJ
where Vt is an SU(2) matrix for each link. To
simplify the problem further, we shall set all VI

within a plaquette to be I except one; this single
matrix can be assigned the plaquette label V(P). A
tnoment of reflection easily convinces oneself that
this configuration can be achieved. Furthermore,
while allowing V(P) to vary from plaquette to pla-
quette, we restrict 0.50—

tr V(P) =2 cos—,0
2

'

trq V (P)= 1+2 cos8

(3.9)
0.25

2 4

with 0(8&4m.
Under the above variational Ansatz, we need

only modify (3.4) and (3.5) by multiplying them by
1

cos(8/2) and —,(1+2cos8), respectively. On the
other hand, the upper bound for the free energy
per link, E, is now a function of z and 8,

-0.25

FIG. 2. (a) I 4(z) of Eq. (3.8). (b) Variational free en-

ergy for four-dimensional QCD with a Wilson action.

4

E(P,P, ;z,8)=Eo+2zWo P(d —1)W&—cos—— (d —1) Wo ——Wo+ —,W'o (1+2cos8) . (3.10)4 8 P.
2z

The stationary conditions are 6Ej5z =0 and

5E . 8 P
58 2 2

=sin—
i 4

Io 1 pa+I] z 3

2 2IO e1+————cos——0
z2 z I) 2

(3.11)

where the arguments of Io and I& are both 2z.

Note that E(P,P„z,8) is invariant under

p—+ —p, 8~8+2~. We, therefore, restrict our-

selves to the region p& 0. From (3.11},one obvi-

ous solution corresponds to 8=0; the situation is

then identical to the case of constant JI described

earlier. However, a nontrivial solution to (3.11) in

8 exists for p, sufficiently negative. When this is

the case, we must evaluate the variational free en-

ergy E(p,p„'z, 8) to decide on the phase structure.

In Fig. 3 we exhibit the phase structure of the

SU(2)-SO(3) lattice gauge theory under our present

variational Ansatz. The parameter space is divided

into three phase regions, separated by first order-
transition lines (solid lines). We exhibit also the

MF result of Ref. 4 as dashed-dotted lines. In par-

ticular, our solution does not indicate the presence

of any second order transit-ion line (dotted line)

found by a MF method in Ref. 4. (Further discus-

sion in Sec. V.)

C. The gauge center

In order to account for the special role of the

SU(2) center, we follow the standard procedure '
by writing the first term in (3.1) as

Sf———g rrp[trU(BP)+H c ], . .
2 p

(3.12)

where tran, =gl po.I, and a& are elements of Z2 as-

sociated with links. One now sums over crI in de-

fining the partition function.
For our variational trial action, we add to our
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previous analysis a term g&o.tmI, where the sum is

over all links. Therefore, in addition to J~, VI, we

now also have ml as variational parameters. In the
I

spirit of simplicity, we choose mI to be indepen-
dent of I, and together with the previous Ansatz,
we obtain an improved upper bound:

E(P,P, ;z, 9,m)=E&+2zWo+m tanhm —lncoshm —P(d —1)8'o (tanhm) cos—
2

P, (& —1)
0

~
0W ——W +—8'o (1+2cos8) .

Proceeding as before by finding stationary points
of E with respect to z, 8, and m, the phase struc-
ture can be determined. This is exhibited in Fig. 4.
As expected, the pocket (phase 4), related to the li-

beration of Z2 monopoles' now appears. Further-
more, a fifth region, characterized by 8'o@0,
m =-0, 0=~, also appears in the lower left corner.
For comparison, we again exhibit the MF result of
Ref. 4 by dashed and dotted lines. We emphasize
that all transitions are first order and no signal for
the presence of a second-order line in the P, & 0 re-

gion was detected.

IV. LARGE-N LIMIT

S=g I PN[trU(BP)+H. c.]

+P, [ ~

trU(t)P)
~

—1] I . (4.1)

In order to compare with the MF result, we first
adopt the minimum Ansatz for the variational trial
action

%e have previously studied the large-N limit of
(3.1) by a MF approach"; we now repeat the
analysis from the variational viewpoint. Conform-
ing to the large-X convention, we normalize the ac-
tion as '

8

4

PHASE 4~ z40
m=0
8=0

PHASE 2

z 40 8=0

—l2

—l6
0 l2 l6

FIG. 3. Phase structure for four-dimensional QCD
with a mixed FA action. Solid lines are variational re-
sults for first-order transitions. Dashed-dotted lines are
MF results (the dotted line is the second-order transition
line previously identified in Ref. 4).

—I6
l2 I6

FIG. 4. Improved phase structure when the gauge
center is treated properly. Bashed-dotted lines are MF
results.
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Sp=N g«(UtJt + Ut Jt)
I

(4.2) E(f3,P„z)=Ep(z) P—(d —1)Wp"(z)

0 dU N tr(UJ +U J)
2

e e (4.3)

where the sum is over all links. We assume JI ——J
for all l. It follows that (3.3)—(3.6) apply except
Ep is now different and we must also watch out
for the N factors.

Let us now normalize the external source in-

tegral as

2
(d —1}Wp (z)

+2
I

z
I

Wp(z) . (4 &)

To obtain the variational free energy, we next
enforce the stationary condition 5E/5z =0, leading
to the relation

In the large-N limit, Eo approaches a finite limit'
z =2(d —1)[PWp (z)+P, Wp (z)] (4 9)

N

Ep ————g Qk;+c
i=1

gin(QA, ;+c ++A.J+c )+c+—, ,
2N

(4.4}

where I A,; I are eigenvalues of JJt. This formal
solution has two branches distinguished by a
parameter s =( I fN)g, A,;

(i) Strong coupling -region (s&2): The constant c
is determined by the condition g,.(A,;+c)
=2N.

(ii) Weak couplin-g region (0(s (2): The con-
stant c vanishes. Note that Eo is continuous at
$ =2.

The evaluations of (Sf)p (S )p and (Sp)p can
also be carried out as in the SU(2) case. However,

a simplification arises whose origin is the same as
that for the large-N factorization property. To il-

lustrate this point, let us discuss the limit where

A,; =z for all i so that N'~ z plays the role of z in

(3.4) and (3.5). However, since Ep has now been

replaced by N Ep, the term leading to z(d/dz)
)((1/z) Wp in (3.5) is now of lower order, so that

which is precisely the MF condition [Eq. (11)]of
Ref. 5.

The limit P, =0 for N = &x& has previously been
investigated by Greensite et al. in Ref. 2 where a
strong-weak crossover transition was identified (for
our normalization) at 13=0.39, in apparent agree-
ment with the independent numerical estimate of
0.396.' However, as explained in Ref. 5, at
P=0.39, the nontrivial solution to (4.9) ( Wp+0)
still leads to a positive free energy whereas the
trivial solution (z = Wp ——0) always has E =0.
Therefore, the system remains in the strong-
coupling phase at P=0.39; the actual transition,
under our minimum variational Ansatz (which is
equivalent to the standard MF analysis), takes
place at P=0.535. In view of the crudeness of the
variational An$atz, it is comforting to know that it
leads to a higher value so that there is room for
maneuvering when a better estimate for the free
energy is obtained.

Before completing specifying the phase structure
for P,+0, we first generalize to a local variational
Ansatz by allowing Jt ——VtJ where Vt is an SU(N)
matrix for each link. For practical reasons, we
constrain VI such that, for X large,

—trVI ——coso, -

&
trz V~-cos 0, (4.10)

(Sf)p——Pd(d —1)VN Wp(z)

(S, )p- d(d —1)VN Wp(z)

where Wo ————,Eo and

Ep(z)= —z 8( —,—lz I
)

+(—2lz I+-, »2lz I+-. }

xB( lz
I

——, ) .

(4.5)

(4.7)

where 0 & 0 (2m. Furthermore, because the center
of SU(N) approaches U(1) as N increases, special
handling, as for SU(2), is unnecessary.

With (4.10), Eqs. (4.5) and (4.6) are modified by
having an extra factor cos0 and cos 0, respectively;
this in turn modifies (4.8) so that it also becomes a
function of 8. The stationary condition 5E/5z =0
is now

z =2(d —1)Wp(z) cosB[P+P, Wp(z) cosB]

(4.1 1)
The upper bound for the free energy per link (nor-
malized by N ) in the large-N limit then follows: and the new condition 5E/58=0 leads to
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O=sin8[P+P, Wo(z) cos8] . (4.12)

Unlike the SU(2) case, the nontrivial solution to
(4.12) in 8, when substituted back into (4.11), al-

ways leads to a trivial solution z =0 so that
Wp(0) =0. Therefore, "phase 3" of Figs. 3 and 4
for SU(2) does not exist in the large-N limit. Also,
since the center no longer plays a special role,
phases 4 and 5 of Fig. 4 also disappear in this lim-
it.

The trivial solutions to (4.12) are 8=0 and m.

For P & 0, the solution to (4.11) corresponding to a
lower free energy has 8=0 and z & 0. On the other
hand, for P & 0, the solution 8=m, z &0 dominates.
Indeed, as pointed out earlier for SU(2), the system
is invariant under P~ —P, 8~8+nsimu. ltaneous-
ly.

Under our variational Ansatz, the one-plaquette
expectation is

1
W~ =——(trU(P) ) = Wo(z) cos8 .

For P & 0, the parameter space is separated into
the strong- and weak-coupling regions. The transi-

tion, under our minimum variational Ansatz, is

first order. However, the general large-1V argu-

ment suggests that the transition in the neighbor-
hood of I3, =0 should be again third order. ' It
is interesting to ask if improved variational Ansatze

can alter the situation. In Figs. 6(a) and 6(b) we

exhibit the numerical solution to (4.1). In Fig.
6(b), we have also indicated the existence of phase
II' (Refs. 12 and 17) where E &0, z+0. However,
in this phase, 0& 8'i & —,, which is characteristic

of the strong-coupling region. Therefore, we inter-

pret II and II' to both be strong-coupling phases
and expect the transition line between them to
disappear when an improved variational scheme is
used.

For 8=m, it leads to W& & 0; when Wo+0, it cor-
responds to the "frustrated" configuration. "
Schematically, the phase diagram is depicted in

Fig. 5, which was obtained previously in Ref. 5.
Note that the line of first-order transition for P=O
and P, & P', =1.398, which corresponds to the
breaking of a (local) U(1) symmetry for the adjoint
action. For P, sufficiently small, all loop expecta-
tion values in the fundamental representations van-

ish; the symmetry is broken when P, is increased.
For two-dimensional @CD, the exact transition

point is P', = l.

HASE I
E. &0

—5 I I

0 05 I I 5 P

—50

—100 P

—200
0 4

FIG. S. Schematic representation for the large-N
phase diagram for a mixed FA action.

FIG. 6. Numerical results for the large-X phase
structure.
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V. REMARKS

In this paper we have begun a variational
analysis of lattice gauge theories. The general vari-
ational approach is flexible as well as powerful;
much remains unexplored. For instance, instead of
our simple trial action (1.5) we can introduce one
with correlation among neighboring plaquettes.
Furthermore, one can also use a trial action where
the gauge invariance of the procedure is manifest.
Preliminary investigation indicates that these im-
provements are indeed feasible without dramatical-

ly increasing analytic difficulties. These analyses
will be reported in subsequent studies.

Since our trial action (1.5) involves each link
variable separately, it also leads to nonvanishing
gauge-variant expectation values. However, be-
cause of local gauge invariance, our stationary
solutions in the variational parameters, I JI I, are
in fact degenerate, i.e., all sets of I JI I related by
local gauge transformations are equivalent and are
to be summed over. As a consequence, gauge-
noninvariant quantities vanish after summing over
the degeneracy. ' On the other hand, for gauge-
invariant expectation values, the last step is redun-

dant.
The variational Ansatz (1.5) has in fact been used

as a possible procedure for "deriving" the mean-

field approximation for lattice gauge theories with
a Wilson-type action. ' Indeed, for the case f3, =0,
Eq. (3.7) is the standard MF equation where 8'o(z)
is the MF value for each link and z, given by (3.7),
is the "mean-field" due to neighboring links seen

by each link. However, this equivalence breaks
down when a mixed fundamental-adjoint action is
involved.

Under the standard MF analysis, for the mixed
action (3.1), the mean field seen by each link would

be

z =2P(d —1)Wo cos—0
2

have coincided with the MF result of Ref. 4.
Since the MF result could conceivably have been

arrived at by other "physical arguments, " it is
meaningful to compare it with our variational
analysis. We have thus carried out an analysis for
SU(2) with the MF choice for (3.5) and arrived at
the result of Ref. 4 as indicated by dashed-dotted
lines in Figs. 3 and 4. In the region P, &0, our
variational free energy is always lower than that of
the MF analysis, so that the second-order transi-
tion lines found in Ref. 4 should not have been

present. For P, & 0, the MF free energy is actually
slightly lower than our variational result. On the
other hand, since the MF result as formulated in
Ref. 4 does not follow from a stationary condition,
its reliability is questionable.

It is interesting to note that the MF-type
analysis is correct in the large-X limit due to the
large-N factorization property. Since

~

trU
~

=trz U in the large-X limit, together with the fact
that (4.6) holds, the large-N stationary condition
(4.11) agrees with (5.1) if we replace (1+2cos8)/3
by cos (8/2), and then 8 by 28 in (5.1). Because
of these facts the phase structure of the large-N
lattice gauge theory with a mixed fundamental-
adjoint action differs from that of SU(2) by the ab-

sence of phase 3 in Fig. 3, and it is correctly de-

picted in Ref. 5 (see Fig. 5).
Last, it should be mentioned that both the MF

and variational results near P, =0 are incorrect for
SU(2) since no transition should take place there.
This problem has been addressed by Blyvbjerg
et al. in Ref. 2 for the MF analysis at P, =0 where
it was shown the fluctuations about the MF result
would restore analyticity. We therefore expect a
similar procedure to work also in our case for
small P, .
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