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Effective fermion masses of order gT in high-temperature gauge theories
with exact chiral invariance
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It is shown that, at finite temperature, chiral invariance does not imply that fermion
propagators have poles at E'=0. Instead, a zero-momentum fermion has energy K =M,
where M =g C(A)T /8 and C(A) is the quadratic Casimir of the fermion representation.
The dispersion relation for K+0 is computed and can be crudely approximated (to within
10%) by 1t =(M'+K')'~. Applications to high-temperature QCD, SU(2)XU(1), and
grand unified theories are discussed.

INTRODUCTION

A theory containing only fermions and gauge bo-
sons in which there are no bare masses for the fer-
mions is chirally invariant to all orders. For defin-
iteness, suppose that the theory is also parity invari-
ant, such as massless QED. At zero temperature,
chiral invariance has two consequences.

(i) There are no gtj'j couplings induced in any fi-
nite order of perturbation theory.

(ii) The fermion self-energy is of the form
X = —ag for a particle of momentum K, where a
is some function of K . Consequently the fermion

propagator is S=jf/( I+a)K but the pole remains
at E =O. The function )+a only modifies the
residue of the pole.

For the same chirally invariant theory at nonzero
temperature, (i) still holds but (ii) does not. At fi-
nite temperature the plasma of particles and an-

tiparticles that constitutes the heat bath introduces
a special Lorentz frame: viz. , the rest frame
(center-of-mass frame) of the plasma. In a general
frame the heat bath has four-velocity u with
u u = 1. The presence of this four-vector means
that the fermion self-energy will be of the form

X(K)= ttJC by', — —

~here a and b are Lorentz-invariant functions. '

These functions can depend on two Lorentz scalars

(1.2)

Inverting the matrices gives

S(K)=[(1+a )g +bA ]/D,
where D is the Lorentz-invariant function

(1.4)

D(k, to)=(1+a) K

+2(1+a)bK u+b

Although the propagator (1.4) manifests the chiral
symmetry, it is quite possible that the zeros of D do
not occur at co =k .

In Sec. II, a computation of the functions a and b
is presented for the large Tregime an-d the zeros of
D are determined both for parity-conserving and for
parity-violating theories. Section III discusses pos-
sible extensions. Appendix A contains the details of
the one-loop calculation for gauge bosons and Ap-
pendix 8 incorporates Yukawa couplings.

II. CHIRALLY INVARIANT
GAUGE THEORIES

A. With parity conservation

Consider a non-Abelian gauge theory with
Lagrange density

, F&„Fq +g Y—"(5 „i'& gL~„At )ttt—
where 3 runs over the generators of the group and
m, n over the states of the fermion representation.
The representation matrices I. „are normalized by

(L AL 8) T(g )gAB (2.1)

S(K)= [(1+a)g +bji ] (1.3)

Since E =m —k, one may interpret ~ and k as
Lorentz-invariant energy and three-momentum.
The full fermion propagator is

where T(R) is the index of the representation. ' For
example, in SU(E) the fundamental (E
dimensional) representation has T (R ) = —, .

The one-loop self-energy in Fig. 1(a) between t)'t
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and lij„ is proportional to (L"L") „, where 3 is
summed over all the gauge bosons. This gives a di-

agonal self-energy proportional to

(L"L") „=C(R)5~„, (2.2)

where C(R) is the quadratic Casimir invariant of
the representation. This may be computed from the
index by using

T(R)XDimG=C(R)XDimR .

The contribution of Fig. 1(a) is thus

(2 3)

4
&(&)=ig'C(R) J D „(p)yI'S(p+K)y",

(2.4)

where D& and S are the finite-temperature propa-
gators of massless gauge bosons and fermions,
respectively.

The computation of (2.4) in the high-temperature
regime (T»k, T »co) is performed in Appendix A.
Because the maximum divergence of X at zero tem-
perature is linear, one might expect X to be linear in
T at high temperature. However, explicit calcula-
tion shows that the functions a and b of (1.1) are ac-
tually proportional to T, viz. ,

2[M +k
2k cg) —k

(2.5)

co(1+a)+b =k(1+a), (2.7)

where k =
~

k
~

&0. Substituting (2.5) gives the
dispersion relation

2M
l l

+k
2

(2.8)

This has the property that at k=O the solution is
not co=0 but rather co=M. More generally, for
small k the analytic form of the solution is

k kco=M+ —+ + (k «M) .
3 3M

Note that k =
~

k &0 here. The minimum energy
for a fermion with real momentum is M. Fermions
with co &M necessarily have k complex and cannot
propagate. This cutoff energy M plays the role for
fermions that the plasma frequency does for gauge
boson s.

The numerical solution to (2.8) is plotted in Fig. 2
and is seen to be a monotonic function of real k.

(i) +«mion dispersion relation .The poles in the
propagator (1.4) occur when co and k are such as to
produce a zero in the denominator (1.5),

D(k, co) =[co(i+a)+b] —[k(1+a)]2 .

The positive-energy root of D (k, co ) =0 occurs at

M
b(k, co) =

k
co co 1 co +k
k k co —k

where for convenience we have defined

M:gT C(R)/8 —. (2.6)

The results (2.5) are both gauge invariant and,
despite appearances, finite at k =0.

0
k/M

l

4

FIG. 1. The one-loop fermion self-energy. The
gauge-boson contribution (a) and scalar-boson contribu-
tion (b) are calculated in Appendices A and B, respec-
tively.

FIG. 2. A plot of the position of the poles (2.8) in
the chirally invariant fermion propagator. For compar-
ison, the free-particle dispersion relation m=(M +k )'
is also plotted.
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For very large k it goes over to

~4 2k2
'

ln
2 + (k&yM) .

2k'

By way of comparison, the free-particle disper-
sion relation co=(M +k )' is plotted in Fig. 2.
The free-particle curve is always an underestimate
of the actual dispersion relation but the error is nev-
er more than 10%. In this sense the parameter M
really serves as a mass.

(2) The modified Dirac equation Cor.responding
to the propagator (1.4) is a new Dirac equation

[(1+a)g+bA]U=O (2.9)

that determines the spinor wave function U. In the
rest frame of the heat bath [u"=(1,0,0,0)] this be-
comes

I[(1+a)co+b]y —(1+a)y"kI =0 .

A solution exists only when co and k are such that
the matrix in curly brackets has zero determinant.
This condition is the same as (2.7). Consequently
one must solve

previous discussion applies to all quarks. From
Table I the quadratic Casimir invariant for SU(3)
triplets is —, and consequently the effective quark
mass (2.6) is M =g T /6, where g is the
temperature-dependent running coupling constant.
For typical values 1 & g /4m & 0.25 this gives
1.45T &M &0.72T.

B. With parity violation

It is very simple to extend the discussion to
chirally invariant theories in which the left-handed
and right-handed fermions are in different represen-
tations of the gauge group. Let

n—= —,(1—)'5» n= —,(I+)'s) .

The general fermion self-energy is of the form

(2.11)

X(K)=—rT(aL g+bLQ)g+ri(a~g+b~y')g,

where aL,bL,az,bz are all Lorentz-invariant func-
tions of co and k. It is convenient to define two
four-vectors

ky —y k U=O.

This coincides with the usual Dirac equation for a
free particle with no mass and has solution

(2.10)

L"= ( 1+aL, )K"+bt u",
R"—:(1+a~ )K"+b~ u",

with the property that

L = [to(1+aL )+br ] —[k(1+aL )]

R = [co(1+a+ )=bz ] —[k(1+a+ ]

(2.12)

where X, (s =+ —,) is a two-component spinor. This
is the wave function to be used for external fer-
mions in Feynman diagram calculations at finite
temperature. The on-shell mass condition, however,
is not to =k but relation (2.8). Near its pole, the fer-
mion propagator (1.4) behaves as

QU, V,

S(K)~—
pole 2[ci)(1+a)+b —k(1+a )]

C(R)Dim

(R)

U(1)

TABLE I. The index T(R) and the quadratic Casimir
invariant C(R), as defined in (2.1) and (2.2), for various

representations R.

Group T(R)

with the residue determined by the wave functions
(2.10) as expected.

3. SU(3) color theory. The simplest example of
this type of fermion mass generation is provided by
the SU(3) color theory of strong interactions. There
is a critical temperature T, -GeV above which
quarks are unconfined. For any T& T, chiral in-
variance is a good approximation for the light
quarks (u, d,s) and the previous discussion applies.
For T~300 GeV the restoration of SU(2))&U(1)
symmetry removes all current-algebra masses from
the Lagrangian, chiral invariance is exact, and the

SU(2)

SU(3)

SU(5)

24

1

2

1

2

1

2
3

2

3

4

4

3

12

5
18

5



H. ARTHUR WELDON 26

Since the inverse propagator is

S '(K—) =rtg ri+ rig ri,
the propagator itself becomes

S( )
i)gii rYgii

I R
(2.13)

III. DISCUSSION

The high-temperature limit of at,bL,az,b„ to one-

loop order is just (2.5) but with a different value of
the parameter M for the left-handed and the
right-handed fermions. It may be useful to consider
a few examples.

(1) SU(2) X U(1) electroweak theory. For
T) )Mz /e the SU(2)XU(l) syinmetry is unbro-

ken; the gauge bosons and fermions are all massless
at the tree level. Because the principal radiative
contribution to the quark mass comes from the
strong interactions (see Sec. II A), we now concen-
trate on the leptons. The right-handed leptons

(et',pii, r~) couple only to the U(1) gauge field (with

strength g') and from (2.8) they have an effective
mass Mti g' T /8.——The left-handed leptons

(eL, ,pL, ,rt,v„v„,v, ) couple to the U(1) gauge field
(with strength g'/2) and to the SU(2) gauge field
(with strength g). From (2.8) and Table I their ef-
fective mass is ML, (g' +3g )——T /32. For mea-

sured values of g' and g (Ref. 10) this gives

Mz -0.12T and Ml -0.22T
(2) SU(5) grand unified theory For T)).10'4

GeV the electroweak and strong interactions may be
unified into an unbroken SU(5) theory" which

would be chirally invariant at such a temperature.
Although there is only one coupling constant g, the
Casimir invariant for the ten-dimensional represen-
tation (ez, udru Lippier generation) differs from
that for the five-dimensional representation

(er,vt. ,dii). From Table I, Mio ——g T (
—„) and

M5 ——g T (
—„). For g /4m. =—„ this gives

M&O-0. 35T and M& -0.29T. It is curious that in

the SU(5) theory vL has a smaller effective mass
than eii but in the SU(2)XU(1) theory it has a
larger effective mass than ez.

In the high temperature, symmetric phase of
SU(2) X U(l ) there are exact chiral symmetries.
Consequently, a process such as vl el ~vl e& has
zero cross section. However, despite the chiral sym-

metry of the finite-temperature fermion propagators
(1.4), the actual dispersion relation for the fermion
poles is that plotted in Fig. 2 and not m =k . The
fermions all have (chirally invariant) effective
masses of order T. Of course, scalar bosons are all

known to have masses of order T (Ref. 13) as do
vector bosons from the plasmon effect. '" These ef-
fective masses all tend to suppress reaction rates at
high temperature by reducing the available phase
space. They also modify the thermodynamics of
the early universe by reducing the pressure, energy,
entropy, and number density. This reduces the ex-
pansion rate of the universe and modifies the mag-
nitude of the baryon excess that is generated. These
effects will be investigated in a separate publication.

It should be noted that although Yukawa cou-

plings of fermions to scalar fields were omitted
from the discussion in Sec. II, they also contribute
to the fermion self-energy. The one-loop diagram
shown in Fig. 1(b) is computed in Appendix B for
massless scalars. The resulting dispersion relation
is exactly the same as for the gauge bosons (2.8);
only the effective mass M changes to the value

quoted in (B3).'

The restriction to chirally invariant theories has
simplified our results considerably. However, it
should be clear that in any finite-temperature calcu-
lation the fluid velocity u& will generally modify
the structure of the propagators, vertices, and
Green's functions. For example, when chiral in-

variance is broken at low temperature the fermion

self-energy will be a linear combination of the ma-

trices 1, g, tl, and [g,t't]. The form of the resulting

propagator is discussed in Appendix C.
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It is well known that in the low-temperature,
broken-symmetric phase of SU(2) XU(1), chiral

symmetry is also broken. Quarks and lepton masses

are proportional to the temperature-dependent vac-

uum expectation value of a scalar field. The one-

loop corrections to these masses are, of course, tem-

perature dependent as well. '

APPENDIX A: COMPUTATION OF X

It is convenient to use the real-time formulation
of finite-temperature field theory' in order to
maintain manifest Lorentz covariance. The free-

particle propagators for massless fermions and
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gauge bosons are

S(p)=p 2 . +il f(p)
1

p +l'g

1
D,.(p») = ~.. . —il b(p)

p +l'g
where all temperature dependence occurs via

(Al)

d4
X(K)=ig C(R)f qDq, (p)yi'S(p+K}y'.

(2m. )~

Because the T dependence of the propagators (Al)
is additive, it is easy to separate off the T =0 self-
energy by

1(p)=2m5(p )n(p),

(e luv l ~r+1)—~

(A2)

and u is the four-velocity of the heat bath. The
calculation will first be performed in Feynman
gauge; it will then be shown that the order-T result
is the same in any covariant gauge. The one-loop
contribution to the fermion self-energy is

X =X(T=0)+X',

where the prime denotes the finite-T corrections.
This correction X' is complex. In computing ImX'
in the region co & k, the p integration is limited by
two-body phase space and thus ImX' is of order co

or k even for large T. We will ignore ImX' and
compute only the real part.

Substituting the propagators (A 1) gives

d4p I s(p)ReX'=2g C(R)f (p+g )
(2m. } (p+K)

I f(p+K)
p

(A3)

with the denominators defined by their principal value. Changing p to —p —K in the second term yields

ReX'=2g C(R)f ",[(@+K)r,(p)+pl f(p)]
(2m ) (p+K)

(A4)

[Note that in the absence of the thermal-distribution function n, the 5 functions in I would allow (A4) to
diverge quadratically. This is the ultimate source of the T behavior of X'.] Since (A4) is manifestly covari-
ant, it must be a linear combination of K and Q as in'(1.1). Consequently, if we multiply (A4) by either E or
g and then take the trace of the product, the result will be a pair of Lorentz-invariant integrals. In each of
these, the p integration and the two angular integrations are elementary and leave an integration over

~ p ~:—p to perform:

—,Tr(KReX') =g C(R)f 4p+ L ~(p) nf(p)+ 4p — L ~(p) nb(p)
oo dp K

g~2 2k 2k

CO+
—,Tr(AReX') = 2P»

k O g~' co

6)+
PL2(P} nf(P)+ 2Pln pLz(p) coL,—(p) ns(p—) . ,

with co and k as defined in (1.2) and

p +co+
L, (p)—:ln

p +co

p +co+
Lp(p)—:ln

p+N
1co+—:—,(co+@) .

p —co+—ln
p —N

p —co+
+ln

p —N

All logarithms are to be understood in the
principal-value sense.

Only the order-T contributions will be kept.
These arise from the terms which would diverge
quadratically if there were no thermal-distribution
functions to cut off the integration at p-0(T). In
particular,

f dp pnf (p) =mT/12, .

f dppnb(p)=rr T /6.
(A5)

Since X' is of the form (1.1) the coefficient func-

For very large p, L
& (p) +k /p and L—2(p)~—~k/p . Consequently all the integrations over

L ~ and L2 would diverge at most logarithmically if
there were no thermal-distribution functions. These
integrations only give lnT and will be dropped. '

From (A5) the large-T behavior is thus

—,Tr(KReX'}=g C(R )T /8,

(A6)
—,Tr(gf ReX'}=g C(R) ln

16k co
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tions a and b follow from (A6),

a(k, to)=g C(R) 1 — ln
T co co+k
8k, 2k N —k

T ' co N
b(k, to)=g C(R) ——+ —1

Sk k

1 CO+kg —,ln (A7)

where o. is the gauge parameter. Because the 1/p
in the longitudinal propagator is a principal-value
singularity, its product with 5(p ) is defined by

, 5(p')~5'(p'),

where the prime denotes the derivative with respect
to po . The gauge-dependent part of the propagator
1s

These are the results used in (2.5).
Note on gauge inuariance. It is straightforward to

show that the order-T part of the fermion self-
energy is gauge invariant. In an arbitrary covariant
gauge the vector propagator (A 1) becomes

1
nl v+&

P P +ill

il b(p—), (Ag)

1
5Dq, (p) =otpqp„

p (p +in)

+i 2n5'(p )nb(p), (A10)

so that the gauge-dependent part of X is

de5X =ig2C(R) J 5D,(p)y"S(p+K)y" .
(2~)'

After separating off the T =0 contribution as be-
fore, the real part of the finite-T correction becomes

Re5X' =Re5Xf'+ Re5X&,

«5Xf'—= —kg'C(R) J ~ —,, 2~5[(p+K)']nf(p+K),
(2m) p p

«5Xb = ttg'C—(R)J, , 2vr5'(p')nb(p) .
(2m ) (p+E)2

(Al 1)

Neither of these integrals will turn out to have a T contribution. In the fermionic integral it is convenient to
change p to —p Kand then u—se 5(p ) to set p2=0:

d —K +2 KR 5X'= g C(R) 2m.5(p ) (p) .

In the absence of nf this integral would diverge linearly with
~ p ~

. With the thermal-distribution function it
thus behaves at most like T for large temperature and can be neglected. For the bosonic integral (All) one
must evaluate

d4
Re5xb ag C(R)——I (2m. ) (p+K)' po dpo

The isolated p term is odd and integrates to zero. Integrating by parts on po and then setting p =0 gives

dp 2 dnbp 2(p+K)Kp Ey p m5(p )

(2m. ) dp 2p K+K po p (2p K+K )

In the absence of the thermal-distribution functions this integral also diverges linearly with
~ p ~

. Conse-
quently it also behaves like T for large temperature. This demonstrates the gauge invariance of the T results
(A6).

APPENDIX 8: INCLUSION
OF YUKAWA COUPLINGS

If scalar fields are included in the gauge theory,
there will generally be Yukawa couplings to the fer-

l

mions of the form
—L i R~y =ffmI'mean mi+H C

where f is the coupling constant and the I' are ma-
trices of Clebsch-Gordan coefficients. These ma-
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trices will not be square if the left- and right-
handed fermions are in different dimensional repre-
sentations. The one-loop fermion self-energy in

Fig. 1(b) will be proportional to

(r'r'+) =C,'S

(I'+I')„„:—Cg6„„,
for left and right chiralities, respectively. There is
no standard convention for normalizing these con-
stants.

The order
~ f ~

contribution to the self-energy of
either chirality fermion is

d4pX(K)=i
~ f ~

O' I D(p)S(p+K) .
(2' )

The bare propagator for the fermion is given in
(Al) and for the scalar is

D(p)=, tI b(p—) .1

p +in

The temperature-dependent part of the self-energy
X', thus has a real part

d4pReX'=
~ f ~

O' J (p+g)
(2sr )

I b(p) rf(p+K)
X

(p+K)' p'

with the denominators defined by their principal
value. This integral is exactly the same as the
gauge-boson contribution (A3) except that 2g C(R)
is replaced by

~ f ~

C'. Consequently the effective
mass becomes

striction, the general form of the inverse propagator
for a parity-conserving theory is

S '=(1+a)JC+btI —c, (Cl)

where c is a real function of co and k that
parametrizes the chirality violation. The propaga-
tor itself is

S=[(1+a)g+bg+c]/D, (C2)

where the poles are determined by the vanishing of
the function

D(k, co)=(1+a) K +2(1+a)bK u

+b —c2 2

This is applicable to pure QED, for example,
without weak-interaction corrections.

Including parity violation leads to an inverse
propagator of the form

S '=riEg+ggrT crt —c*g—, (C3)

S= [rl(L g ——
i
c

i
E )ri+ rl(R E, —

i
c

i
g )qD

where c is a complex function of co and k that
parametrizes the chirality violation; g and q the
projection matrices (2.11); L" and R" are the vec-
tors (2.12). (Note that [g,u] terms from multiloop
graphs are again omitted. } The poles of the propa-
gator define the mass and occur when the deter-
minant of (C3) vanishes. This determinant is

D(k, co)=L R 2i c
i

(L R)+ —
i
c

[

By inverting (C3), one obtains for the propagator

M =g T C(R)/8+
~ f ~

T C'/16, (B3)

but the form of the dispersion relation (2.8) is un-

changed.

+c*ri(L R —
~

c
i + —,[g,g])ri

+c~(L R ~c ~' ——,'[g,g])q]. (C4)

APPENDIX C: WITHOUT CHIRAL INVARIANCE

At low temperature, chiral invariance will often
be broken. The fermion self-energy then no longer
anticommutes with y5 as before but will be a corn-
bination of the matrices E,A, 1, and [E',A]. Howev-
er, one-loop diagrams do not generate a [g,u] term
and it will be omitted for simplicity. With this re-

This reduces to (1.4) when both chirality and parity
are good (c =0 and L"=R"),to (2.13) when chirali-
ty holds but not parity (c =0 and L"QR"), and to
(C2) when chirality is broken but parity holds
(c=real and L"=R"). The complicated spin struc-
ture of (C4) can have observable effects as, for ex-
ample, in the birefringence of polarized photons
propagating through a hot electron gas.

~In the noncovariant formulation of finite-temperature
field theory (i.e., with imaginary time and discrete en-

ergies) the only constraint on X is rotational invariance.
Consequently, X is a linear combination of y and y K

with two coefficient functions.
This would require the function b to vanish at co =k .
These are tabulated in J. Patera and D. Sankoff, Tables
of Branching Rules for Representations of Simple Lie
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Algebras (Les Presses de 1'Universite de Montreal,
Montreal, 1973). Note that these authors normalize
the index so that T(R)=1 for the fundamental of
SU(X).

4At k =0, a = ——and b =—2M /3. Along the disper-

sion relation plotted in Fig. 2 both a and b are mono-

tonically increasing functions of k within the limits
——, (a & 0 and —2M /3 & b (0.

~If co solves (2.7) and co' solves co'(1+a)+b= —k(1+a),
then co'= —co because a and b are even and odd func-
tions, respectively, of co.

In the more familiar gauge-boson example, when the bo-
son energy is less than the plasma frequency the
momentum is pure imaginary. However, for a fermion
with co &M the corresponding k is actually complex.

The y-matrix convention is that of J. D. Bjorken and
S. D. Drell, Relativistic Quantum Fields (McGraw-
Hill, New York, 1965).
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describe the location of the fermion pole. Instead the
dispersion relation (2.8) should be compared with the
relation co

'—k'= (mass)' for scalars. Since the
momentum dependence of the two dispersion relations
is different, supersymmetry is broken in this tempera-
ture regime. The argument does not even depend on a
comparison of the scalar mass with the effective fer-
mion mass (B3) generated by Yukawa couplings.

~6This was checked by explicit computation.


