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The independent-minimization variational method is extended to cases with more than
one variational parameter and applied to the anharmonic-oscillator problem. The results,
including estimates of the tunneling effect, are reasonable. For the double-well potential
the method provides a criterion to decide, given the coupling parameter A, up to which
energy level a classical broken-symmetry solution is present. Above that level the symme-
try is restored. A lower bound for the value of A allowing for symmetry-broken solutions

is also obtained.

I. INTRODUCTION

Recently, variational methods have been applied
to the quantum mechanics of quarkonium systems.
In particular, the independent-minimization varia-
tional method developed in Refs. 1 and 2 satisfies
for each level the virial and Feynman-Hellman
theorems, and can thus be used in estimating, with
good accuracy, the energy levels and the consti-
tuent-mass dependence of energy-level differences.

We have recently learned that many years ago
the method was applied to the quantum-mechani-
cal anharmonic oscillator by McWeeney and Coul-
son.? In the present work we would like to discuss
again the anharmonic oscillator but now with par-
ticular emphasis on the double-well anharmonic-
oscillator problem.

Our analysis requires the extension of the meth-
od by introducing a second variational parameter.
In usual calculations one variational parameter K,,,
fixed independently for each level and controlling
the size of the wave function, has to be introduced.
For the problem of finding where to locate the
wave function (the case of a potential with several
minima and maxima or a potential not symmetric
around a minimum) a second variational parameter
X,,, controlling the position of the wave function,
is required.

In the example of the double-well potential, Fig.
1, simultaneous minimization of the matrix ele-
ments (YH1y ), with respect to K, and X, pro-
vides a criterion to determine, for each level, which
kind of solution to choose: either a classical
symmetry-broken solution ({x ),540) or a sym-
metric solution ({X ), =0). Given the value of the
coupling parameter A [in the (A/4)x* term] we can
estimate how many levels correspond to a broken-
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symmetry solution and above which level the sym-
metry is restored. The calculation of energy levels
and energy splittings due to tunneling is, in com-
parison with accurate numerical results, rather ac-
ceptable.

We note that the anharmonic-oscillator problem
(normal situation or double-well potential) has re-
ceived great attention in recent years, in particular
in connection with the nonconverging character of
the coupling-parameter-A perturbation expansion
and the developing of better converging expan-
sions.* On the other hand, path-integral tech-
niques for computing tunneling effects and repro-
ducing WKB results have also been of theoretical
interest.’ The variational calculations developed
here, being of nonperturbative nature, give reason-
able answers both in weak- and strong-coupling-A
limits, describe well the broken-symmetry spec-
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FIG. 1. The double-well anharmonic oscillator and its
variation with the coupling parameter A: V(x)
=(A/4)(x*—1/A)%
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trum, and even tunneling is fairly well reproduced.

The rest of the paper is organized as follows. In
Sec. II we introduce the two-parameter independ-
ent-minimization variational method. In Sec. III
we discuss applications, the anharmonic oscillator,
and the double-well anharmonic oscillator. In Sec.
IV we briefly present our conclusions.

II. VARIATIONAL METHOD WITH TWO
PARAMETERS

The idea in the variational method is to estimate
the eigenvalues of the nonrelativistic Hamiltonian
1 d?
H=—-T:1—;+V(x) (1)
using the eigenfunctions ¢(x) corresponding to a
soluble Hamiltonian H,

H0=———-——+V0(x) (2)
m

Such estimates are done independently for each
eigenstate. In practice, one introduces energy-
level-independent variational parameters K., to be
fixed by minimization conditions,

n=0,1,2...
WHYW=0, ;15 ... . )

aK‘

In simple problems only one variational parame-
ter, controlling the size of the wave function, is in-

TABLE 1. Examples of radial reduced wave func-
tions written in the form of Eq. (4). The quantities N,
are appropriate normalization factors: f uXr)dr =1.
The functions L,, Ai, and H,, ; are the Legendre poly-
nomials, the Airy function, and Hermite polynomials,
respectively. The quantities €, are the zeros of the Airy
function.

Reduced radial Variational

Potential wave functions parameter K
Coulomb
y__e N, VK EL)N2E/n) me?
r
Linear : 1/3
V—ir N.VK Ai (£—€,) (2mA)
Harmonic
. 2/2
oscillator N,VEe ¢ H,p,1(€) (me)'2
V= %ma)er :

troduced. Using the scaling properties of the
Schrédinger equation, if ¥, is power behaved and
is renormalized and rescaled it is easily shown that
the eigenfunctions have the form?

xX)=VEK, P, (E=K,x) 4)

with normalization

J7 wnidx= [ 3%

Most of the soluble examples of the Schrédinger
equation—for instance, Coulomb, linear, har-
monic-oscillator potentials—correspond to power-
behaved potentials. Examples of scaling eigenfunc-
tions are given in Table I. The quantity K,,, conju-
gate to x, K, "' ~({x?),)!/?, is the natural quanti-
ty to choose as a variational parameter. For this
parameter the minimization condition (3) gives, us-

ing (4),
2T, < >
2(T),,=<x%x> . (7

In other words, the minimization condition (6) is
equivalent to imposing the virial theorem. This is
the best argument in favor of the method. As the
virial theorem is an exact operator relation, true
for each level, the independent minimization is in
this way justified. On the other hand, as the levels
are independently determined, the K, values differ
from level to level and the orthogonality of the
wave functions is violated. One should then be
cautious when using the method for computation
of transition matrix elements.

We consider next, in one space dimension, the
situation when the trial potential V(x) is, for in-
stance, symmetric under reflection, Vy(x)
=V(—x), while the potential under study V(x) is
not symmetric, ¥V (x)V (—x). This occurs when
the potential V'(x) is intrinsically not symmetric
[for instance, V (x)=ax +bx?], or when it is dis-
placed away from the origin. In such situations
trial wave functions centered at the origin, x =0,
are not appropriate. One then needs to introduce a
second parameter X, related to the position of the
wave function, and the trial wave functions are
then written, generalizing (4), in the form

Ua)=VEK, ¥, [£=K,(x—X,)]. ®)

We note that it is possible to give a perhaps

E)dE=1. (5)

_1
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more transparent physical meaning to X, and K,
by looking at the first moments of the probability
distributions ¥, (x):

(X)=Xx,,
D =(x?),—{x),2~1/K,?.

The minimization conditions now read

AHyYHY), 1 k14
BK,, K AT < ax>
1
+ 5 X aX )
{YHY), 9
oK, = ox, (V(x)),=0. (10)

One notices that (9) and (10) still ensure that the
virial theorem is satisfied. If the potential V(x) is
symmetric around a minimum at x =a, the solu-
tion of (10) is clearly X, =a, with X, independent
of n. If the potential is not symmetric around a
minimum at x =a, then X,, varies from level to
level.

In the cases when the potential has several mini-
ma and maxima the second stability condition (10)
has to be better analyzed. In particular the accept-
able values of X, are the ones that satisfy (10) and

(11)
9X,?

For the double-well potential Egs. (10) and (11)

select for each level either the broken-symmetry

(before tunneling) solution, X, 50, or the sym-

metry-restored solution, X, =0.

III. APPLICATIONS
We apply our discussion to the anharmonic-
oscillator potential,
Vix)=skx?+3Ax*. (12)
The parameter A is assumed positive, and the
parameter k may be either positive (normal anhar-
monic oscillator) or negative (double-well poten-

tial).
For the matrix elements (¥H1 ), we have

1 ~d2 1 2 1 4
<¢H¢>n:_ﬂ<?d—;> +5k{x?), +7M{x*),

(13)

and, with wave functions (8),

<¢H¢)— AK +5k

d

Xn2+X,,“} ,

B,

n
Kn4 an

+4A
(14)

where the numerical, positive quantities 4,,, B, and
C, are given by

_[_ &
An=< d§2> J#e dgzng g, (15)

B,=(&) = [ &, (16)
C.=(&) = [ egXede . (17)
The minimization conditions (9) and (10) read
B C, B,
L g, —tpon ] =X, =0,

2m n 2 Kn4 2 Kn6 2 Kn4
(18)

=0. (19)

X, |k +1 |3

n

With X,, and K, obtained in this way, substituted
back in (13), one estimates the energy E, of the
nth level.

Let us look now at the second condition, Eq.
(19). There are two solutions:

X,=0 (20)
and

. 3B 172

21)

If k is positive, normal anharmonic oscillator, the
only real solution is, as expected, X, =0. If k is
negative, double-well potential, both solutions can
occur. One easily sees that the condition
(3*/0X,%) (YHy) > 0 is satisfied if k /A
+3B,/K,? > 0, for the X, =0 solution, and if k /A
+3B,/K,* <0, for the X, = +[ —(k /A
+3B, /K,*)]'/? solution.

In view of the applications we shall be more
specific now. As trial wave functions we use
harmonic-oscillator wave functions,

Y, (x)=N,V'K exp[—-— K, 2(x —X,)?] (22)

with
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No— 1 1 . (23) In the strong-coupling limit t.he result remains
T g4 (122 acceptable. For A— o0 we obtain (k =1,m =1)
The quantities 4,, B,, and C, are then E,=c,A'3=34,23C,13)\1/3
Ay=B,=n+73 | (24) =33 + 5P n 4 1)
and (27)
C,= -;-(nz-i-n + %) . (25) Comparison of the values of c, for n =0,1,2 with

detailed calculations is shown in Table III. The
differences are less than 2%.

The method thus seems to be reliable in the
whole range of A (weak- and strong-coupling lim-
its) for estimating energy levels.

A. Normal anharmonic oscillator

The comparison of our estimates with rigorous
numerical calculations shows very close agreement.
Two examples, one corresponding to weak coupling

and the other to strong coupling, are shown in B. Double-well potential
Table II.

For §mall values of A our vana'.monal'methoc‘l, ) In order to discuss the double-well potential, Fig.
expanding K, around the harm‘ol?lc-oscﬂlator limit, 1, we rewrite (18), after substitution of (21), in the
K,=14€A+8A*+ - - - , and fixing ¢,, ... by sa- form

turation of the minimization condition order by or-

: . — o
der, gives (putting m =k =1) 22— 2mk'z - mA 9An_;"_ -0, (28)
E,=(n+ 1)+ 3t 4n )t n
n=Mtg)Ts "TIy where z=K,? and k'= —k > 0. Equation (28) is a
(n4nm + % 2 N 2 :)hird—degree equation whose discriminant is given
2 |= (26) y
n+5 4 A 2 c 2
=—(Emk)p3y A -
An alternating-sign series is, as expected, generat- A=—(3mk)+ 2 94 A

ed. For the ground state, to first order in A, we

agree with the usual small-A expansion, but beyond (29)
first order we differ (the oscillations are less
violent than in the unreliable conventional pertur-
bation expansion).

If A > O there is no acceptable solution (real and
positive). If A < O there is only one real positive

TABLE II. Comparison of the variational method with exact numerical calculations for
the anharmonic oscillator, V(x)= %KX 24 %AX 4 with K > 0. Numerical calculations are

from Ref. 8.
A(k3m)/2=0.5 A E3m)' 2

Quantum Variational Exact Variational Exact

number n method calculation method calculation
0 0.5120 0.5107 0.6814 0.6680
1 1.6320 1.6263 2.4237 2.3936
2 2.9067 2.9073 4.6850 4.6968
3 4.3006 4.3083 7.2911 7.3367
4 5.7935 5.8098 10.167 10.244
5 7.3722 7.3983 13.267 13.379
6 9.0273 9.0642 16.565 16.712
7 10.752 10.800 20.037 20.221
8 12.540 12.601 23.668 23.890
9 14.387 14.461 27.446 27.706
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TABLE III. Asymptotic behavior of the energy levels
of the anharmonic oscillator in the A— oo limit. Exact
numerical results are from Ref. 9.

Asymptotic behavior
E"A ~ Cp A.lﬂ

— o

(c,) variational method
(c,) exact calculation

n Ratios

0 1.0201
1 1.0126
2 0.9975

acceptable solution. We thus have the constraint
2

mk 1 3 C,
22 2;(—2‘)3 9A,,————An
5n%4+5n +1 ’
3y |on 4on+1 (30)
2(3) 2n +1

This relation fixes the number of states which cor-
respond classically to a broken-symmetry solution.
In particular no such kind of solution exists if

mkr3

|G <t (31)

Equation (30) determines, given A, the number of
states corresponding to the broken-symmetry solu-
tion, and the value of n above which the symmetry
is restored. A plot of A vs the quantum number n,
showing the regions where the symmetric and the

SYMMETRIC
SOLUTION

L SYMMETRY
BROKEN
L SOLUTION

02

| | ' I
t 1 + t

[o] 1 2 3 4 5

FIG. 2. Phase diagram of A versus #n. Above the
line, one has symmetric solutions ({x ), =0), below one
has symmetry-broken solutions ({x ),40).

broken-symmetry solutions, respectively, exist, is
presented in Fig. 2.

In Table IV we show a comparison of our esti-
mates of the energy levels in the double-well poten-
tial with accurate numerical calculations. The zero
of the potential is always fixed at the minimum,
V(x)=(A/4)(x2—1/A)%. The energy levels lie, as
they should, below the harmonic-oscillator values
V2n +7).

The solutions we have constructed for the
double-well potential are not eigenstates of parity.
One should then make symmetric and antisym-

TABLE IV. Mean energy levels in the symmetry-broken solution of the double-well oscil-
lator. For values of A above the ones shown the symmetry is restored. Exact numerical re-

sults are from Ref. 7.

Energy levels, E,

(broken-symmetry solution)

n=0 n=1

A Variational Exact Variational Exact
0.02 0.7032 0.7020 2.0783 2.0851
0.04 0.6994 0.6968 2.0311 2.0460
0.06 0.6955 0.6913 1.9781 2.0032
0.08 0.6914 0.6856 1.9158 1.9549
0.1 0.6873 0.6795
0.14 0.6785 0.6665
0.20 0.6644 0.6450
0.30 0.6365 0.6208
0.34 0.6224 0.6178
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metric combinations of solutions at X, =+(k'/ A
—3B, /k,2)"? and X, = — (k' /A—3B, /k,>)'"?,
respectively:

Ys=a [Px)+P(—x)],
Ya=a_[Px)—¢(—x)],
where o, and a_ are normalization constants,
with @ >=a_?=7 in the A—0 limit.
In order to estimate the energy splitting due to

tunneling we can use the approximate known for-
mula,®

(32)

AE=E, —Esg—%gb(O)tlz'(O) . (33)
However, it is not a priori guaranteed that this for-
mula can be safely used in our case because one
needs the wave function at x =0, far away from
the center of the well, and the method is presum-
ably not accurate enough. For the ground state,
Eq. (33) becomes, in our scheme,

2kq?

—(KgX)?
7172

AE,= (KoXp)e (34)
Our results, using Eq. (34) with K, and X, given
by (18) and (21), in comparison with the accurate
numerical determinations of Ref. 7, are shown in
Fig. 3. The result is quite acceptable, in particular
having in mind the several orders of magnitude in-
volved. Qualitatively, our result is similar to the
WKB calculation, but while in the WKB scheme

one obtained, as A—0 (m =1),

wkB [k 172 k32 . 23 k2
ABo =2 A e R Y
(35)

here we have, with KOA~0(2k')1/2 and X021~0k'/?»,

172 172

kl kl3/2 k3/2
~ 2745 V)
AEo,~ 2 Lo P A
(36)
|
Ko’ 2, K 2
AEO=EA _ES= ——_—“(K()Xo) +‘—7(KOX0) —_—
m KO

The results, using this formula, for the energies
used in Fig. 2, are similar to the ones plotted and
corresponding to Eq. (34).

Finally we note that we could have rigorously—

A
4
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FIG. 3. Tunneling effect. Energy splittings AE, as a
function of mean ground-state energy Eo. The full line
is the variational method prediction with Eq. (33) or
(34). The dashed line is the exact numerical calculation
of Ref. 8.

and a much faster vanishing of AE,, with A as
A—0.

We have tried an alternative estimate of AE, by
computing directly E4 and Eg, keeping K, and X,
fixed, using Eqs. (32) and our previous determina-
tion of E. For the ground state we have obtained,
for a, given by

_ 2
ay’= _l(K X,)? 5';' [ljre Hoto! ] ’
2014+e %)
(37)
symmetric splittings around E, with
3B, 1 — (KX,
— (KoXo)+ (KoXo)* | |e 7 . (38)
K04 OXO 2k04 00

[

within the method—computed AE by evaluating
E, and Eg and minimizing with respect to K§*>
and X*5. The formulas however would have not
been as simple as (34) or (38).



2788 JORGE DIAS DE DEUS 26

IV. CONCLUSIONS

We have presented the independent-minimization
variational method and argued that, as far as ener-
gy levels are concerned, the method is rather accu-
rate. This happens because at each level we force
the trial potential to agree, in magnitude and slope
in x, with the potential being studied, as a conse-
quence of the virial theorem.

The anharmonic oscillator was discussed as an
interesting two-variational parameter example.

The overall result is satisfactory. In the double-
well case, k =k’ <0, we were able to determine
consistently the values of the mean energy of the
levels (before tunneling)—and the deviations from
the naive harmonic-oscillator limit at the bottom
of the well—as well as the energy splittings due to
tunneling. Some of our results may be of theoreti-
cal interest as, for instance, our bound, Egs. (30)
and (31) and Fig. 2, for the number of levels corre-
sponding classically to a broken-symmetry solu-
tion.
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