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trum, and even tunneling is fairly well reproduced.
The rest of the paper is organized as follows. In

Sec. II we introduce the two-parameter independ-
ent-minimization variational method. In Sec. III
we discuss applications, the anharmonic oscillator,
and the double-well anharmonic oscillator. In Sec.
IV we briefiy present our conclusions.

II. VARIATIONAL METHOD WITH TWO
PARAMETERS

8 n =0, 1,2, . . . ,
,. (alt)„=0, , 2
n

(3)

In simple problems only one variational parame-
ter, controlling the size of the wave function, is in-

TABLE I. Examples of radial reduced wave func-
tions written in the form of Eq. (4). The quantities N„
are appropriate normalization factors: f u'(r)dr = l.
The functions I.„,Ai, and H2„+I are the Legendre poly-
nomials, the Airy function, and Hermite polynomials,
respectively. The quantities e„are the zeros of the Airy
function.

Potential
Reduced radial
wave functions

Variational
parameter K

Coulomb

V= ——
r

N„~K gL„'(2g/n ) me

Linear
V=Ar N„vK Ai (g—e„)

Harmonic
oscillator
V= —mco r

2

Nv Ke & Hp+) ig)

The idea in the variational method is to estimate
the eigenvalues of the nonrelativistic Hamiltonian

1H = — —+V(x)2~ dx

using the eigenfunctions g(x) corresponding to a
soluble Hamiltonian Ho,

1 d
Hp — —— ~+Vp(x) .

2~ dx

Such estimates are done independently for each
eigenstate. In practice, one introduces energy-
level-independent variational parameters E„', to be
fixed by minimization conditions,

Z(T)„=( xx
n

(6)

(7)

In other words, the minimization condition (6) is
equivalent to imposing the virial theorem. This is
the best argument in favor of the method. As the
virial theorem is an exact operator relation, true
for each level, the independent minimization is in
this way justified. On the other hand, as the levels
are independently determined, the K„values differ
from level to level and the orthogonality of the
wave functions is violated. One should then be
cautious when using the method for computation
of transition matrix elements.

We consider next, in one space dimension, the
situation when the trial potential Vp(x) is, for in-
stance, symmetric under reflection, Vp(x)
= Vp( —x), while the potential under study V(x) is
not symmetric, V(x)QV( —x). This occurs when
the potential V(x) is intrinsically not symmetric
[for instance, V(x) =ax +bx ], or when it is dis-
placed away from the origin. In such situations
trial wave functions centered at the origin, x =0,
are not appropriate. One then needs to introduce a
second parameter X„,related to the position of the
wave function, and the trial wave functions are
then written, generalizing (4), in the form

f„(x)=~IC„Q„[(=K„(x—X„)].

We note that it is possible to give a perhaps

troduced. Using the scaling properties of the
Schrodinger equation, if Vp is power behaved and
is renormalized and rescaled it is easily shown that
the eigenfunctions have the form

P„(x)=~K„f„(g—:K„x)

with normalization

f g„(x)dx =f P„(g)d(=1 . (5)

Most of the soluble examples of the Schrodinger
equation —for instance, Coulomb, linear, har-
monic-oscillator potentials —correspond to power-
behaved potentials. Examples of scaling eigenfunc-
tions are given in Table I. The quantity E„,conju-
gate to x, K„-((x )„)',is the natural quanti-

ty to choose as a variational parameter. For this
parameter the minimization condition (3) gives, us-

ing (4),
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more transparent physical meaning to Xn and Kn

by looking at the first moments of the probability
distributions P„(x):

(x)—=x„,
D„'=(x')„—(x )„'-1/Z„' .

The minimization conditions now read

and, with wave functions (8),

(PHP)„= A„E„'+ , k—,+X„'

a(1(Hlt )„
ax„

) 2(~) ( BV)

+ -X. , & V( )).=0, (9)
1

(14)

where the numerical, positive quantities An, Bn and
C„are given by

a(yHy)„
aX„=aX„

(10) (16)

One notices that (9) and (10) still ensure that the
virial theorem is satisfied. If the potential V(x) is
symmetric around a minimum at x =a, the solu-
tion of (10) is clearly X„=a,with X„ independent
of n. If the potential is not symmetric around a
minimum at x =a, then Xn varies from level to
level.

In the cases when the potential has several mini-
ma and maxima the second stability conditiion (10)
has to be better analyzed. In particular the accept-
able values of X„are the ones that satisfy (10) and

82
, (V). & 0.

BXn

For the double-well potential Eqs. (10) and (11)
select for each level either the broken-symmetry
(before tunneling) solution, X„+0,or the sym-
metry-restored solution, Xn =0.

(17)

X @+A, 3 +X' =0
En

(19)

With Xn and E„obtained in this way, substituted
back in (13), one estimates the energy E„of the
nth level.

Let us look now at the second condition, Eq.
(19). There are two solutions:

and

X„=O (20)

The minimization conditions (9) and (10) read

1 1 ~n 1 Cn 3 ~n

E„ E„ E„A„,k
q
————,))(, s

——,A,
4 X„=O,

III. APPLICATIONS

38„
Xn =+ — —+

1/2

(21)

We apply our discussion to the anharmonic-
oscillator potential,

V(x)= —,kx + —„Ax
1 2 1 4 (12)

The parameter A, is assumed positive, and the
parameter k may be either positive (normal anhar-
monic oscillator) or negative (double-well poten-
tial).

For the matrix elements (QHQ)„we have

If k is positive, normal anharmonic oscillator, the
only real solution is, as expected, Xn =0. If k is
negative, double-well potential, both solutions can
occur. One easily sees that the condition
(() /Bx„) (/HE()) & 0 is satisfied if k/A,

+38„/I(:„&0, for the X„=O solution, and if k/A,

+38„/E„&0, for the X„=+[—(k/A,
+38„/K„)]'~ solution.

In view of the applications we shall be more
specific now. As trial wave functions we use
harmonic-oscillator wave functions,

with

1()„(x)=N„QE„exp[——,E„'(x—X„)'] (22)
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1 1

1/4 (2n& i)1/2

The quantities A„, 8„,and C„are then

A„=B„=n+—,

and

(23}

(24)

In the strong-coupling limit the result remains
acceptable. For A,~ 00 we obtain (k = l,m =1)

, (--, ) '(n+ ,')-' '(n +n+-,')' 'g'/'.

(27)

C„=2(n +n+ , ) —.

A. Normal anharmonic oscillator

The comparison of our estimates with rigorous
numerical calculations shows very close agreement.
Two examples, one corresponding to weak coupling
and the other to strong coupling, are shown in
Table II.

For small values of A, our variational method,
expanding E„around the harmonic-oscillator limit,
E„=I+el, +M, + . , and fixing e,5, ... by sa-
turation of the minimization condition order by or-
der, gives (putting m =k =1)

Comparison of the values of c„ for n =0, 1,2 with
detailed calculations is shown in Table III. The
differences are less than 2%.

The method thus seems to be reliable in the
whole range of A, (weak- and strong-coupling lim-
its) for estimating energy levels.

B. Double-well potential

z —2mk'z+mi, 9A„— — =0,3 I C„
(28)

In order to discuss the double-well potential, Fig.
1, we rewrite (18), after substitution of (21), in the
form

E„=(n+—,)+—,(n +n+ —,)—2 4

(n2+n+ —,}—2
7l+ 2

2

4 ~ ~ (26)

An alternating-sign series is, as expected, generat-
ed. For the ground state, to first order in A, , we
agree with the usual small-i, expansion, but beyond
first order we differ (the oscillations are less
violent than in the unreliable conventional pertur-
bation expansion).

5= —( —mk') +2, 3 PlA,
3 2

2
' '2

9A„—

(29)

If 6 ) 0 there is no acceptable solution (real and
positive). If b, ( 0 there is only one real positive

where z =E„and k'= —k ) 0. Equation (28) is a
third-degree equation whose discriminant is given
by

TABLE II. Comparison of the variational method with exact numerical calculations for
the anharmonic oscillator, V(x)=—EX +—M, with E~ 0. Numerical calculations are
from Ref. 8.

Quantum
number n

A, /(k m)'i =0.5
Variational Exact

method calculation

ag(k'~)'i'
Variational Exact

method calculation

0.5120
1.6320
2.9067
4.3006
5.7935
7.3722
9.0273

10.752
12.540
14.387

0.5107
1.6263
2.9073
4.3083
5.8098
?.3983
9.0642

10.800
12.601
14.461

0.6814
2.4237
4.6850
7.2911

10.167
13.267
16.565
20.037
23.668
27.446

0.6680
2.3936
4.6968
7.3367

10.244
13.379
16.712
20.221
23.890
27.706
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TABLE III. Asymptotic behavior of the ener 1

numerical results are from Re~ 9
xact

~ ~

Asymptotic behavior
E„—c„A,'"

A~ 00

(c„)exact calculation

0
1

2

1.0201
1.0126
0.9975

acceptable solution. We th he us ave the constraint
2

)—,( —, ) 9A„—

5n +5n +1
2n +1

2

(30)

This relationon fixes the number of states which cor-
respond classicall to a by a roken-symmetry solution.
n particular no such kind of 1n

'
o soutton exists if

mk'
(-, )' & 1 . (31)

Equatton (30) determines, given A, , the number of
states corresponding to th b ke ro en-symmetry solu-

tton, and the value of n above which the s mic e symmetry

s owing the regions where the symmetric and the

I
I

I

FIG. 2. Phasse diagram of A, versus n. Abo hvet e
has symmetric solutions ((x ) =0x „= ), below one

ymmetry-broken solutions {(x)„Q{)i.

broken-symmet solry utions, respectively, exist
presented in Fig. 2.

s, 1s

In Table IV
mates of

we show a comparison o our esti-
of the energy levels in the double-

tial with accur
e ou e-wdl poten-

accurate numerical calculations. The zero
of the potential is always fixed at the minimum

e ow the harmonic-oscillator values

n+, .
The soso&utions we have constructed f

double-well ote
ruc e or the

e potential are not eigenstates of arit .
One should then makema e symmetric and antisym-

TABLE IV. M. Mean energy levels in the symmet ell os'

suits are from Ref. 7.
h n the symmetry is restored. Exact numerical rxact numerical re-

Energy levels, E„
(broken-symmetry solution)

Variational Variational

0.02
0.04
0.06
0.08
0.1

0.14
0.20
0.30
0.34

0.7032
0.6994
0.6955
0.6914
0.6873
0.6785
0.6644
0.6365
0.6224

0.7020
0.6968
0.6913
0.6856
0.6795
0.6665
0.6450
0.6208
0.6178

2.0783
2.0311
1.9781
1.9158

2.0851
2.0460
2.0032
1.9549
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metric combmations of solutions at X = + (k'/ 2
„) and X„= (k—'/A, 3B—„/k )'i

respectively:
n n n

Ps a+——[g(x)+P( —x)],
eA =&-[e(»—e( —»]

where a and a+ are normahzation constants,
~ ~

with a+ ——a = —, in the A, —+0 limit.

In order to
tunnelin w

e to estimate the energy s litt dpi ing ue to

mula
ne ing we can use the approximate ka e nown "or-

10

-2
10

10

10

-5
10

~=Eg —Es-—P(0)f'(0) .2
Nl

(33)
10

However, it is nois not a priori guaranteed that this for-
mula can be safely used in our case because one
needs the wave function at =0, f
the center of the well and the m th d

'
e me o is presum-

E. 3
ably not accurate enough. F hor t e ground state,

q. (33) becomes, in our scheme,

2k0
aE, = (It X )0 0 e

E0
I

.65 .66
I

.69
10

.61 .62 .63 .64

FIG. 3. Tunnunneling effect. Energy splittin s b,E
function of mean

ings p as a

is the variational
mean ground-state energy E . The f ll

'
e u line

'ational method prediction with Eq. (33) or

o Re. 8.
e exact numerical calculation(34). The dashed line is the exa

(34)

Our results, using Eq. (34) with E d X
b (18y ) and (21), in comparison with the accurate
numerical determinations of Ref. 7

aving in mind the several orders of m
volved. ualitatively, our result is

' '1

calculation, but while in the WKB
one obtained, as A, ~O (m =1)

WKB
~E 2"

A,—+0
exp

g tude in
ar to the

and a much faster vanishing of hE '
h A,0 wit as

scheme We have tried an alternative estimate of AE 1
computing directly E and E, keeping K and X

2' k 3/2 fixed, using E s. (32) "e~
tion of E For.qs. and our previous determ'

or the ground state we have obtained
ermina-

for Ag given by

1/2 ' 1/2

7/4 k k

A~0 77 A,
exp —V 2—

(36)

here we have, with E —(2k')'0 and Xo —k'/A,
A,~O A, —+0

1
1
—e

1 —(E X

—(KOXo)2

symmetric splittings around Eo with

E0 I

o o + (KoXo) ——— (E Xk, A. 3Bo—
4 o o +,oXo)'

0 2k, '
—(KpXp)~

(38)

The results, using this formula, for the energies
used in Fi . 2ed

' 'g. , are similar to the ones plotted and
cori'espoildiilg to Eq. (34).

Finally we note that we could hu ave rigorously—

l

within the method —computed ~F- b ewi e y evaluating

zan a pec to& an & and minimizing with res t K '

he formulas however would have not
been as simple as (34) or (38).
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IV. CONCLUSIGNS

We have presented the independent-minimization
variational method and argued that, as far as ener-

gy levels are concerned, the method is rather accu-
rate. This happens because at each level we force
the trial potential to agree, in magnitude and slope
in x, with the potential being studied, as a conse-
quence of the virial theorem.

The anharmonic oscillator was discussed as an
interesting two-variational parameter example.

The overall result is satisfactory. In the double-
well case, k =k' &0, we were able to determine
consistently the values of the mean energy of the
levels (before tunneling) —and the deviations from
the naive harmonic-oscillator limit at the bottom
of the well —as well as the energy splittings due to
tunneling. Some of our results may be of theoreti-
cal interest as, for instance, our bound, Eqs. (30)
and (31) and Fig. 2, for the number of levels corre-
sponding classically to a broken-symmetry solu-

tion.
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