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The renormalization of interacting scalar field theories in general curved space-times is
discussed. The background-field method is used to calculate the effective action. Diver-
gences are analyzed using heat-kernel techniques and dimensional regularization. Renor-
malization of a scalar field theory with cubic and quartic self-interactions is shown at the
two-loop level in a four-dimensional space-time. Counterterms, including the gravitation-
al ones, are computed to this order. Renormalization of the one-loop effective action is
examined for a scalar field with a cubic self-interaction in a general six-dimensional
space-time. As a result of the asymptotic freedom of this theory, the coupling constant
appearing in the RP' term is shown using the renormalization group to have an ultravio-

let fixed point given by its conformal value of —,.

I. INTRODUCTION

The study of quantum field theory in curved
space-time has been the subject of much current
research. Most of the work has been concerned
with free (i.e., noninteracting) quantum fields, al-

though the effects of interactions are now being
studied. The first problem encountered with in-

teracting fields is that of renormalizability.
Renormalization of interacting quantum field

theory in curved space-time has been considered by
several authors' ' (see the review of Birrell for
an introduction). In the case where the external

gravitational field is weak so that the metric may
be expanded about the Minkowski metric, standard
momentum-space techniques familiar from fiat-
space-time calculations may be used. ' This ap-
proach cannot be applied to general space-times or
topologically nontrivial space-times. Studies in
more general space-times are discussed in Refs.
5 —18. With the exceptions of Birrell and Ford
who considered a spatially flat Robertson-Walker
universe with topology S'gR, and Drummond
and Shore' ' ' who worked in S", these calcula-
tions have been restricted to space-times which are
topologically trivial (i.e., diffeomorphic to space-
times with an R topology). This restriction is
particularly clear in the momentum-space tech-
nique developed by Bunch and Parker" which uses
Riemannian normal coordinates and thus can
probe only what happens in a neighborhood of the
origin of the coordinate system. The importance
of this restriction is evident from Refs. 8, 19—21,
where it is shown that the presence of a nontrivial
topology, even in Aat space-time, complicates the

renormalization procedure. This might seem to be
a bit peculiar, since naively (on the basis of the
equivalence principle) it would be expected that re-
normalization might be affected only by /ocal cur-
vature terms and not by the global topology.
However, there is nothing to prevent this argument
from being applied to graphs which contribute
separately to the Green's functions where it is
known to be incorrect. ' ' This is an indication
of how the equivalence principle may not apply
when quantum effects are considered (see also
Drummond and Hathrell ).

The present paper is concerned with the renor-
malization of interacting scalar field theories in
general curved space-times with arbitrary topolo-
gies. The method consists of an evaluation of the
effective action using the background-field
method. 3' " Dimensional regularization25 and
heat-kernel techniques are used to handle the
divergences which are present. Because
coordinate-space methods are used, no assumptions
need to be made about the space-time topology.
This means that the results apply equally well to
the twisted scalar fields which exist if the space-
time is not simply connected.

One advantage of using the background-field
method is that it cuts down considerably the num-
ber of diagrams which need to be calculated. All
contributions at a given order in the loop expan-
sion can be obtained by an evaluation of only vacu-
um bubbles without the necessity of evaluating the
n-point functions separately for each n=0, 1,2, . . ..
(There are only two bubbles, plus one counterterm
diagram for P theory at the two-loop level. See
Fig. l.) Furthermore, recent formulations ' ' have
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point functions which are obtained by functional
differentiation with respect to the background
fields, will be automatically finite.

The outline of this paper is the following. In
Sec. II, the method of the background field is re-

viewed, showing how higher-loop contributions to
the effective action are obtained. The heat-kernel

method is discussed in Sec. III. In Sec. IV, the re-

normalizability of a scalar field theory with no
more than a quartic self-interaction is proved at
the two-loop level on a general (compact or non-

compact) four-dimensional manifold without

boundary. The renormalization of a scalar field
theory with a cubic self-interaction is discussed in

Sec. V at the one-loop level on a general six-
dimensional space-time without boundary. This is
of interest because the theory is the simplest one
which is asymptotically free. Some of the results
of this section are in disagreement with those of
Gass, '6 who studied P theory in a spatially flat
Robertson-Walker model. Sec. VI contains the
conclusions and discussion.

II. THE BACKGROUND-FIELD METHOD
AND THE EFFECTIVE ACTION

(c)
FIG. 1. The vacuum bubbles contributing to the

two-loop effective action. The cross in (a) indicates the
insertion of the quadratic counterterm vertex defined in

Eqs. (2.18) and (4.19).

In this section, the background-field approach to
computing the effective action is considered. In

addition to Refs. 23, 24, 30—32, which were men-

tioned in the Introduction, Refs. 34, 35 are also
useful.

Let Ijg] denote the classical action functional,
and let P;(x) denote the arbitrary background
fields. The disconnected generating functional, or
partition function, may be defined by the following
functional integral:

Z[J;P]= I [dP]exp — I[/]—

given a procedure which respects the invariances
(e.g., gauge and general coordinate invariance)
which may be present (see also the review of Ab-
bott ). This has advantages when calculating the
Yang-Mills P function. Finally, once the effec-
tive action has been renormalized, expressions such
as the expectation value of the stress-energy tensor
which is obtained by functional differentiation
with respect to the background metric, or the n-

It is assumed here that the space-time has a
Riemannian rather than a Lorentzian metric. In
(2.1) the index i denotes both internal and space-
time indices with a repeated index both summed
and integrated over; that is,

J;(P P);= g I dU„—I;(x)[P;(x)—P;(x)],

(2.2)
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du„= [g(x)]'~2d "x

is the invariant volume element on the n-

dimensional manifold. If the decomposition

(2.3)

1 [4;P]=WfJ;P] J—;4;,
where

5W[J;P]
5J~(x)

(2.5)

(2.6)

(2.4)

Next, perform the functional Legendre transforma-
tion

is made, where P't(x) represents a quantum devia-
tion from the background field, then the sources in
(2.1) are seen to be coupled only to the quantum
part of the field.

In order to obtain the effective action, the by
now well-known procedure described below must
be followed. First, form the generating functional
which gives rise to the connected Green's functions
and is defined in terms of (2.1) by

W[J;P]= —irilnz [J;P] .

The generating functional I [4;P] gives rise only
to the one-particle-irreducible Green's functions.
Finally, the effective action, which depends only
on the background field, is defined by

(2.7)

In order to calculate the effective action, some
perturbative approach must be adopted. The usual
one is the loop expansion, in which fi is used as a
loop-counting parameter. Expand the classical
action in a functional Taylor series about the back-
ground field:

+ 4, (0 0) (4 0—)J(0 0—)k(0 N—~II4iJkl—

(2.9)

The convention for functional derivatives which
enter into (2.8) is that of Ref. 38:

5$;(x)
=5;15(x,x'), (2.10)

where Ii;, . . . , Izjki denote the first, . . . , fourth
functional derivatives of the classical action
evaluated at the background field. Substitution of
this expansion into (2.1) and working through
(2.4) —(2.7) results in the loop expansion of the ef-
fective action in powers of fi:

(2.8)

I

ground field, and a superscript R denotes the fact
that only renormalized parameters are present.
Note that because the quantum parts of the fields
get integrated over in the functional integral (2.1),
they may be rescaled at the irrelevant cost of
changing only the normalization of (2.1). This
means that any field renormalization factors may
be scaled away in this manner, except for those
coming from the background fields. Thus, only
the background fields need to be renormalized. By
writing the bare quantities appearing in I2;1 in
terms of renormalized ones and counterterms the
following split may be made:

where 5(x,x') is the biscalar Dirac distribution
which satisfies

J du„5(x,x')P; (x) =P; (x') . (2.1 1)

R CT
Igg~ —pg~+I2,J . (2.13)

I2,J involves counterterms and so is at least of or-
der A in the loop expansion. Define analogously to
(2.12)

It is necessary to write the bare quantities which

appear in the action in terms of renormalized ones
and counterterms. In the loop expansion, the
counterterms are then expanded in powers of A'

leading to

n=1
(2.12)

where P is understood to be the renormalized back-

IPgq g fPI g"g~' . ——
n=1

(2.14)

(2.15)

This latter term will be treated as an additional
vertex.

From the references given at the beginning of
this section, the first two terms in the expansion
(2.9) are found to be
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I'"[P]=I' "[P]+—,ln DetI; (2.16)

The ln DetI2,J arises from performing a Gaussian
functional integration. The inverse of the operator

I2;j is the propagator in the presence of the back-
ground field which is denoted by 6;.; that is,

I2iJ'~J'k ~ik (2.17)

Higher-order contributions to (2.9) are obtained

by evaluating only one-particle-irreducible vacuum
bubbles at a given order in the loop expansion with
the vertices obtained from the effective interaction

+
4, 0 NidkPA Jki . (2.18)

The exact propagator in the presence of the back-
ground field is used on internal lines. The factors
of fi'~ and fi in front of the last two terms in
(2.18) have come from a rescaling P +Pi'~ P in the-

functional integral. ' Note that bemuse the
background field is taken to be arbitrary, there will
be an effective-mass term in Eq. (2.17) for 6;J
which is not a constant. This means that
momentum-space techniques cannot be used to ob-
tain the propagator in the presence of the back-
ground field, even in Minkowski space-time. One
approach is to expand 6,J in terms of the free
propagator as a power series in the background
field as in Ref. 38. A different approach is fol-
lowed here. In addition, because I2iJ,I3j'k and

I4iJkl are functional derivatives of the action
evaluated at the background field, the rules for the
vertices arising from (2.18) will involve the back-
ground field and differ from the usual ones.

An fi expansion for I3ijk and I«Jkl results from
expressing the bare quantities in terms of renor-
malized ones and counterterms:

It has been assumed that I3ijk and I4gJkl are sym-
metric under a permutation of indices. If this is
not the case (for instance, if the index i refers to
different types of fields) the modification of (2.21)
is easy enough to write down. Higher-loop contri-
butions to the effective action are found in a simi-
lar manner.

III. THE HEAT-KERNEL EXPANSION

I'"[it'i] = —,ln DetI
1=—TrlnI2 .2

(3.1)

(3.2)

The indices and superscript R will be dropped in
this section. The determinant in (3.1) and trace in
(3.2) are functional as well as over any indices
which I2 might have.

Variation of (3.2) with respect to the background
field gives

51"'= , Tr[I '5I ] . —

This may be written as

(3.3)

In this section, the heat-kernel expansion and its
application to regularizing the effective action are
discussed. This n1ethod has been used by many au-
thors ' ' to regularize the one-loop effec-
tive action or expectation value of the stress tensor
for free scalar fields in curved space-time. Boul-
ware has also used it to discuss the one-loop ef-
fective action for a scalar field in combined classi-
cal gravitational and electromagnetic backgrounds.
The first three coefficients in the asymptotic ex-
pansion (3.13) below were first given by DeWitt
and later extended to one more term by Sakai.
Gilkey ' has derived them rigorously using more
powerful methods.

From (2.16), one contribution to the one-loop ef-
fective action is seen to be (ignoring the term I"')

n (n)
I3ijk y ~ I3ijk ~

n=0

n (n)
I4ijkl ~ ~ I4ijkl

n=0

(2.19)

which leads to the definition

(3.4)

(O) (O)
&2 ~il~jm ~knI3ijkI31mn (2.21)

There is an additional factor of (—A') in front of
the two-loop and higher contributions to I [Pj
coming from the factor in (2.4). The two-loop vac-
uum bubbles contributing to I' are shown in Fig.
1 and lead to

(3.5)

(The arbitrary integration constant which arises
may be absorbed into the bare gravitational action. )

Regularization of this quantity is still required.
Let K (t,xg, I2) be the kernel associated with the

operator e '; that is,



RENORMALIZATION OF INTERACTING SCALAR FIELD. . . 2717

(e 'P)(x) = f du~(K(t, x,y, I&)P)(y), (3.6)

P= ga;g;.
i=1

Hence,

(e 'P)(x)= g a;(e 'g;)(x)

(3.7)

= g a;e 'Q;(x) .
i=1

(This is seen properly by using the functional cal-
culus of Seeley. ) The kernel function may, there-
fore, be written as

(3.8)

where P is any cross section of the bundle over
space-time relevant to the type of field of interest.
Let [A,;,g;];" ~ be a spectral resolution of Iz which
is assumed to be self-adjoint with respect to the
fiber inner product. The cross section may be
written as

where the E (x,Iq) are endomorphisms of the
fiber which are local invariants constructed from
quantities occurring in Iz. This means that they
do not depend upon the space-time topology or
whether or not the bundle is trivial. Gilkey ' as-
sumes that the manifold is an n-dimensional com-
pact Riemannian manifold without boundary. The
extension to the noncompact case has been dis-

cussed by Wald ' for the Klein-Gordon operator.
The results given in the present paper will, there-
fore, extend to the noncompact case provided that
surface terms may be ignored. (See the discussion
concerning this point in Sec. VI.) Terms which are
space-time integrals of total divergences will be
neglected in this paper.

Split the integration in (3.12) into

~ dt 0 dt—E t,x,x,Iz —— —K t,x,x,Iz

~ dt+ —K t,x,x,Iz
0

K(t,x,y,Iz)= g e ' P;(x) 8$;(y) . (3.9)
(3.14)

[Substitution of this expression into (3.6) is seen to
lead to (3.8).] It then follows from (3.9) that
K(t,x,y, I&) satisfies the "heat equation"

a
at

K(t,x,y—,Iz)+I&K(t,x,y, I& ) =0 .

The boundary condition

K(0, xy, Iz) =5(y,x)

(3.10)

(3.11)
—gIz

follows from the fact that as t~0+, (e 'P)(x)
—+P(x). This is most easily seen from (3.8).

The g function used by Dowker and Critch-
ley ' is the Mellin transform of the heat kernel
(with zero modes of the operator Iz projected out).
The g function used by Hawking is the Mellin
transform of the traced heat kernel.

Using (3.6) and (3.5), it follows that (interchang-
ing the order of integration)

K(t,x,x,Iz)-(4nt) "/ g t E (x,Iz),
m=0

I'"[P]=——, f du„ f trK(t, x,x,Iq—),
(3.12)

where the functional trace has been performed
leaving only the trace over any indices which E
might have. The heat kernel has the following
asymptotic expansion as t —+0+:

where to is arbitrary. The second integral in (3.14)
is convergent. Since to is arbitrary, it may be tak-
en to be as small as desired. The asymptotic ex-
pansion (3.13) may then be used in the first term
of (3.14). This leads to

—E t,x,x,Iq
t

—2
(4~)—n/2 g r m n/2E —(x I&)

0 n —2@i
L

(3.15)

X f du„trE„ /z(x, Iz) .

It is customary to define

(3.16)

provided that n &2m. Adopting dimensional regu-
larization where the space-time dimension n is
treated as a regularizing parameter, it is seen that
(3.12) is analytic for Re(n) (0. If 1 "'[P] is

analytically continued out of this region, simple
poles are seen to occur at n=0, 2,4,6,. . . . As a re-

sult, the one-loop effective action is seen to be fi-
nite in space-times of odd dimensions, even in the
presence of interactions. Let no be the physical
space-time dimension. If no is even, the one-loop
effective action has a pole part which is given
from (3.15), (3.12) by

P.P. [I'"[P][=(4') ' (n —no)

(3.13) a„(x,Iz)=trE„(x,Iq), (3.17)
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a„(Iz)= f du„a„(x,I2),

in which case,

P.P. [I' ][/]I =(4]r) (n —n )

X U~ano/2 +F12

(3.18)

(3.19)

operator I2. See Refs. 28 and 41 for comments in

the case where this is not done.
An expression for the pole part of the coin-

cidence limit of the propagator in the presence of
the background field may also be found using these
methods. From (2.17),

—no/2 —1=(4]r) (n n—) a„,/2(I ) .

(3.20)

To save writing, the following definition is made:

(3.22)

(3.23)

Therefore, from the definition of the heat kernel

b, (x,x') = dtK(t, x,x',I, ) .
0

e=(4n) (n —no) .no/2
(3.21)

Let x =x', split up the integration as in (3.14), and

use the asymptotic expansion (3.13). This leads to

Note that in order to obtain (3.16), it is neces-
sary that the extra dimensions which occur in the
dimensional regularization procedure be flat (but
not necessarily topologically trivial) with the n

dimensional manifold a direct product of these ex-
tra dimensions and the physical space-time. This
has the consequence that the expansion coefficients
occurring in (3.15) are formed using quantities
formed from the physical space-time part of the

P.P. I]I](x,x) I
= 2e '—E„,~z ](x,I2)

for even no, and zero for odd no
More generally consider

(3.24)

Then,

F(x,x], . . . , Xk)=h(x, x])b(x],x2) . ]I](xk,x) .

(3.25)

] 00

f dv„. . dv„ trF(x, x], . . . , xk)= Tr[b, ]=Tr[I2 "]= dtt 'trK(t, x,x,I2) .x] xk ' ' 't
( 1)] (]

(3.26)

This expression contains a pole term only if n0 is even and k & —,n0. Using the asymptotic expansion as be-

fore, it is found that

f dv„. . du„ trF(x, x], . . . , xk)= E'trE„&2 k(x, Iz)-+ finite terms .x] xk 0 r ' ' ' P

(k 1)] Ilo
(3.27)

Therefore, up to terms which are total divergences,

P.P. IF(x,x„,xk) j = e 'E„g2 k(x, I2)5(x],x) . 5(xk,x),
(k —1 ]

(3.28)

I2 ———Cl+ Q, (3.29)

where Q is in general a matrix. For this opera-
tor46, 47

E(](x,I2)= 1,
E](x,I2)= —,R —Q,

(3.30)

(3.31)

if n0 is even and k & —,n0, and vanishes otherwise.

In the case of multicomponent scalar fields, I2
will always be of the form

Eg(x I2) 3~ ( 12UR +5R 2R]' Rqy

+2R~"~ Rpvpo

—60RQ y 180Q —60CIQ )

(3.32)

give the first three coefficients in the asymptotic
expansion (3.13). (The sign conventions for the
curvature used here are those of Ref. 49, which are
opposite to those of Gilkey. " ' ) In Sec. V, the re-

sult for E3 is required. For operators of the form
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(3.29), the result is easily found in Refs. 46 and
47. [Note a misprint in Ref. 47 where the last
term in the third last line of theorem 4.3(d) should
read —4R;Jlk g'.

Jk in Gilkey's notation. ] It is suffi-
cient for the purposes of the present paper to have

an expression for a3(Iz) in the case of a single
scalar field, so that the fiber is the real line and Q
in (3.29) is just a function. After using a number
of curvature identities, and discarding terms which
are integrals of total divergences, it follows that

a3(I2)= —f du„(, RCIR+ —,R~" Rp„+ , R" p—GRp,p + —,R —, RR—""Rp„+, RR—~p Rp„p

4Rp„—R" R" + , R„,R—p R "P" , Rp—„R—"~R"x + , Rp,p—R"'x+P ')

+,Io f du„(30QCIQ —12QClR —60Q +30RQ —5R2Q+2R""R„„Q 2R~ p—R„Q) .

(3.33)

It should be noted that the expressions in (3.30)—(3.33) are universal ones, and in particular the coefficients
do not depend upon the dimension of the manifold.

IV. APPLICATION TO $ THEORY IN FOUR DIMENSIONS

Although the results of the previous sections are applicable to multicomponent scalar fields, attention
shall be restricted to only a single scalar field. This shows all of the relevant features of the calculation and
has the advantage of shortening the expressions which are involved.

Take the bare matter action for the scalar fields to be

IN[41 f dux 2 ((B(x)~I(B(x)+ 2 ~B 4B (x)+ 2 gBR (x)'4 (x)+
~( gBNB (x)+

g(
~BOB

+hsgs(x)+rigR (x)Ps(x) (4.1)

In addition to the linear or tadpole term hsg~
which is required in flat space-time for renormal-
izability, it is also necessary to include the non-
rninimal gravitational tadpole term r)~Res if the
theory is to be renormalizable in curved space-
time. The term gsRPs is the well-known one
which leads to the so-called improvement term in
the stress-energy tensor. It is also necessary to
include a bare Einstein-Hilbert gravitational action
of the form

IG f du~( Ag +KsR +a/JR Rpyp~

+a2~R""Rq„+a3~R ) . (4.2)

Here A~ is the bare cosmological constant and Kg

is related to the bare Newtonian gravitational con-
stant.

All of the bare quantities appearing in (4.1) and
(4.2) are now expressed in terms of renormalized
ones plus counterterms, where the counterterms are

given as a sum of pole terms at n =4

Mg ——M +5M

ka =0+8'
ga=g+5g ~

p Ag =A+5K, ,

p "~
hg ——h +5h,

p 'gg = 'g +5'g,2—n/2

p Kg =K+5K ~

p "a;~——a;+5a; (i =1,2, 3) .

(4.3a)

(4.3b)

(4.3c)

(4.3d)

(4.3e)

(4.3f)

(4.3g)

(4.3h)

(4.3i)

The unit of mass p is introduced ' so that all of
the renormalized couplings appearing in (4.3) have
the same dimensions for all n as they do for n=4.
In addition to (4.3), there is a renormalization of
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the background field A. The one-loop effective action

2 n—/2j (x) Z 1/2y(x) (4.4a)

where

Z=1+5Z . (4.4b)

gn5( (n)

n=1
(4.5)

where C stands for any of the couplings occurring
in (4.3) or Z in (4Aa).

All of the counterterms appearing in (4.3) and (4A)
are given in the loop expansion as series in A of the
form

The required expression for the one-loop effec-
tive action has been given in (2.16). Since I2,J is
defined to be the second functional derivative of
the action evaluated at the background field, it fol-
lows from (4.1) that

I2(x,x') =p" [—Cl„+My +ggR (x)+gyves(x)

+ 2 AzPs (x))5(x,x') . (4.6)

Substitution of (4.3) and (4.4) into (4.6) and making
the split defined in (2.13) leads to

Iz(x,x')=[— „+M +JR(x)+gP(x)

+ —,kP (x)]5(x,x'),
where the factor of p " may be dropped. Only
the first term in the fi expansion (2.14) of I2 is re-
quired. This is

I"'(x,x') =p "[5M "'+5/"'R (x)+(5g"'+ , 5Z"—'g)P(x)+, (M"—'+5Z, '"A)P (x),]5(x,x') .

Higher-order terms are easily found.
The pole part of —,ln DetI2 is, from (3.16) and (3.21),

P.P. [ —,lnDetIqj=e 'p" f du„trE2(x, Iz ) .

(4.g)

(4.9)

The factor of p" ensures the correct dimensionality of I'"[P]. Iz is seen from (4.7) to be of the form
(3.29) where

Q =M +JR (x) +gP(x) + —,A,P (x) .

From (3.32), noting that since the fiber is one dimensional the trace is trivial, it is found that

(4.10)

(4.11)

P.P. [ —,lnDetI2 I =e 'p" I du„( —„,R" ~
Rp„p~ —,I, R""Rq„+—,(g ——,) R +M (g ——,)R+ —,M

+[M +(g——,)R]gg(x)+ —, [[M +(g——, )R]A, +g IP (x)

+ —,gAP (x)+ —,A, P (x)) .

(4.12)

where I"' is the term of order fi which occurs when (4.3) and (4.4) are substituted into (4.1) and (4.2); thus,

P.P. [I"'[j]]=p,"-'I dU„—,'5Z"'j(x) j(—)+,'(5M""+M'5-Z"')P'( )+-,'(g'"+g5Z"')R( )P'(x)

+ —,(5g"'+ —,g5Z"')y (x)+—,(M,"'+2A5Z"')y (x)+'(5h'"/ —,hsz'")y(x)

(Total divergences have been discarded. ) The pole term which is linear in the background field necessitates
the two tadpole terms occurring in (4.1) for renormalizability.

The complete expression for the pole part of the one-loop effective action is from (2.16)

P.P. [r'"[y]I
= P.P. [I'"[y]I+P.P. [-,

'
in DetI,"I,

+(5g'"+ —,g5Z"')R (x)P(x) —5A'" —5a'"R 5aI
"RI'"~ R, ~—

—6+2"R"'Rq~ —5n'3"R
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Demanding that liml'"[P] be finite, fixes the
e~O

counterterms in (4.13) to cancel off the poles in
(4.11). This gives

5~'"=M'(g ——,
' )~-',

5u& iso

SZ[']=0,

5M""= (M'—X+g')~--',

$g = —3gA E

5h'"= —M ge
15q'"= —(g ——,)gr-'

as the one-loop counterterms.

(4.14a)

(4.14b)

(4.14c)

(4.14d)

(4.14e)

(4.14fl

(4.14g)

(4.14h)

(4.14i)

(4.14j)

(4.14k)

(4.141)

B. The taro-loop effective action

The expression for the two-loop effective action
has been given in (2.21). Explicit expressions for

I3jQ a'ild Ig jQi 'are required. Functional differen-
tiation of (4.6) gives

I3(x,x,x )

=p3"~2 6[gR+AR/R(x)]5(x, x')5(x,x"), (4. 15)

Iq(x, x',x",x'")

=p " AR5(x, x')5(x,x")5(x,x"') . (4. 16)

Defining the fi expansions as in (2.19) and (2.2())
leads to

I~& '(x,x',x")

=p" ~[g+ jp(x)]5(x,x')5(x,x"), (4. 17)

I4 '(x,x',x",x"')

=p" A5(x,x')5(x,x")5(x,x"') . (4. 18)

From (4.8), using the fact that no one-loop field re-
normalization is required (4.14f),

I"'(x x') =p" [5M "'+5('"R(x)+5g'"j(x)

+ —,M, '"P (x)]5(x,x') .

(4.19)

The contributions to the two-loop effective ac-
tion shown in Fig. 1 are seen to be

I I,)[P]=—,p" f du„5M '"+5('"8+5g"'P(x)+—5A, '"P (x) b, (x x)

rI'„I[j]=—', Xj
"-'f du„b, (x,x),

I I,I[/]= ——„p" f du„du„g +A/(x) g+AP(x') b3(x,x') .

gent parts of I [ ~
and ~[b~ follow easily from results

sion. From (3.24),

P.P. Ih(x, x)I = —2e 'E, (x,I2 ) .

For Q given in (4.10) and Ei given in (3.31) this becomes

P P [~(x,x)] =2~ '[M'+(g ——,)R (x)+gy(x)+ —,A j'(x)] .

The expression for b, (x,x) may, therefore, be written as

~(x,x) =2E '[M'+(g , )& +g—p—+, &p']+ A,R(x)+O(e)—,

(4.20a)

(4.20b)

(4.20c)

(4.21)

(4.22)

(4.23)

where +R(x) is &»ite as a~0. hR (x) is in general a nonlocal expression involving the curvature and the
background field. It also contains quantities like ln(M2/4vrp2) and the Euler constant which are familiar
from flat space-time. The expression for AR(x) is different. for the inequivalent scalar fields which exist if
the space-time is not simply connected; ' ' ' thus, it also contains information about the type of bundle of
which the field is a cross section.

Using (4.23) in (4.20a), with the one-loop counterterms given in (4.14) leads to



2722 DAVID J. TOMS 26

P.P. [I (,)[P]j=p" I du„j —e [(AM +g )M +(2AM +g )(g —, )—R+A(g —, —) R +(4AM +g )gP(x)

+4Ag(g ,—)R—P(x)+(2AM + —,g )AP (x)

+2k, (g —, )RP—(x)+3k,gP (x)+ —,A, P (x)]

e—'[ , AM—+, g —+—,A(g ——,)R+ , Agg(x—)+ , A, P (x—)]bz(x)j. (4.24)

Substituting (4.23) into (4.20b) gives

P.P. {libi[P]j=p" I du„[E [ , AM—+AM (g —, )R—+ —,A(g —, ) R —+AgM P(x)+kg(g —,)R—P(x)

+ —,(AM +g )AP (x)+ —,k (g ——,)RP (x)+ , A. gg —(x)+—,A, P (x)]

+e '[ , AM —+—,A(g —, )R + —,—AgP(x)+—,A, P (x)]EJ,(x) j . (4.25)

Unfortunately, it does not appear possible to cal-
culate the pole part of I I,i using heat-kernel
methods. Consider instead the following argu-
ment. b, (x,x') has dimension six and transforms
as a biscalar under coordinate transformations.
Therefore, it necessarily takes the form

5 (x,x') = d'2(x)5(x, x') +d'6(x, x'), (4.26)

where d'2(x) is an operator of dimension two
which transforms as a scalar, and d'6(x, x') is an
operator of dimension six, which transforms as a
biscalar. Only the pole parts of these two opera-
tors need be considered. If d'6(x, x') contains any
pole terms, from (4.20c) it is seen that there will be
a contribution to the pole part of the two-loop ef-
fective action involving P(x)P(x ). This is impos-
sible to remove in a theory with a local Lagran-
gian, and thus it would be necessary to conclude
that the theory is nonrenormalizable. It is first ar-
gued that d'6(x, x') contains no pole terms.

The products of local curvature-independent
A A

quantities such as M~/(x)P(x') times pole terms
may be immediately ruled out by the knowledge
that the theory is renormalizable in flat space-time
with an R topology. The presence of nonlocal
curvature-independent divergences such as those
arising from a nontrivial topology may be ruled
out by the calculations done ' ' in S')&R where
such terms would have occurred had they existed.
This leaves only the possibility of nonlocal
curvature-dependent divergences which may be

ruled out by the calculations' done in S, or by
Birrell and Ford in a spatially flat Robertson-
Walker universe with one of the spatial coordinates
periodically identified to give a nontrivial topology.
(Any of these types of divergences which one
might think of [such as R (x)R(x') times a dimen-
sionless function of RM ] would appear to be
pathological in certain limits. ) The conclusion is
that d'6(x, x') must be finite as @~0, and that any
pole terms must come from 82(x).

Since d'2(x) has dimension two and is a scalar, it
must be a linear combination of the following
dimension-two quantities:

„,M', R (x), gP(x), P'(x), F(x), (4.27)

where F(x) is any nonlocal expression of dimen-
sion two which may occur as a result of curvature
or a nontrivial topology. [Terms like MP(x)
which are linear in the mass are forbidden because
h(x, x') is symmetric under M —+ —M.] The com-
bination of references quoted in the previous para-
graph is sufficient to rule out any other possibili-
ties, to show that F(x)=b~(x) and to fix the pole
term coefficients of (4.27). The coefficient of
gP+ —,A,P must be the same as that of M because
derivatives of P do not appear so that the coeffi-
cien'. of this term may be fixed by repeating the
flat space-time calculation with a constant back-
ground field. This results in the replacement of
M in the result obtained by Collins for example,
with M +gP+ —,AP . This leads to

P.P. [&2(x)j= [ 6e +3(4m)—e '][M +(g. —)R( )+gp( —)+—'pp ( )]
1——,(4m) e 'l7„—6e 'b,z(x) ——12(4m) e 'R(x) . (4.28)
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From (4.20c), using (4.26) and (4.28) it follows that

P.P. [I (,)'[P][=p" J du~ j „—(4m) e 'A, P(x)P„P(x)

+ —,[2& '—(4~) '~ '][g+~P(x)]'[M'+(g ——,)R(x)+gf(x)+ —,AP'(x)]

+,~(4') 'e 'R(x)[g+&y(x)]'+e '[ —,g'+Agy(x)+ —,A, 'y'(x)]by(x)] .

(4.29)

The pole part of the two-loop contribution from the graphs shown in Fig. 1 is obtained by adding (4.24),
(4.25), and (4.29). This gives

P.P. [1(,) ( ) (,)[P])=@" J dv, ( —,', (4m. ) e 'A, P(x)0,$(x)

+& [,~ ,g M——(&M—+ ,g )(g —,)R(—x)———,'A(g —,')'R'(x—)

—(2M ~g+ —,g )p(x) —2&g(g ——,)Rp(x) —(A,'M'+ —,Ag')y'(x)

—~ (g——,)R (x)y (x)——,A~gy (x)——', g'y~(x}]

, (4n—)e. '[M g +(g „—)g—R(x)+(2M Ag+g )P(x)

+2(g——„)AgR (x)P(x)+(A~M~+ —,kg~)P (x)

+& (g ——„)R(x)P (x)+2k, gP (x)+ —,A, 'P (x)]j .
(4.30)

Finally, all that is required to complete the two-loop calculation is the p(fi ) term in (2.12). This is (not
ing that 5Z"'=0}

~"'[P]=p" J du, —, 5Z"'P(x—)U, P( x) +, (5M""+—M'5Z'")P'(x)+, (5("'+$—5Z"')R(x)P'(x)

+—(5g"'+ —g5Z"'}P'(x)+—(5A,"'+2A5Z"'}$'(x)
3f 2 4f

+(5h' '+ —h5Z' ')P(x)+(5g' '+ —g5Z' ')R(x)P(x) —5A' '

(4.31)

(4.32}

be finite. The two-loop counterterms are therefore

5Z"&=—,', (4~)-'}(.'~-',
W[)"——5a,'"=0,

1

5ap =——,A,(g——)~p

(4.33a)

(4.33b)

(4.33c)

The divergences occurring in (4.30) are seen to
be of types which are removable by the counter-
terms in (4.35). This is because the nonlocal diver-

gences containing ba (x) which have arisen
separately among the graphs of Fig. 1 have can-
celled among each other. The counterterms are
fixed by the requirement that

limI' '[P]
e~0

5A' '= ——,( A,M +g M )e ~

(4n) gMe—

5M2(2) ( 2g2M2+ 7
gg2)e —2

+ „(4n) (A—M+3Ag , )E

5(' '=2k, (g ——,)e

+—„(4n ) iP(g ——„)e

6g' '= 9A, ge

+ , (4n) A, ge—

(4.33e)

(4.33f)

(4.33g)

(4.33h)

=—( AM +—g~)(g ——)e
1——,(4~) 'g'(g' ——„)e (4.33d)

gg(2) 9g3 —2

+—(4~) 'A, 'e ' (4.33i)
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5h' '= —,(g +4M Ag)e

+ , (—4n) . (g +2M Ag ——, A,3h)e

5~'"= ug(g ——,
' )~-'

+ —,(4n. ) [(g——
36 )Ag ——„A, i)]e

(4.33j)

V. APPLICATION TO $ THEORY
IN SIX DIMENSIONS

(4.33k)

This completes the proof of renormalizability and
computation of the two-loop counterterms.

If only these terms were present, this would

represent the minimally coupled theory, which, as
shall be seen below, would be nonrenormalizable in
curved space-time. It would also be expected to
have a nonrenormalizable stress-energy tensor in
flat space-time. Extra nonminimal terms, similar
to the familiar gRP term in four dimensions must
be added. Attention may be restricted to local ex-

pressions involving the curvature and the fields
which are of dimension six and which are indepen-

dent up to a total divergence.
The only terms in the field such that invariants

representing a coupling to the background geo-
metry may be formed are

+—
~gaPa +ha/a) .

1
(5.l)

Consider a single scalar field with a cubic self-

interaction in a six-dimensional space-time. Such a
theory has been discussed in flat space-time by
Macfarlane and Woo, in S by Drummond, ' '
and in a spatially flat Robertson-Walker universe

by Gass. ' The theory is discussed in a general

curved space-time in this section and some errors

in Ref. 16 are corrected.
The bare matter action must contain, as in flat

space-time,

J dU. ( , 4a 0a+——,Ma'4a'—

P, VpP, P,VpV„P, Clg .

This restricts the allowed expressions in the curva-
ture to be a dimension-two second-rank tensor, a
dimension-three vector, or a scalar of dimension
two, three, or four. The only terms which are in-

dependent up to a total divergence are

/OR, PR,$R" Rp„,PR" P Rp„~,p R,PR .

Therefore, there are six allowed nonminimal terms
in contrast to the two which appeared in the last
section. The bare scalar-field matter action is tak-
en to be

r [y]= Jdv. —,'y, ny, + ,'—M,'y, '+ -', g,y, '+h,—y, + ,'g, Ry, '+q-„Ry, +q„y, R

+ 93BNBR + 94BNBR Rpv+ 95BNBR Rpvpn
(5.2)

An expression for the bare Einstein-Hilbert gravitational action in six dimensions is also required. In ad-
dition to the terms appearing in (4.2) it is necessary to add on those curvature invariants of dimension six
with dimensionless coupling constants, which are independent up to a total divergence. There are ten of
these which may be found from Sakai or Gilkey. ' The bare gravitational action is taken to be

IG —f dU, ( &a+——aaR+rriaR""p R„,p +a2aR"'R„,+~3aR'

+7]BR R +728R Rpy+ V3BR +Rpvpcr+ V4BR

+y5gRR" Rp„+@ERR"~ Rp, ~+ypgRp~R "~R +y8gRp~R ~R "~"

+y9aR„R" P R'ip +y,oaR„,p R"'i@P ') . (5.3)

p3 —n/2y (~) Z I/2y(x)

Z=1+5Z,
(5.4a)

(5.4b)

Define the counterterms and renormalized quanti-
ties by

M, '=M'+5M',

4=0+&0

P ga=g +~g

(5.4c)

(5.41)

(5.4e)
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p,
3 "~

hg ——h +5h,

p,
3 "~2ri;s ——ri;+5'; (i =1, . . . , 5),

(5.4f)

(5.4g)

I2 (x,x') = [—Cl„+M

+gR (x) +gP(x) ]5(x,x ') . (5.5)

p A& ——A+5A,

p Kg =K+5K ~

p6 "a;s ——a;+5a; (i =1,2,3),
i' "y;a=y;+5y; (i=1.

(5Ah)

(5.4i)

(&.4j)

All counterterms have loop expansions of the form
(4.5).

From (3.20) and (3.21),

P.P. I —,lnDetI2 ) =e 'a3(I2 ), (5.6)

where a3(Iz ) is given in (3.33). The quantity Q
which enters the expression for a3 is

A. The One-Loop Effective Action
Q =M +(R(x)+gP(x) . (5.7)

It is clear that I2(x,x') may be obtained from

that of the last section by setting X=O. Thus,
After some algebra, discarding terms which are to-
tal divergences, it is found that

P.P. t —,lnDetI2 ]=p" e ' f dv„ I
——,M —, M (g —, )R ——, M—(g ——, ) R +—„,M (R"—"R„, R"' R„—„z )

+ ]2 [(g 5 ) 9 5 ]R CIR + 6s R Rp~+ 64 R Rp~p~

&26p RpvR 0R + p268 RpvRpgR —
567O Rp~R R gp

+ ]g9p Rp~p~R gQ + ]IpgR Rp~g(x) ]tp gR Rp~p~

+ —,(g —, )gP(x) CIR—,M gP(x—)—Mg(g —, )RP(x)———,g(g ——,—) R P(x)

+—„g'P(x) P(x) 2M'g'P'(x) —, (g 6)g'R—P—'(x)—6g'P'(x) ) .—(5.8)

The term of order A' in the expansion (2.12) of the classical action is

I'"[P]=p" f du„[ — 5Z'"P(x)0$(—x)+ (5M '"+—M 5Z"')P (x)+ —,(5g"'+$5Z'")RP (x)

+ —,(5g'"+ —,g5Z"')P (x)+(5h'"+ —,h5Z'")P(x)+(5gI" + —,g~5Z'")RP(x)

+(5q,'"+—,q,5Z'")P(x) ClR+(5q', "+—,q,5Z'")P(x)R'+(5q,"'+—,q,5Z"')P(x)R~"R„,

+(5g' '+ q5Z'")y(x)-R "R —u." 5 'R

—by', "RCZ —5y,'"R~ R„.—6y,'"R~ ~

5y7 R„„R"R 5—ys R R R"~" —5y9"R „R""~R—"g —5yIO'R R&"~+~ '] .
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QZ( 1 ) g2p

5M""=—M'g'e '

gg(1) 3 g3~—1

5Ii")=—„g(6M —gh)e ',
g(1) 6

(g
1 )gie —i

grl(, "=—„g[12M (g——,)—grli]&

5q(,"=——„g[2(g——,}+g812]s

5r13"=—„g[6(g ——,) —grig]&

„',g(1+15gq,)a-',

gre(5"= „,g(1 —15gr15)e

SA(') =——,'M'~-',

Sd') = ,'M'(g —,
' —)~-',——

(1) i 2 —1

180 M

2 —18ai —„,M e

5a'i" ————,M (g——,) & ',
= (2[(& 8 } 9«80]+

] 1 2 23 1

(1) ~3 —1
226SO ~

gy()) '
(g

5r5 =—„.(4—«)&
(1)

(5.10a)

(5.10b)

(5.10c)

(5.10d}

(5.10e)

(5.10f)

(5.10g}

(5.10h}

(5.10i)

(5.10j)

(5.10k}

(5.101)

(5.10m}

(5.10n)

(5.10o}

(5.10p}

(5.10q)

(5.10r}

(5.10s}

{5.10t}

The expression (2.16) for the one-loop effective ac-
tion is finite as @~0provided that the counter-
terms are fixed by

B. Renormalization-Group Analysis

In this section, the asymptotic freedoin of the
theory above is discussed using the renormaliza-
tion-group approach of Refs. 51,52.

Since the counterterms are given as a suin of
pole terms, the following definitions may be made:

gs ——(M
"~ 1+ g (n —6) "a„(g) g, (5.11)

v=1

gg ——g+ g (n —6) "b„(g,g) .
v=1

(5.12)

Define the renormalization-group functions Ps(g}
and Pg(g, g) by

Bg
Ps(g) =((8

Bp

a
Pq(g 4) =I

(5.13)

(5.14}

P«g) = ,g'——
ag

&g(g4) = gb—
1 (4 g}

1 8

Bg

when n ~6 From (.5.10c) and (5.11),

a i (g) = —,(4n. ) g2+. . .

so that

(5.15)

(5.16)

(5.17)

Renormalization-group functions for the other cou-
pling constants appearing in (5.2) and (5.3) may be
defined in a similar manner (see Refs. 55 —58 for
the procedure in the four-dimensional case}.

Bare quantities must be independent of how the
renormalization mass is chosen; that is,
((«(8/Bp)gs ——0, )(8(()/()j(«)gs ——0. By equating coef-
ficients of powers of (n —6} it is found that

180 ~ 6

(1)
&26O

~

(1) i —1
226S ~

(1) ~ —1

567o ~

(1) ~ —1
~1p = &s9o+

(5.10u)

(5.10v}

(5.10w)

(5.10x)

(5.10y)

Ps(g)= ——,(4~) 'g'+ (5.18)

g'(((«) =go' 1+—,(4m. ) 'go'»
pp

This result for the Ps function agrees with Macfar-
lane and Woo. From (5.18}it is seen immediate-

ly that the theory is asymptotically free. Integra-
tion of (5.13) and (5.18) leads to

The presence of all of the nonminimal terms in

(5.2) is seen to be required for renormalizability.
The theory considered by Gass' will, therefore,
not be renormalizable in a general space-time. The
form the Sg counterterm differs from that given by
Gass '

(5.19}

where go ——g()(«0). This describes how the coupling
constant changes under a change of renormaliza-
tion point. From (5.19),g()(«)~0 as phoo. From
(5.10e) and (5.12),
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1

bi(g, g)= 6
(4n. ) (g ——, )g + (5.20)

(5.21)

describes how g changes under a change of p,
where go ——g(po). As p~ cc it is observed that
g(p)~ —,, which is the conformal value. In Ref.
16 it is claimed that g= » is the ultraviolet fixed

point in contrast to what we have found here.

VI. CONCLUSIONS AND DISCUSSION

Therefore, from (5.14), (5.19), and (5.20), it follows
that

—5/9

g(p) = —, +(go ——, ) 1+—,(4~) 'go
pp

beyond the two-loop level in curved space-time
would be quite difficult. Also, except perhaps in
special space-times, the finite parts of the higher-

loop contributions will not be easy to obtain.
In Sec. V, renormalization of the effective action

at the one-loop level was shown for a scalar field
with a cubic self-interaction in a six-dimensional
curved space-time. It was demonstrated using a
renormalization-group analysis that the coupling
constant g had an ultraviolet fixed point given by

1

the conformal value of —, . This corrects a recent

result of Gass. '

The extension of the calculation in Sec. V to two
loops is considerably more difficult than the four-
dimensional one in Sec. IV B. In place of (4.26)
there is

b, (x,x') = 6'6(x)5(x,x')+ 6'i2(x,x'), (6.1)

In the preceding sections, the renormalization of
interacting scalar field theories in general curved
space-times has been discussed. The background-
field method was used to compute the effective ac-
tion and the heat-kernel method was used to
analyze the divergences. It is evident from the cal-
culations of Secs. IV and V that this approach is
much shorter than the usual diagrammatic calcula-
tions which involve an evaluation of the n-point
functions separately for each n Only a. few vacu-
um bubbles need to be considered at each order in
the loop expansion.

In Sec. IV, renormalization of the effective ac-
tion was shown at the two-loop level for a scalar
field with cubic and quartic self-interactions in
curved space-time. The counterterms, including
the gravitational ones, were computed to this order
using dimensional regularization. They agree with
previous flat-space-time results where they are
known. The gravitational counterterms can still be
fixed by flat-space-time calculations involving mul-

tiple insertions of the stress tensor in flat-space-
time diagrams. ' This does not prove that the
theory is renormalizable in curved space-time how-
ever. The extension of the background-field
method (or even the more traditional approach)

where 86(x) is a scalar operator of dimension six
and d'i2(x, x') is a biscalar of dimension twelve.
The argument presented in Sec. IV B cannot be re-
peated to show that d'iz(x, x') must be finite as
e—+0 since not enough calculations have been done.
(It is still presumably true however. ) It would be
of interest to have a more direct way of evaluating
b, (x,x'). An additional complication is that there
are many operators of dimension six which can
contribute to 86(x).

In the case of a noncompact manifold, it is
necessary to impose boundary conditions on the
fields. Boundary effects, which have been ignored
in the preceding sections, can alter the analysis
even in the free-field case. ' For an n
dimensional manifold M with (n —1)-dimensional
boundary BM, the asymptotic expansion of the
heat kernel is changed from that given in Sec. III

61—64

du„trK (t,x,x,I, )-(4n t) " g t Ck (I2 ),
k=0

(6.2)

where

J du„ak~2(x, I2)+ J do„bk~2(x, I2), k even,
Ck(I2) =

do„bkg2(x)I2), k odd .
am

(6.3a)

(6.3b)

(do„ is the induced volume element on BM.) Here ak~, (x,I2) is as given in Sec. III and bk&2(x, I2) arises be-
bo(»I2) =0 so that the leading term in the asymptotic expansion is independent of whether
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or not a boundary is present.
Repeating the analysis of Sec. III using (6.2), in place of (3.16), there is (assuming n&& is even)

P.P. II'"[j]I=e—' J dv„a„„(x,I, ) +I d~„b„„(x,I, ) (6.4)

Only the last term in (6.4) is present if no is odd, so that the one-loop effective action is not necessarily
one-loop finite in odd-dimensional space-times if 8M+0

From (6.4), it is clear that there may be additional pole terms present which are caused by boundary ef-
fects. This is true even in the noninteracting case. ' lt is also known that surface terms may be required
in the Einstein gravitational action. ' It is not possible to be more explicit at this stage, since the bk(x, Iz)
are not known for operators of the form (3.29). Expressions for b &&2(x,I2), b&(x,I2), and b3/2(x, I2) may be

found in Ref. 60 in the case where I2 ——— +gR acts on scalars. In order to discuss renormalization in

four dimensions, b2(x, I2) is required. This coefficient has been computed by Kennedy in the case

I2 ———0 acting on scalars for M flat. The extension of the analysis of the present paper to the case when

boundary effects may not be ignored merits further attention (see also Ref. 68).
Application of the methods of this paper to Yang-Mills theory will be given elsewhere.
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