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Use of hyperfunctions for classical radiation-reaction calculations
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It is shown that the use of hyperfunctions for the evaluation of radiation reaction in
classical field theories leads to calculational simplifications compared to other methods.
As illustrations, we calculate the radiation-reaction terms for systems of point particles in
electrodynamics and in the lowest nontrivial order of the "fast motion" approximation of
general relativity. Applications to other field theories are discussed briefly.

I. INTRODUCTION

In recent years, radiation calculations both in
general relativity' and in gauge theories of
strongly interacting particles ' have become very
important. In general relativity, theoretical calcu-
lations of the period change of a binary system due
to radiation reaction can be compared to observa-
tions of the binary pulsar PSR 1913+16 to pro-
vide a critical test of the theory. In strong-inter-
action physics, the results of radiation-reaction cal-
culations for classical SU(3) Yang-Mills fields may
be of help for the problem of quark confinement.

In a fully nonlinear theory such as general rela-
tivity, the simplest kind of source one can imagine
is not a 5 function, but rather a Schwarzschild
black hole. Nevertheless, some approximation
methods in general relativity use distributions as a
representation of the energy-momentum tensor for
the source, and for a large class of problems this
simplified picture is adequate. ' Although the
distribution associated with a pointlike source is
formally infinite at the origin, it can be used to
idealize the center of mass of an extended object.
Within the exact theory, no difficulty of the "self-
energy" type or due to the singularity of the field
at the origin arises for a single particle; nothing is
known about exact solutions for several particles.
Within the "fast-motion" approximation
method, " which is based on Einstein's linear ap-
proximation method and leads to a series of
Lorentz-invariant equations, one encounters a
problem familiar from special-relativistic linear

field theories such as electrodynamics: although it
can be shown (most generally by Mathisson' ) that
the equations of motion are finite, special tech-
niques are required to obtain the finite fields enter-
ing these equations, in particular the finite part of
the self-field yielding the radiation-reaction terms.
A method devised for this purpose in electro-
dynamics by Dirac' and generalized by Harish-
Chandra' requires rather lengthy calculations in-
volving limiting processes, as do a number of
essentially equivalent methods. The mathernatical-
ly most satisfactory method is that of Riesz, ' '
which is based on analytic continuation.

The somewhat lengthy and delicate analytic con-
tinuation calculations can be considerably short-
ened by the use of hyperfunction techniques in the
evaluation of the integrals appearing in the Riesz
method. The electromagnetic case was described
briefly in an earlier letter. ' Here, we fill in and
correct some details of the electromagnetic case
and also calculate the leading radiation-reaction
terms for the fast-motion approximation method of
general relativity.

II. ELECTROMAGNETIC RADIATION REACTION
AND HYPERFUNCTIONS

We first consider the equations of motion of
point particles interacting with an electromagnetic
field. For a point charge of strength e with coor-
dinates z"(r), where r is the proper time, one has
to integrate the wave equation
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m~=4~~~

with the source term

j"(xi')=e f v"5 (st')dr .

Here x" is a point outside the world line of the
particle,

(2)

dv =rjqgz"dz", gp, =diag (1,—1, —1, —1),
(3)

~p~v~ Qpp9 —~@~ ~@-
AX&

dz"
UP — ZP

d~

st"xi' zt'—(t), —s =ge~t's

(4)

and 5 (st') is a four-fold product of Dirac 5 "func-
tions. " The Riesz potential for Eqs. (1) is taken to
be' (in units such that c= 1)

Q "(x~)= f v~s' 4dr,
H(u)

where H (a) is defined in terms of I functions as

H(a):—2 '~l ( 2 a)I ( —,(a —2)) .

The upper limit ~o of the integral is the proper
time of the particle when the past null cone of the
field point x" intersects the particle's trajectory.
The electromagnetic field strength following from
the potential (7) is

p)
417e( cx) f o

( p v ~ p)
H(a)

Bremermann and Durand. ' They associate with a
distribution on the real axis a pair of holomorphic
functions in the complex plane, one [which we
shall denote by F(x +ie)] holomorphic in the
(open) upper half plane, the other [similarly denot-
ed by F(x —ie)] holomorphic in the lower half
plane. The limit of the sum of these two functions
at x +is and x —is, @~0,x on the real axis,
represents the distribution, and it can be shown
that any distribution with compact support (a suf-
ficient but not necessary condition) can be so
represented (see theorem 3 of Ref. 21). Thus in the
following we consider a hyperfunction f(x) related
to a "defining function" F(z) by

X Xdx

=lim f [F(x+ie) F(x—ie)]—P(x)dx
e~O

= f [F(z)]$(x)dx, (10)

tvhere P is any test function PE(N), with (&) be-

ing the vector space of all C functions on R"
that have compact support. It can then be shown

(see theorem 4 of Ref. 21) that the definite integral
of f(x) is given by

bf f(x)dx—= —f F(z)dz, (11)

where F(z) is the defining function that gives a hy-

perfunction f(x) for a &x & b and zero otherwise.
The contour C must enclose a and b and may be
deformed freely, without changing the result,
within the region in which F(z) is analytic. Simi-

larly, the derivative of a hyperfunction is given by
the derivative of the defining function

Analytic continuation of Eq. (7) to a=2 pro-
duces the classical I.ienard-Wiechart potential at
events not located on the world line z&. In order to
evaluate the effects of radiation reaction on the
motion, however, one needs to evaluate the Riesz
potentials at events on the world lines. We now

show that a meaningful interpretation of the Riesz
potentials evaluated on the world lines can be given

by hyperfunction techniques.
The concept of hyperfunctions was introduced

by Sato'; a brief review was given by Fujii. ' lt is
a generalization of the concept of function very

closely related to Schwartz's theory of distribu-
tions, which defines a distribution space as the
dual of a linear space of "test functions. " Among
other possible definitions of distributions the one
most closely related to hyperfunctions (and more
readily accessible than Sato's work) is that of

dX

dF(z)
dz

5(x)=— 1 1 1

2&l X +lC X —l6'

2&l z

x, x ~ 0, A,+integer,
X+

0, x(0,

( —z)
2i sin(A, ~)

[in the sense of Eq. (10)].

Examples of hyperfunctions are

(13)

(14)
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A useful illustration of the integration of a hyper-
function is

1I x'-'dx =—. (15)

—z dz= —.k —1 (16)

Here the contour C is chosen as the unit circle cen-
tered at the origin z=O. Thus, without appealing
to analytic continuation, one can give a meaningful
interpretation to the integral (15) for all A.+0.

We now return to the problem of evaluating the
integral of Eq. (9) for field points on the world line
of the source, omitting for the moment the (well-

known) contributions of other sources. To be able
to make use of Eq. (16), we express the integrand
in a power series in ~ around the retarded point 7 p,

using the Taylor series

S = —V 07 —
2 V07 —

6 Vp'T

v~=u . +U 7+ v 7+''0 0 2 0

S = —~—,4 V0Vp~&
1 "p

s~u —s u~=
2 ("o"o—uouo)rp v v p 'I v v p 2

+ 3 (UVUo —UoUo )r +

(17}

(18)

(19)

(20}

Making use of the properties of the I function, we
can rewrite the factor in front of the integral as

4me 2(a —2)e
H(a) 2a —1[r( a)]2

(21)

Because Eq. (9) has to be evaluated at a=2, the
factor (a —2) of (21) will eliminate the contribu-
tions of all powers of ~ in the integral except those
of r, which by Eq. (16) give a factor (a —2)
Thus we only need the corresponding terms in the
products of the expansions, and obtain

(4—a)(a —2)e

2 -'[r(-'a)]'
0

X 3 (U~ouo —vous)( —r) dr (22)

This integral is convergent in the usual sense only
if the real part of k is greater than zero. However,
if x ' is interpreted as a hyperfunction x+
[Eq. (14)], the integral (15) can be written as

~ ~x '-'dx= 1

2i sin[()L, —1)~]

III. EQUATIONS OF MOTION
IN GENERAL RELATIVITY

In this section, we essentially follow the notation
and procedure of Refs. 11 and 2. One wishes in

general to determine a spacetime model which sat-
isfies the Einstein field equation

G~'=8~GT~' (26)

and thus also its consequence

(27)
We assume that the metric can be written in the

form
g~.=&~-+I ~-

where g& is the Minkowski metric, and where

h&„«1. For calculational ease, we represent the
center of mass of an extended body as a distribu-
tion. The stress-energy tensor can now be written
formally as

(28)

v "v"5 (se)drTI"=m
[(—g)grrpv u ]'

where dr and u& are given by Eqs. (3) and (5), and

(29)

g=detg p.
The form (29) of T&" actually can be den ued from'
the field equations (26) and the assumption that
the particles are monopole singularities of the
field. " For n particles, T" in Eq. (26) is a sum of
terms of the form (29).

The conservation law (27) restricts the motion of
the sources. It is convenient to rewrite the system
of (1) a field equation and (2) energy-momentum
conservation as (1') a reduced field equation of the
form

which vanish for a=2. Thus, using Eq. (16),
then putting a equal to 2 and dropping the sub-
script zero, we obtain

2I'"'= —,e( v'"u" —v "v") . (23)

From Mathisson's results' mentioned earlier, or
equivalently from Dirac's, ' both of which are
based on overall local conservation of energy-
momentum, the equations of motion must have the
orm

mv" =eF"'v, . (24)

Inserting the contribution (23) of the particle under
consideration as well as those of the other parti-
cles, we thus obtain for the ith particle

mivi —ei g +j rerviv+ 3 ei (Ui ui UiEr ) ~ (25)
Jjl

the well-known Schott-Lorentz-Dirac equation.

where = indicates that we have omitted the terms Qgy""=16rrGT""+A""(g p), (31)
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where y& is a certain combination of the com-
ponents of g~v, and (2') the coordinate condition

a„[(—g)'" ]=0. (32)

+A"'(rl p+h p)+p"'(h p), (33)

where p(h} arises from the substitution of the flat-

space wave operator Cl„ for Os on the left-hand

side of Eq. (31).
We seek an approximate solution of Eq. (33) by

the following iteration procedure: Put h =0 on the
right-hand side of Eq. (33) and use the retarded
Green's function of flat space to obtain the linear-
ized field ih associated with T(rj) for arbitrary or-
bits. The metric correction ih is of order
k =GM/L, where M is a typical mass, L is a typi-
cal separation, and we assume that k g&1. We
next insert ih into the right-hand side of Eq. (33)
and keep terms of second order in k. These terms
so far are functionals of the unspecified orbits.

The use of point particles implies that the metric
contains formally divergent terms (and that our ap-
proximation is not uniformly valid in the sense of
an asymptotic expansion as the world lines are ap-
proached). We will regularize the fields by a pro-
cedure to be elaborated after we have obtained the
laws of motion.

Placing the sum of the first- and second-order
metric into the coordinate condition (32} leads to
the first-order law of motion

The reduced field equation (31) itself imposes no
restrictions on the motion of the sources. Substi-

tuting expansion (28) into this equation one obtains

U„P"= 16nGTp„(gap+h p)

(38)

where the particle trajectories are parametrized by
the Minkowski proper time. Note that, to obtain
an equation of motion containing the first-order
metric ih, one must iterate the relaxed field equa-
tion (33) to the second order.

When the fields are placed in our law of motion
(34), divergent terms occur. However, as shown in
Ref. 11, one may remove the infinite terms coming
from the first iteration of Eq. (33) and calculate
the finite terms by the methods of Harish-Chandra
or Riesz. Here, we will obtain finite terms by
combining Riesz potentials with our hyperfunction
techniques. The Riesz potential now does not have
the form (7) which followed from the form (2) of
the source term in the inhomogeneous wave equa-
tion. Instead we now have from Eq. (29), in the
order considered, restricting for the moment our
attention to a single particle,

T"'=m t u"v "5 (sP)dr, (39)

and thus

16irGm '0 a 4
all pv= Up VvS d r, '

Ha
or, making use of Eq. (35),

(40)

16m.Gm 'o i 4alfpv H, (Vpuv —
2 Ipv)$ dr ~H a)

tion (34) agrees to first order in k with the geodesic
law

gppVt 1 Pl UPVtP 0'

mt ~@SO ~

V au P) 1 l2 2
(g „a P)1/ 2 ~P

d
P

'
Pml

d
[(9'+ if')ui 2 9ppui Ifapvi i ]

7t

= —,m;UPU; B»gp, (34)

and therefore

16irGm (4—a)
a i}pifpv =

H( )

(41)

where

iyP =—16irG g I D($2)mJVJPuz drj. ,
J

a aP
1Va = 9 1VaP

(36)

(37)

In Eqs. (36) and (37) D(s } represents the retarded
Green's function of the wave equation (33). Equa-

1 c pg per po' Gs1gpo = 1Vpo+ 2 Qpo1/as 18 1V 2 I 1V a &

(35)
aP VO 0'

1Vpo Ipe IcrP 17 ~ 1gpv 1g ~p

'TQ

(upu, ——,rip„)sps dr .

(42)

In Eqs. (40)—(42) all indices were lowered with the
Minkowski metric.

We now proceed as in the electromagnetic case,
expanding about the retarded point and inserting
the expansions (17)—(20) into Eqs. (41) and (42).
We can rewrite the factors in front of the integrals
as in Eq. (21) and thus can restrict ourselves to the
terms in the integrands proportional to r
Therefore we have (omitting the subscripts zero}
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8(a —2)Gm
~ [f'( —a )]2

— dz

4(4 —a )(a —2)Gm o ~ 3 I 1 "g 6 a "p— ~ ~ dupuv
~(Bp )gp~)= (

—1 rip~ 3 (upu~ —
2 'gp) u — u upu +u

2
—[1( a )] — 4 dr

d Vpuv
d~,

d

(43)

(44)

and thus for a =2 (omitting the left subscript 2)

]gp~ —4Gm (uop uoy+ up@ uo~ ) y

2
duppupv d uppupv

dp lgpv 4Gmgpn 3 (uopuov 2 tlpv)(uo uouopup )+uo +uo
d7. d7

(45)

(46)

inserting the contributions (45) and (46) of the particle under consideration as well as those of the other par-.
ticles into the law of motion (34), we thus obtain for the ith particle

'd; ~ J
Qpp+ ~ ]Rppret U&

—
2 Qpp p ~ ]gapretu& u& 2 ~i ~ p 1fapret i i

jQ& j+i jQ&

11 2 ~ op ~ og p—
3 Gm, gyp(ui' —ui uinui ) ~ (47)

which is identical with the result of Havas and
Goldberg. "

IV. DISCUSSION

We have calculated the radiation-reaction terms
both in classical electromagnetism and in the first
nontrivial order of the fast-motion approximation
in general relativity by using techniques involving
hyperfunctions. These techniques lead to great cal-
culational simplifications over the methods
pioneered by Dirac, and greatly simplify Riesz's
method of analytic continuation. In particular,
when derivatives of field quantities are needed in

the equations of motion, it is possible to evaluate
these quantities on the world line of the particle by

I

bringing the derivative inside the integral as in Eq.
(42). These techniques can also be employed in
calculating radiation-reaction terms in higher ftera-
tions of the Einstein field equation, as well as in
Yang-Mills theories. In addition, because hyper-
functions are defined in the complex plane, there is
a deep connection to the theory of twistors, which
will be discussed elsewhere.
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