
PHYSICAL REVIEW D VOLUME 26, NUMBER 10 15 NOVEMBER 1982

Strong-coupling quantum gravity. I. Solution in a particular gauge
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The strong-coupling limit of general relativity is quantized in a fixed gauge. An exact
solution to the quantum field theory is given (it does not require any artifice such as a

lattice), and the dynamical properties of the theory are discussed. The configuration

space is closely related to the symmetric space SL(3,R)/SO(3), and this connection is ex-

ploited.

I. INTRODUCTION

where

1

G~jkl 2 (gikgji+'giigjk gijgkl ) &—(1.2)

Much effort has been made in applying the stan-
dard methods of quantum field theory to the prob-
lem of quantizing the gravitational field. Al-
though these methods have been spectacularly suc-
cessful when applied to other field theories of phy-
sical interest, they have failed when applied to gen-
eral relativity. The theory is nonrenormalizable
and cannot be defined.

This failure has led to the consideration of many
different theories of gravity in the hope that one of
them will be better defined. In this paper we will

study a strong-coupling limit of general relativity,
and, in particular, we will quantize the theory in
this limit, i.e., an exact solution on a continuous
four-dimensional manifold will be found. This
limit highlights properties of the quantum gravita-
tional field that are complementary to those that
are usually studied, and it is hoped that an under-

standing of this additional facet of the gravitation-
al field will be of help in obtaining a complete
quantum theory.

In studying this limit we will follow a suggestion
of Isham' which is most easily motivated by look-

ing at the Hamiltonian formulation of general rela-

tivity. The dynamical part of the Hamiltonian is
given by '

A i =ag Gijki+ vr" —i~ g R-—1/2 'j kl —1 1/2

and ~=16~6/c, H~ is the canonical conjugate to
the three-dimensional metric g,j, g=detg, j, and R
is the curvature scalar computed from g;j. Notice
that (1.1) has the form H="jj + V". The strong-

coupling limit is obtained by dropping the V, i.e.,
by taking as the dynamical part of the Hamiltoni-
an

4 0
——g

j G, ski' mj. =0. (1.3)

It is expression (1.3) that we want to quantize
exactly. The idea is this solution will provide the
analog, for the strong-coupling limit, of Fock
space, for usual quantum theory. The full theory
of general relativity is then to be recovered by
treating "V"= —g' R as a perturbation about
this solution. Here, only the quantization of (1.3)
is considered, and the development of the perturba-
tion theory will be treated in subsequent papers.

Notice that the Hamiltonian (1.3) roughly has
the form "iP 6", i.e., it is the Hamiltonian for a
nonlinear field theory. Standard experience tells us
that exact quantum field theories for such Hamil-
tonians are rather rare; but also notice that (1.3)
has a property that might considerably simplify
the construction of an exact solution. It is ultralo-
cal; that is to say, by taking the 6—+ oo limit all
spatial derivatives have disappeared from the
dynamics. Nearby spatial points are uncoupled
and the dynamics at different points are indepen-
dent. The light cones have collapsed to "vertical"
lines. Interacting field theories in the ultralocal
limit have been extensively studied by K.lauder,
and exact solutions to a wide class of such theories
have been given by him. In this paper, we will ap-
ply his methods to general relativity. (It should be
mentioned that the strong-coupling limit of Yang-
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Mills theory is also ultralocal, and this will be dis-
cussed in a separate paper. )

The Hamiltonian (1.3) can also be considered (a)
a c~0 limit of (1.1) or (b) a o —+0 limit, where
o.=n "n&, with n& the normal to a generic space-
like hypersurface. This latter limit has been em-

phasized by Teitelboim, ' and is particularly help-
ful in understanding the geometry of the four-
dimensional manifold generated by A 0. This
geometry has been investigated in detail by Hen-

neaux who has shown that it corresponds to a
four-dimensional manifold with degenerate metric
(det' 'g&„——0; roughly speaking, the timelike direc-
tions have become lightlike lines after the collapse
of the light cone). Any three-dimensional mani-
fold that is nowhere tangent to one of these light-
like lines is spacelike, and, classically, it is on such
a manifold that the initial data are given.

General relativity is a gauge theory and it has, in
addition to the generator of dynamics (1.1), a gen-
erator of gauge transformations [i.e., coordinate
transformations (Lie derivatives) on the spacelike
hypersurfaces] given by

kj2gik~
~

j=o ~ (1.4)

where the vertical bar denotes the covariant deriva-
tive in the metric gfJ In contrast to the Yang-
Mills case, the coupling constant ~ does not occur
in the gauge generator A;, and the strong-coupling
limit has the same properties under three-dimen-
sional coordinate transformations as the full

theory. This is what one would expect. The coor-
dinate transformation properties of fields defined
on a three-dimensional manifold are intrinsic pro-
perties of the fields and the manifold. They are in-

dependent of how the manifold is embedded in the
four-manifold (which is determined by the dynam-
ics ' and depends on the strength of the cou-
pling). In this paper the gauge freedom associated
with (1.4) will be frozen out.

The present paper provides a quantization of the
theory whose dynamics is determined by (1.3) with
gauge invariance generated by (1.4). It is organized
as follows. In Sec. II the problem of the proper
choice of variables for general relativity is con-
sidered, and a noncanonical choice is made in or-
der to preserve the positive-definite spectrum of
g,J. Section III discusses the gauge invariance and
the gauge-fixing condition is given there. The
Hamiltonian is then expressed in terms of the in-

dependent variables. In Sec. IV the ultralocal rep-
resentation of the independent operators is given
and some of its properties discussed. The expres-

II. CHOICE OF VARIABLES

Classically the standard choice for basic canoni-

cal variables is the three-metric g,J and its conju-

gate H~ which satisfy

[g;;(x),+'(x ') ] =
2 (5,'5J+5,'5i)5(x, x )

—=5;,'5(x x '), (2.1)

where [, ] denotes Poisson brackets. The field g;.
is not arbitrary, but must have signature
(+,+, + ). Equivalently, the four-metric g must
have signature ( —,+, +, + ) [the minus sign here
is determined in the canonical formalism'" by the
relative sign of the "p " and "V" terms in (1.1)].
This condition must be carried over into the quan-
tum theory by requiring that the operator g;J have
positive-definite spectrum since if this condition
was violated in the quantum theory it is hard to
see how it could be maintained in the classical lim-

sion for the Hamiltonian in this representation is
given. In Sec. V the form of the ground state is
found, and a proposal for extracting dynamical in-

formation discussed. The results of this paper
have much in common with work done in the early
Seventies on quantized cosmological models and
this is also discussed in Sec. V. The main part of
the paper concludes with a summary and discus-
sion. It is found, in the course of developing the
strong-coupling theory, that the symmetric space
SL(3,R)/SO(3) is closely connected with the config-
uration space of general relativity. The geometry
of this space and elementary analysis on it are
described in Appendixes A and B. In addition,
there is an Appendix illustrating a simple analog
of the gauge condition used in Sec. III, another

summarizing the work on quantum cosmology,

and a final one providing motivation for our

choice of representation.
Throughout this paper the coordinate label x

will refer to a coordinate patch on a three-

dimensional, compact (but otherwise arbitrary)
manifold. The noncompact case is fundamentally

different and the results of this paper do not apply.
This is related to the fact that, in the noncompact

case, the generator of time translations is given by

a surface integral and not by (1.1) alone. While

many interesting topological questions arise when

developing the quantum theory for the strong-

coupling limit they will not be discussed here.
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and for the general g we see that e'"~ is not a uni-

tary operator on L (0, 00) [f g*(q)P(q)dqQ

f P'(q+«)g(q+ r)dq); hence p cannot be self-

adjoint. Loosely, the variable p cannot be self-
adjoint since it tries to translate q outside of its re-
strictions. The same thing will be true of' g,z and

One suggested solution to this problem' is to
choose canonically conjugate variables (triads)
e,p,

'
(a =1,2,3) satisfying

I e (x),p&J(x ')
I =5s5,'5(x, x ') (2.2)

it, thus destroying its physical interpretation.
In the usual covariant quantization of gravity

the metric is expanded in a perturbation series
about q&~ the Lorentz metric, so to low orders in
perturbation theory, one might feel justified in ig-
noring the spectrum problem. For the strong-
coupling theory such a perturbation expansion is
inappropriate and the metric operator will be quan-
tized as a whole without being broken into quan-
tized and unquantized parts. In this case the prob-
lem of the restricted spectrum must be confronted
head on.

It is well known that if q and p are canonically
conjugate variables the spectrum of one cannot be
restricted and at the same time have q and p both
represented by self-adjoint operators. To see why,
assume that q is restricted by q & 0, and work in a

q representation. The Hilbert space will be the
square-integrable functions of a positive variable,
i.e., L (O, oo }. Take P(q) GL (O, oo), then

a b& a ij pa
i j ab giJ& i Jbg b (2.3)

[g;,(x),ml(x ')]= (g(15J+g—j(5(~)5(x,x '), (2.4)

(2.5)

are chosen. The action of ~I on g;J is given by

Condition (2.3) guarantees that the derived quanti-
ty g,J never has a negative eigenvalue. The metric

g;J is also required by (2.3) to be invertible, i.e., we
must have that dete +O. As above, maintaining
this classical restriction in the quantum theory is
not compatible with a self-adjoint p,'. Some"
would relax this restriction, i.e., allow dete =0 be-
cause they desire a mechanism for the change of
topology —the topology change proceeding through
the singular geometries given by the noninvertible
triads. We will not choose this solution since we
prefer to stay as close as possible to the spirit of
the classical theory.

The solution that we will choose involves the
representation of a noncanonically conjugate set of
variables as self-adjoint. In addition to the metric
operator g,j, variables denoted by mj [heuristically

mj = , (gjk&'+ m"—'g
J)k] and. satisfying the commu-

tation relations (we briefly use quantum-
mechanical language to motivate the choice of the
n"j),

gz
——exp(i f Ak(x ')m~(x ')dx')gz(x)exp i f )(k(—x ')ml (x ')dx '
=exp[ ——,A,; (x)]gk((x)exp[ ——,AJ(x)], (2.6)

where A,k are c-number elements of some suitable
function space.

It is easy to check that if ~y,j ) is an eigenvector
of g;~ with eigenvalue y;J of signature (+,+, + )

then exp( —i f Akm~) ~yi ) is an eigenvector with

eigenvalue exp( ——,A,;)yk~exp( ——,Ai}, and this

eigenvalue has signature (+,~, + ). The operator
m.I can be taken as self-adjoint since its action
respects the restriction on the spectrum of giJ.
This is an application to the specific case of gen-
eral relativity of methods first suggested by
Klauder. ' '

One should notice that the commutation rela-

t

tions (2.5) are the same as those for the generators
of GL(3, R). The importance of GL(3, R) and espe-
cially of SL(3,R)/SO(3) will become obvious in the
remainder of this paper. Closely related to this is
the fact that the n.

z correspond to Killing vectors
for the metric of the configuration space of the
theory (see Appendix A). This provides another
motivation for using the variables mJ-.

The discussion in this section has been indepen-
dent of the strong-coupling limit or any other as-
pect of the dynamics, but, if one takes into account
that we eventually want to quantize the ultralocal
limit of gravity, the work of Klauder ' provides
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yet another motivation for considering the m&. He
finds that for ultralocal theories canonically conju-

gate classical variables do not exist as quantum
operators, but variables satisfying commutation re-

lations of the type (2.4) do exist.
The operators g,j, mI have gauge as well ask

dynamical information in them. In the next sec-
tion we fix the gauge freedom. The choice of ~I
plays an important role in this.

III. FIXING A GAUGE

a first step in identifying the independent degrees
of freedom.

In Appendix A the structure of the space of g;j's
is considered. On that space the generator (1.1)
implies a natural metric, namely expression (1.2),
which has the hyperbolic signature
( —+ + + + + ). The quantity ~(x)=m.,'(x) is
found to be a timelike, hypersurface orthogonal
Killing vector on the space of g,j. The "timelike"
[in metric (1.2)] coordinate conjugate to it is

r(x)= —, lng(x) . (3.1)
The classical constraint A; =0 (1.4) is, in the

quantum theory, usually taken as the restriction
A;%'=0 on the state functionals. ' It is cus-
tomary to work in a metric representation, i.e.,
%=V[gJ ], and one can argue" that this restriction
implies that 4 is a functional only of the
coordinate-independent information in g,&. The
state is thus a functional only of the intrinsic
geometry. ' This sort of discussion usually stops
at this point. While one can write simple examples
of coordinate-invariant state functionals, ' no one
has come close to giving a complete Hilbert space
of such functionals with a complete set of
coordinate-invariant observables (a naive attempt
was unsuccessfully made in Ref. 17). In this pa-
per, we would like to develop a formalism in
which computations can potentially be made in
reality and not just in principle. To do this we
cannot get away with merely saying that the states
are coordinate-invariant functionals of the canoni-
cal variables. For this reason we will fix a gauge.
The particular gauge that we choose is especially
natural for the strong-coupling limit, but is very
unnatural for the perturbation theory in g' R.
This defect will be corrected in a future publica-
tion.

The three constraints A; =0 imply that we must
impose three gauge conditions in order to eliminate
the three degrees of freedom (three q's and three
p's) associated with changes of coordinates on a
spacelike hypersurface. (To be absolutely clear, we
are fixing the gauge in the classical formalism and
will then quantize. ) The metric tensor g;J has six
independent components, with three being associat-
ed with coordinate invariance and two representing
independent degrees of freedom. We are thus left
with one component that is neither gauge nor phy-
sical. This extra degree of freedom has been iden-

tified as an intrinsic time. ' We thus have the
problem of explicitly identifying a natural intrinsic
time as a functional of the g,J. We will do this as

This we identify with the intrinsic time (this choice
is also made in Refs. 19 and 20).

The dynamical generator is given by

=e 3'~2(P'PJ m)— (3.2)

where

i i & i
pj 77j 3 %5J

which satisfies I' =0. If one makes the identifica-
tion mi5/5. r-, then 4 o looks like a loein-Gordon
operator. For a state functional 4 the condition

(3 3)

determines the development of 4' in the intrinsic
time r. We will write %=%[g~,r] where

gJ(x)=g '~ (x)gJ(x)

=e ~ " 'gJ(x), (3.4)

which satisfies detg;j =1. If it was possible to in-
troduce a Hilbert-space structure on the 4 then the
inner product would be taken at some fixed time,
although the particular fixed time could vary.

This particular way of identifying ~ as a non-
dynamical variable and taking inner products at
fixed s has much in common with gauge fixation,
but it is obviously much different since 4 remains
an explicit function of a varying ~. The existence
of such a variable is a direct result of the general
covariance of general relativity and is one of the
features that distinguish theories of gravitation
from other gauge theories. The gauge invariance
for gravity is not an internal one, and one of the
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"directions" of the transformations is timelike (in
spacetime). Associated with the four gauge degrees
of freedom are the four generators A i,A; that (for
compact spaces) make up the Hamiltonian. Fixing
r completely (say, making it equal to 5) would en-

tail the elimination of the constraint A z ——0 thus
destroying the theory's dynamical information.
The formalism would become "frozen" in time. ' ' '

This discussion applies only to the case of a
compact three-manifold. For the noncompact
case, time is measured by the Minkowski time at
infinity, and associated with this is a surface in-

tegral which is included in the Hamiltonian. In
this case the gauge is completely fixed by four con-
ditions, and, after gauge fixation, the surface in-

tegral generates the dynamics. Notice that the
Hamiltonian formalism makes these considerations,
which are necessary for properly treating compact
manifolds, particularly clear. The fundamental
distinction between the gauge invariance associated
with 4; and the transformation in proper time
generated by A z has been treated in a path-integral
formulation by Teitelboim.

From the above discussion we can see why the
fact that ri is a timelike, hypersurface orthogonal
Killing vector makes v a particularly natural
choice for an intrinsic time. The existence of such
a vector enables one to define in a natural way
positive- and negative-frequency solutions to the
wave equation (3.3). Put slightly differently, one
is able to separate the r dependence from the gij
dependence of %. Notice in this context that in-
creasing (decreasing) r corresponds to an expanding
(contracting) local geometry. Positive- (negative-)
frequency states correspond, loosely, to expanding
(contracting) universes. '

From the above considerations it can be seen
that the quantum theory that we will develop will

possess some nonstandard properties. Remember
that m is a Killing vector on the space of g,z, not
on spacetime. In the above discussion we have
been treating the quantum field theory of strong-
coupling general relativity as if it was finite-
dimensional quantum mechanics on the space of
g,j. We will find that this is roughly what hap-
pens. We reemphasize that nothing has been quan-
tized yet and any discussion of quantum mechanics
so far should be considered heuristic and motiva-
tional. In the actual quantum theory many of the
details will be different.

So far we have singled out ~ and ~ as being non-
dynamical and we have left g,j and PJ. These vari-
ables satisfy the bracket relations [we will drop

factors of 5(x, x ')]

[rm. ]=1,
I r, P,' 1=0, I r,g;, )=0,
[ m, g;, I =0,

I ~,P,
'

I =0, I ~,~ I =0,
k 1 — k k 2 k

I gij&Pl l 2 (gi15j +gjl5i g gij 5I ) ~

I
P' Pi I

= (Pt5 —P"5i—)

(3.5)

(3 6)

(3.7)

(3.8)

(3.9)

(3.10)

The Pj, being traceless and satisfying (3.10), gen-
erate SL(3,R).

To eliminate the constraints A; =0 we need to
impose three gauge-fixing conditions that are to be
functionals of g,j and PJ. In terms of the new
variables 4; has the form

A;(x) = ——,rr;(x)+ —,(e ~ " ');m(x)

=0. (3.11)

Notice that the canonical pair ~,m is completely
separate from g j and PJ in (3.11).

In choosing a gauge condition our goal is to
keep the strong-coupling limit as simple as possi-
ble. This goal essentially implies that the gauge
condition should be a functional only of PJ' To
see why this is so assume the condition is only a
functional of g;~. One would then have to use
(3.11) to solve for the dependent Pj in terms of m,

~, and the independent degrees of freedom. This
expression for the dependent Pz would then be
plugged back into expression (3.2) for P o, giving a
tremendously complicated Hamiltonian to be quan-
tized. Making the gauge condition a functional of
the PJ puts this complication into the dependent
parts of g;j [A 0 is determined by just plugging the
gauge condition into (3.2)]; but (3.2) is independent
of g,j, so this complication will not bother us in
the strong-coupling limit. It of course becomes a
problem in developing the perturbation theory
since 8 is a functional of g,z. The fact that
[Pz,A OI =0 means that any gauge condition that
is only a functional of P& will imply no additional
restrictions on the Lagrange multipliers such as oc-
cur in Yang-Mills theories or various gauge con-
ditions in general relativity.

We again see the utility of the mj variables. In
fact, even if there were no other good reasons for
using mz, these simple gauge conditions would pro-
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vide ample motivation. Gauge conditions of a type
similar to the ones chosen here have also been use-

ful in Yang-Mills theory.
When considering gauge conditions formed from

the PJ the first thing that one must come to grips
with is the fact that there are eight PJ while one
wants to have three gauge conditions with two in-

dependent degrees of freedom left over. There
seem to be three components of P~ too many. The

PJ generate SL(3,R), but the space of g;J is, effec-

tively, SL(3,R)/SO(3). The "extra" three com-

ponents of PJ are just the generators of SO(3). Put
another way, the tangent space of SL(3,R)/SO(3) is

five dimensional and the eight P/ can be identified

with elements of the tangent space; so not all of PJ
are linearly independent [when considered as vec-

tors on SL(3,R )/SO(3)].
The quantities

where IIq( x ) and II&( x ) with their conjugates t
&
( x )

and t2(x) are to represent the two independent de-
grees of freedom.

What we would like to do is take Rz ——0 as the
gauge conditions with P, =0 being the automatic
result of the P, 's being generators of SO(3}. This
cannot strictly be done since the P, generate the
action of SO(3) only at the origin of
SL(3,R)/SO(3). For us to be sure that (3.15) can
be consistently imposed we must find a two-
dimensional submanifold E of SL(3,R)/SO(3) such
that H~ and H2 represent tangent vectors to E that
span its tangent space, and such that the gauge
conditions Rz ——0 also guarantee that the genera-
tors of the action of SO(3) are zero at all points of
E. This manifold exists and is just the manifold
generated by the action of II~ and II2 on the identi-
ty 5,&, i.e., it is the manifold of matrices of the
form

P)(x)=2[Pp(x) —P)(x)],

Pq(x) =2[P3(x)—P, (x)],

P3(x) =2[Pz(x) —P3(x)]

satisfy

(3.12)
ti( x )

e
t2( x )

e

0 0

0
—[t)( x )+t2( x )]

e

(3.16)

I Pa Pb I =&abcP.

Ri(x)=P2(x),

R2(x) =P3(x),

R3(x)=P, (x) .

(3.13)

The P~, R&, II ~ ( x ) =P I ( x )—P 3 ( x ), and
II2(x)—=P2(x) —P3(x) span the set of PJ with

H~, H2 corresponding to the generators of the Car-
tan subgroup of SL(3,R}. They satisfy

[ II(,112 I =O. (3.14)

We want to choose as a combination of gauge-
fixing and SO(3}-eliminating conditions,

Pa =o (3.15)

[i.e., the commutation relations of SO(3)]. In addi-
tion define

We have used our knowledge of the geometry of
SL(3,.R)/SO(3) to find a gauge-fixing condition and
to identify the manifold of independent coordinates
with a submanifold of SL(3,R)/SO(3). The close
connection between 4 0 after fixing this gauge and
the Laplace-Beltrami operator on E will be shown
below.

One must be careful not to confuse (3.16) with

gj. The matrix (3.16) is an expression for a gener-
ic point of the manifold of independent degrees of
freedom. The actual relation between t& and t2
and the components of g,j is rather complicated.
In addition, some of the components of g;z are to
be expressed as functions of n., r, t„ t2, II„and II2

by solving the constraints (3.11). The simplicity of
many of our expressions can be traced to the fact
that they are written in terms of t~(x) and t2(x)
and not in terms of g;J.

Now we wish to compute the expression for A 0

in this gauge. First of all we will drop the e
from expression (3.2). The quantity A 0 is con-
strained to be zero; this can make no difference
classically, but it has been found to be a very con-
venient thing to do in various treatments of canon-

ically quantized gravity. ' ' We also mention in

passing that this modified A o expressed in terms
of PJ does not have a factor-ordering problem.
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Equation (3.2) becomes

~o(x)=(PI) +(P~) +(P3) +2PfR)

+2PpRp+2P3R3

=0,
and, after imposing Rz ——0 and using

P,'= —,(2II, —II~), P~= —,{21ip—II)),
P3 ——,——(II&p II&), we get the expression

(3.17)

A o
———,(a~ ym —m ) =01 (3.20)

and from now on we will drop the factor of —,

from (3.20). Now we take t+(x),n+(x) and
t (x),n(x) with.

1t~(x)= (&)+~p),
8

1
t (x)= (r, —r, )

24

(3.21)

(x)= —,[(II,) +(II ) —II,II ] ——,m =0

(3.18)

in terms of II~, Iiq, and m.. Comparison with (Bl)
shows the close connection between (3.18) and the
Laplace-Beltrami operator on E. Following Mis-
ner we define

(x)=~2(11 +11 )
(3.19)

(x)=v 6{11,—11 ),
in terms of which A 0 becomes

as our independent degrees of freedom.
Expressions (3.16) and (3.20) establish a close re-

lationship between the strong-coupling limit of
general relativity in this gauge and previous work
on quantum cosmology for a matterless Bianchi
type-I (Kasner) universe. ' In these simplified
models the complications associated wtih solving
4;=0 do not exist and expression (3.16) is directly
related to the metric (although t& and tz are no
longer functions of x) and similarly for (3.20).
This work provides motivation for much of what
we do in the remainder of this paper, and it is
summarized in Appendix D.

As was mentioned above, the manifold
g'= g -„E-„(where F.-„ is a copy of E at the
point x) on which we are going to do the quantum
theory is not the same as the manifold &~ of in-
dependent degrees of freedom obtained by impos-
ing the constraints Rz ——0 and A; =0. The form
of the expression (3.18) and its close connnection
with {Bl)and (B3) make 8' the obvious place to
construct the quantum theory. This is not the nor-
mal way of doing things, and the relevance of the
results obtained here to a quantum theory of gen-
eral relativity will have to be established (although
we make no attempt to do it).

To see why working on &, as is conventional, is
something to be avoided we outline the usual ap-
proach to quantization after a gauge has been
fixed. An object of primary importance is
[Rq,A; j which is given by

I Rq(x), A ~(x ') j =[PI(x)—Pz(x)]5 z(x, x ') —Pz(x)5 3(x, x '),
IR(p~pj=0 IR1(x) ~3(x') ]=P3(x)52(x

[ Rz(x),A &(x ') j =P&(x)5 3(x, x '), [ R~,~3 j

[ Rz(x), A q(x ') j =[Pq(x)—P3(x)]53(x,x ') —P3(x)5 ](x x ),
[ R3,P, j =0, [ R3(x),A z(x ') j =Pq(x)5 ~(x, x '),

[ R3(x),~3(x ') j =[P3(x)—P', (x)]5 )(x, x ') —P)(x)5 p(x, x ') .

(3.22)

The quantities Pz, P3, and P~ in (3.22) are depen-
dent variables that are determined as functionals of
~, m., and the independent degrees of freedom
through 4;=0, Rz ——0, and the definition mj.

=g&IH'. The gauge condition is a good one when s

det[R„,A; j +0. Expressions (3.22) and the brack-
ets of A; (and Rz) with themselves are sufficient

to determine the brackets of all independent quan-
tities when restricted to the surface & (these are
given by the Dirac brackets ).

There are two (equivalent) methods of quantiz-
ing this system. The first is to find explicit func-
tional forms for the independent quantities such
that their classical brackets (restricted to &) are
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satisfied as commutators (i.e., the analog of x =x,
p = i—8/dx) T. he second is to include ghosts into

the Hamiltonian with couplings determined ' by29, 30

(3.22) while using all of the g;J, Pz with their ordi-

nary brackets (3.5)—(3.10). These methods are ex-

tremely difficult to implement in the case that we

are interested in. For example, II& and II2 no
longer commute when restricted to &, but, instead,

satisfy a very complicated bracket, which makes
the first method difficult. In Yang-Mills theory
the inclusion of ghosts is possible only because
their coupling to the gauge fields can be treated as
a perturbation. The ghost terms that are implied

by (3.22) have no coupling constant (we are looking
at the strong-coupling limit after all); so the inclu-

sion of ghosts here requires the solution of a very

complicated, nonlinear problem. In the analogous
situation of zero coupling Yang-Mills theory the
theory reduces to a set of uncoupled vector gauge
fields whose solution is well known.

The problems are avoided in this paper by sim-

ply quantizing the theory on 8'. This quantization
is given in the subsequent sections. %hile there is

a good possibility that the quantum theory present-

ed here is in some sense isomorphic to the one that
would be obtained on N, it is clear that it is at
least a necessary first step towards a final solution.

IV. THE REPRESENTATION

The first step to finding the quantum theory of
the Hamiltonian (3.20) is to construct a Hilbert
space and a representation of the canonical com-
mutation relations on that space. In fact, this is
effectively the last step. The representation to a
large extent determines the Hamiltonian. . ' The
type of representation that has been found to be of
most use for ultralocal Hamiltonians is the ex-
ponential representation. Rather than derive the
representation from first principles we will just
state the most important properties and refer the
reader to Refs. 4, 5, 6, 12, and 32 for more comlete
details.

The Hilbert space will be taken to be a Fock
space with fiducial vector ~0) and creation and an-
nihilation operators

A t(x, l3+,13,Q)g (x,P+,P,Q).

The variables P+,P, and Q are auxiliary variables
and x is a label for a point in a generic coordinate

patch of the three-dimensional compact manifold
that we are working on. The quantities ~0), A,
and A satisfy

[A ( x,P+,P,Q),A ( x ',P '+,P ',Q')]

=5(x,x ')5(P+ 13'+—)5(P —P' )5(Q —Q'),

[A,A] = [A ',A ']=O,
(4.1)

and

A ~0)=0. (4 2)

The Hilbert space of states is found by taking the
span of the action of all powers of A on ~0) as is
usual for a Fock representation. The variables P+,p, and Q will be associated with t+, r, and r,
respectively.

The representation is developed further by
translating it, i.e., by working in terms of the
operators

B(x,P+,P,Q) =A(x, P+,P,Q)+C(P+, 13 ) .

(4.3)

The function C(P+,P ) labels the representations
and determines many of their properties. It is
chosen to be a function of P+ and P only since C
is closely connected with the vacuum" and it is
desired that it be a zero-frequency state, i.e., that it
be independent of the variable 0 associated with
the intrinsic time. This function C will be further
determined below. Notice that 8 and 8 also satis-
fy the commutation relations of creation and an-
nihilation operators.

It was emphasized in Sec. III that the variable
r(x) was to be associated with an intrinsic time,
i.e., is nondynamical. In Appendix E we argue
that, in spite of this, there is no way to avoid
representing r(x) as an operator on the Hilbert
space. Explicit "Lorentz" covariance in the time
and space variables v., t+, and t seems to be re-

uil ed.
The fields ~, t+, and t with their conjugates

are represented on the Hilbert space by the (non-
Fock) expressions

r(x)= I dP+dP dQB (» P+ P Q)QB(x P+ P (4.4a)
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n(x)= —i f dP+dP dQB

t+(x)= f dPid13 dQB 13+8,

m~(x)= i —f dP+dP dQB 8,

(4.4b)

(4.Sa)

(4.5b)

(x)= f dP+dP dQBt13 8,
(x)= i f—d13~dP dQB

(4.6a}

(4.6b)

These operators are not necessarily all well defined and self-adjoint. This depends on the choice of
C(p+,p ).~ Notice that we have represented all of the operators in terms of the same 8 and 8 whii«he
form of the Hamiltonian (3.20) might indicate that they should be treated as independent and the Hi)bert
space should be chosen as the tensor product of those associated with each of the fields. The choice in
(4.4) —(4.6) is motivated by the knowledge that r, t+, t represent different components of a single field g,j
to which a gauge condition has been applied, and by the closeness of the results that we find below to those
of quantum cosmology.

It is convenient to define the following overcomplete family of states:

~p+,p, co) =exp i f dx[p+(x)t+(x)+p (x)t (x)—to(x)r(x)]
~
0), (4 7)

where p+, p, and ~ are elements of suitable function spaces. These states are eigenstates of the annihila-
tion operator, i.e.,

A(x, P+,P,Q) ~p+,p, co) =Pz z „(x,P+,13,Q) ip+,p, to), (4 &)

with

z „(x,P+,P,Q)=exp{ i [p+(x}P++p (x)P (x)—to(x)Q) IC(P+,P ) —C(P+,P ) . (4 9)

Equation (4.9) is a simple result of (4.4) —(4.7) and the properties of creation and annihilation operators. Of
course, P~ ~ „=0when p+ ——p =co=0. Formally, the inner product on the Hilbert space is given by

(p'+ p' ~'lp~ p ~&=exp[ —2llfp p II 2llk ' ' ~ ll +(4 ' ' 0p p (4.10)

where (, ) is the inner product on the space of functions of P+,P,Q defined by f dP+djt3 dQ(()'g, and

i ~lit~
~

=(li|,tp). Notice from (4.9) the emerging connection between what is being done here and quantum
cosmology as described in Appendix D.

In field theory the proper definition of products of operators evaluated at the same spatial point must al-
ways be given. We want to find the analog for this representation of normal ordering for the usual Fock
representation. To motivate the answer (which is more rigorously obtained in Ref. 33) consider the simple
example of

(4.11)t+(x)t+(x ')=5(x, x ') f dP+dP dQB 13+'8+:t+(x)t+(x):,

where:: denotes normal ordering of the operators AP . Taking x~x ' and keeping the most singular part
gives

z 't~ (x)= f dP+d13 dQB 13~ B=(t+ )„,
with Z =5(x, x) and the subscript r standing for "renormalized. " In general,

(4.12)

(F(t+,t, r, n+,n, n))„= f.dP+dP . dQB F P+,P,Q, i, —i, i 8,— —
8 + 8 BQ

(4.13)
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where the resolution of any factor-ordering ambiguities must be found for the particular F that is of interest.
Expression (4.13) is what one would intuitively expect of an ultralocal field theory.

Finally we represent the Hamiltonian (3.20). The expression is given by

4 0( x )=—f dp+d p 1QB
BP BP BQ

(4.14)

where V is a renormalization term that depends on

C(p+,p ) and is determined by the requirement

4 o(x)
I
0) =0; (4.15)

V is thus the analog of the zero-point —, that has

been taken out of the normally ordered harmonic-
oscillator Hamiltonian. The operator A 0(x) (4.14)
is formally self-adjoint.

The expression (4.14) given above for 4 o would
be tremendously complicated by the inclusion of
the Faddeev-Popov ghost terms ' appropriate to
(3.22). There is some evidence that the net effect
of the Faddeev-Popov determinant is to guarantee
that all of the operators of the theory are formally
self-adjoint. The formalism given above already
has that property. The problem with doing things
in the way that we have chosen is not whether the
formalism is internally consistent, but whether it is
in any sense quantum gravity.

C(P~,P )=1. (5.2)

The theory with more general C(P+,P ) can be
developed in a manner analogous to what will fol-
low, and (5.2) can be taken as an illustrative exam-

ple (although there must be a way to choose from
all of the inequivalent theories the proper one).

The Hamiltonian also has another conformal in-

variance, i.e., it is invariant under rescalings of the
spatial metric g;z [this fact is independent of the
choice of C(P+,P )]. These rescalings are gen-
erated by m, and this conformal invariance is sim-

ply a statement of the fact that (3.18) is r indepen-
dent or

I

( —d Q +dp+ +dp ) is flat the conformally co-
variant wave operator is just the d'Alembertian,
and this implies that V(P+,P ) =0. To attain this
condition we will take as the representative for the
ground state

V. DYNAMICS

The operator A o (4.14) should be investigated in
more detail. The first thing that we need to do is
determine the renormalization term V(p+, p ).
The requirement that A o I

0) =0 implies the fol-
lowing relation between V and C:

1V(P„P )= ——,+, C(P, ,P ).
C ap, ' ap'

(5.1)

Renormalization terms are usually determined
through contact with experiment (which is out of
the question for our 1/G~O theory) or invariance
requirements. The studies of quantum cosmology
give a possible candidate for an invariance require-
ment, i.e., conformal invariance. %e will impose
the condition that

BP+ BP BQ

is 0 independent. That is to say, the Hamiltonian
is (intrinsic) time independent.

With the choice (5.2), the states IP+P co) satis-

'(p p +p p —0)~ IP+ P ~~=e IP+ P

(5.3)

and the connection with quantum cosmology be-
comes stronger. So far there is no connection be-
tween p+(x), p (x), and co(x). The physical states
are to be determined by A 0 I g) =0. Applying this
condition to the states IP+p co) and using (5.3)
implies

a' a' a'
, +,+V(P„P )—

p+ (x)+p (x)=co (x) . (5.4)

be a conformally covariant wave operator for the
space Q, p+, p . Since the metric on this space

The states Ip+,p, co) span the full Hilbert space;
so the span of the subset satisfying (5.4) will be de-
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fined as the physical subspace. A state satisfying
(5.4) is, loosely speaking, a coherent state of quan-
tum Kasner universes, an independent universe at
each spatial point.

It is tempting to now restrict the theory so that
we only talk about physical states. This cannot be
done since none of the operators (4.4) —(4.6) is
self-adjoint on this space [if $(P+P 0) satisfies
(a'/aP, '+ a'/ag '—a'/»')y=O, then P P,
say, does not]. We must work in the full Hilbert
space of our theory and somehow obtain physical
results. The way that we will choose to do this is
to follow Stiickelberg, introduce a "fake" time
parameter, and use the heat-equation-like expres-
sion

~0(x) ~p)=i f dp+dp dQB 8 ~g) .
BA,

ity, i.e., expanding solutions stop and contract.
The full implications of (5.5) will appear in a sub-
sequent paper.

It should be restated that the choice C= 1 (5.2)
is just one of many possible choices. This choice
has the bad property that with it none of the ex-
pressions (4.4) —(4.6) is a well-defined operator.
The example (5.2) has the advantage of making the
connection between the contents of this paper and
the previous work on quantum cosmology particu-
larly transparent. This connection will continue to
exist, with some modifications of detail, no matter
what C is. One can hope that the development of
the perturbation theory will determine the form of
C, i.e., that for only a specific C will the perturba-
tion theory be possible, ' for this reason a more de-
tailed discussion of C is not given here.

(5.5)
VI. SUMMARY AND DISCUSSION

We are treating a'/op+' + a'/~p ' —~'/»' as
if it were a Hamiltonian operator generating the
dynamics in the time A, and (5.5) is the associated
Schrodinger equation that determines ~g) as a
function of A,. The parameter A, always increases
while 0 both increases for positive frequency states
(expanding "local universe") and decreases for
negative frequency states (contraction). ' ' Equa-
tion (5.5) is what we wish to build the scattering
theory on. Stuckelberg used a similar equation to
reduce the problem of pair creation to a potential-
well scattering problem in ordinary quantum
mechanics.

The above discussion with the time parameter A,

might appear to be artificial. The physics that our
formalism must describe has solutions that evolve
both forward and backward in the natural timelike
parameter ~, and this must be described in a uni-
fied manner. The usual way of handling this prob-
lem for the Klein-Gordon equation is to second
quantize with the backward-evolving particles be-

ing identified with forward-evolving antiparticles.
This is not an appropriate solution for the gravita-
tional case described above. This theory is already
second quantized with the ultralocality of the
theory making the formalism reduce to something
that looks like a first quantization of a Klein-
Gordon-type operator. To quantize once more, i.e.,
"third quantize, " is a step that we would prefer not
to take, and we do not have to take it if we use the
formalism of Stiickelberg. Notice that even classi-
cally positive and negative frequencies mix in grav-

In this paper we have developed a formalism for
treating the quantum theory the of the strong-
coupling Hamiltonian for general relativity in a
fixed gauge. The need to preserve the positive de-
finiteness of the metric g,j led us to the generators

mz of GL(3, R). This, combined with the identifica-
tion of timelike, hypersurface orthogonal Killing
vectors led to the symmetric space SL(3, R)/SO(3).
The geometry of the symmetric space provided
motivation for the gauge-fixing condition which
enabled us to show that the quantum theory of the
strong-coupling limit can be considered as an in-
dependent Kasner universe at each spatial point
just as the classical theory can. In order to have a
hope of developing a scattering theory the formal-
ism forced us to revive methods developed by
Stiickelberg for treating the Klein-Gordon operator
as the Hamiltonian in a Schrodinger equation. %'e
see that what might have been a very complicated
theory is in fact very simple.

This simplicity is, to a large extent, the result of
our decision to work on a simple configuration
space (i.e., 8'), a choice that was the result of our
looking at the strong-coupling (i.e., ultralocal) lim-
it. The formulation of the theory without the
complicating ghost terms is what allowed the exact
quantum solutions to be explicitly written. %e do
not want to imply that the correctness of this sim-
plifying assumption is anything more than a hope
at this stage, but it is something that occurs natur-
ally within the formalism. In giving a continuum
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quantization of a strong-coupling gauge theory we
are entering virgin territory and much work is re-

quired before appropriate computational methods
for treating this type of problem are discovered
and confidence in them is gained. As was men-
tioned before, the formalism given here is, at
worst, a first step towards the complete solution.

We have not yet mentioned what physical re-

gime we expect the strong-coupling limit to be ap-
plicable to. In the covariant approach to quantum
gravity the dimensionless parameter Gp appears.
If strong coupling means having this parameter be
infinite, then we see that strong coupling
corresponds to p ~ ao, i.e., to short distances.
Quantizing the strong-coupling limit to gravity is
an attempt to develop a quantal description of
physics inside the Planck length. Notice that the
strong-coupling limit of general relativity naturally
provides a conformally invariant description of this
physics. It is amusing to note that we are using
quantum cosmology to describe physics at short
distances, i.e., we have the mystical unity of micro-
cosm and macrocosm.

Before being carried away by mysticism
remember that the formalism that we have

developed is only a preliminary to making a per-
turbation expansion in 1/G. Many of the simplify-

ing features of the strong-coupling limit will be
destroyed upon adding in the perturbation R, e.g.,
the intrinsic-time independence of the Hamlitoni-
an. There is, in fact, little reason to believe that
the perturbation theory that we want to construct
will be any better defined than that of the covari-
ant approach, but it will possibly give us a glimpse
of the physics inside the Planck length. This,
combined with what we already know about large
distance, will hopefully help us to find a viable

quantum theory of gravity.
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APPENDIX A: SL(3,R)/SO(3)

1

Gijkl ( Yik Yjl+ Yil Yjk Yij Ykl ) ~ (Al)

This metric differs from that of Ref. 14 by a fac-
tor of Y

' . The inverse of (Al) is

Gijkl ' (YikYjl+ ilYjk 2 ijYkl) (A2)

with

(A3)

DeWitt showed that (Al) has signature
( —+ + + + + ).' It is this hyperbolic nature
of 6;J~~, a characteristic of symmetric tensor
("spin-two") fields, ' that leads to much of the in-

teresting structure that is detailed in the main text
and below.

The tangent space to M is spanned by the vec-
tors 8/BY;j. The importance of m~(x) described in
the main text leads to the definition of

E 8
PJ —= 'VP

~'YkE
(A4)

satisfying [in analogy with (2.4) and (2.5)]
E i E E

PjYmn p (ljm~n+Yjn~m) ~

k)
'

(~kg i5 )

(A5)

(A6)

where [, ] here (and in the remainder of this ap-
pendix) denotes the Lie bracket. The vectors p' are
Killing vectors for the metric (Al) as can be seen
from

In Appendixes A and 8 the close connections
between the symmetric space SL(3,R)/SO(3) and
the basic variables chosen for the strong-coupling
limit are described. The geometrical and group
theoretic structure of this symmetric space and
analysis on it are summarized. The presentation is
very condensed, the purpose being to familiarize
the reader with the terminology and state results
specifically for SL(3,.R)/SO(3) that are given in the
literature for general symmetric spaces. For any
real understanding of the content of these two ap-
pendixes Refs. 37—42 should be consulted. We
will closely follow the discussion of Ref. 38.

The importance for canonical quantum gravity
of the manifold M of 3 X 3, symmetric, positive-
definite matrices y;J was first emphasized by
DeWitt. ' This importance is expected to be even

greater in the ultralocal theory. M is a six-
dimensional manifold with coordinates x given by
the Y;j. The Hamiltonian (1.1) implies that M
should be given the contravariant (in spite of the
indices) metric
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a
Gmnrs

~Pg Vmn Xrs

B B B B
G

B
(PjGmnrs) ~ +Gmnrs Pj ~ & + mnrs ~

Barmn

Og UXmn & Vrs ~ Vmn

a
p" ay.

The vector p=p,' has as its norm

P P=G 'VlJ VkI
———6

satisfying

l i gl (A16)

so it is a timelike Killing vector. Now label the

points of M by w, y,j where' '

1/3 — —I /37=1ng, fJ g gJ e yJ

lp Pj1 =o

pj~ ——0,

(A17)

with

dety;. =1 .

PPj =0~
-k- & — k — k 2 — k
PIVij 2 (3 tt~j + Yjl~i 3 Vij fil ) ~

(A19)

(A20)

Notice that p~=1, i.e.,

4

lPj ~Pl l = 2 (pj ~t pl sjk) . (A21)

a
P=g (A9) The pJ are thus perpendicular to p and they lie en-

tirely within the space spanned by 8/ByJ, in fact

and ~ is the timelike coordinate conjugate to p.
Note that PJ' ~jk

~Nk
(A22)

p. =0,
~7iJ

Gij kl

~ Vij ~ Vkl

with

Gij kl s-ik-j l —il-j k+'V 'Y

(A10)

(Al 1)

(remember that BIBV,j is a nonholonomic basis and
must be used with care). The five-dimensional
manifold parametrized by ytj (the 3)& 3, symmetric,
positive-definite matrices with determinant equal
to one) will be denoted by M.

The group GL(3,.R) acts transitively on M, its
action being given by [as in Eq. (2.6)]

2 -ij-klan

1

Gijkl 2 (Vik Vjl + Yil Yjk

(A12)
V;j (X);.V.„(X')„,—= (X)V(X'), (A23)

2

3 Yij Vkl) ~
(A13)

and

Gmnkl 5kl 4l 3 V Vkl (A14)

From (A7), (A10), and (All) it is seen that the
metric 6" is given by

Gij kl
(A15)

and from (A15) it follows that p is a timelike, hy-
persurface orthogonal Killing vector. '

As for the I'J' of' Sec. III, define the trace-free
part of pJ,

8(X,F) =6Tr(XI'), X, I'Esl(3, R) . (A24)

The Cartan decomposition of sl(3,R) is given by

sl(3, R ) =so(3) +p, (A25)

where Vij EM, Xj &GL(3, R), and t denotes trans-
pose. The vectors pj (A4) are generators of the ac-
tion of GL(3,R) on M and (A5) are just the com-
mutation relations for GL(3, R). The group
SL(3,R) acts transitively on M, its action the same
» tn (A23). The Pj (which are traceless) are the
generators of this action with (A21) being the com-
mutation relations for SL(3, R).

The Lie algebra sl(3, R) of SL(3,R) can be
represented by traceless 3)&3 matrices, with the Lie
brackets given by the commutator of matrix multi-
plication. The Killing form is given by
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SL(3,R)=P SO(3), (A26)

where SO(3) is the set of 3 X 3 antisymmetric ma-

trices and p is the set of 3)&3, traceless, symmetric
matrices. The associated Cartan involution is
8(X)= —X'; 8(X)=X, XE so(3); 8(X)= —X, XEp.
There is a global analog of (A25), i.e., the "polar"
decomposition

with all roots nonzero. For sl(3, R) a' is the set of
H in a with e;(H)+ej(H) for all i' (.A point at
which a root is zero is called a singular point. ) A
%eyl chamber a+ is a is a connected component
of a'; its boundary points in a are singular points.
For sl(3, R) one Weyl chamber is
[H

~

e&(H) & e2(H) & e3(H) j. We call a root a po-
sitive if its values on a+ are positive, and denote

where I' is the space of 3X3, symmetric, positive-
definite matrices, of determinant one (i.e., P =M).
In addition, it is true that

n= gg
a&0

(A29)

M=SL(3, R)/SO(3) . (A27) F«sl(3,R) with the above choice of a+, n is given
by the matrices of the form

We note that SO(3) is the maximal compact sub-

group of SL(3,R).
The space SL(3,R)/SO(3) is a noncompact sym-

metric space. By definition a symmetric space S is
a manifold with metric such that for each p ES
there is an isometry of S that corresponds to re-

versing the parametrization of the geodesics
through p. ' Locally, the covariant derivative of
the Riemann tensor of a symmetric space vanishes.
For M take the point e =6,J as the origin, which is
invariant under SO(3). Equation (A23) with

yj =5,
&

provides a mapping from SL(3,.R) on to M.
This mapping induces a mapping from sl(3,R) to
the tangent space at e that has so(3) as its kernel.
The tangent space at e is isomorphic to p in (A25).
The Killing form (A24) induces an SL(3,R) invari-
ant metric on M and, up to a factor, this is given
(somewhat surprisingly) by (A12) (remember
that y'Jdy;~ =0), the metric that was put on M by
the Hamiltonian. %e see that M is a Riemannian
manifold. The geodesic-reversing isometry is in-

duced by the Cartan involution 8, thus showing M
to be a symmetric space.

The geometry of M can be understood further
by looking in more detail at the Lie algebra sl(3, R).
The maximal Abelian subspace of p is given by the

diagonal, traceless matrices; call this set a [the
Cartan subalgebra of sl(3,R); the Cartan subgroup
of SL(3,R) is e ]. If a is a real-valued linear func-
tion on a, define

0 n] n2

0 0 n3

0 0 0

(A30)

This leads to the Iwasawa decomposition of a
Lie group. For sl(3,R ) it is clear that

sl(3, R)=so(3) ia +n, (A31)

g =OAN; 0ESO(3), A Ee, NEe" . (A32)

N is unipotent. From (A32) and (A23) with

y,J
——5,J we see that all elements of M can be writ-

ten as

(y) =NAA 'N' (A33)

and we denote by E that submanifold of M given
by AA ' for all 2 Ee'.

Define the normalizer and centralizer of e' in
SO(3) by

Q'=
I OESO(3)

~

0 'e'OCe'j (A34)

and the Iwasawa decomposition states that for any
gESL(3, R),

g.=[XEsi(3,~)
~
[H,X]=~(H)X &H«j .

(A28)

If g +[0j then & is called a restricted root. The
restricted roots for sl(3,R) are given by
a,"(H)=e;(H) e(H), HEa, e;(H)—being theith
diagonal element of H. Call a' the subset of a

Q =
I 0ESO(3)

~

0 'e '0 =e ', Vai Ea j .

(A35)

Q' is a 24-element, discrete subgroup of SO(3). Q
is given by the matrices [remember, they are ele-
ments of SO(3) not so(3)]
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100 —1 0 0 1 0 0 0 0
010
001

0 —1 0, 0 —1 0
0 0 1 0 0 —1

1 0
0 —1

(A36)

Define the Weyl group to be Q'/Q. It has the matrix representation

100 01 0
010, 10 0
001 00 —1

0 0 —1

—1 0
0 —1 0 , —1

0 0

0 1 0 —1 0
0 0, 0 0 —1

—1 0 1 0 0

—100
0 0 1

0 1 0
(A37)

8 — 8 1 8

where we notice that, because detG, JkI
——const, the

first term in (A38) is the Laplace-Beltrami opera-
tor on M. This leads to a discussion of analysis on
symmetric spaces that is given in the next appen-
dix.

(A38)

APPENDIX B: ANALYSIS ON SL(3,R)/SO(3)

Differential operators of fundamental interest on
any symmetric space 6/E are those that are in-
variant under the action of 6 on 6/E, and annihi-

and its action on a is just that of the permutation

group on three letters. The Weyl group cor-
responds to reflections through the singular points
of a, and maps one Weyl chamber into another.

The boundary of SL(3, R)/SO(3) can be con-
sidered to be SO(3)/Q. This is analogous to saying
that the boundary of R is the circle S'=SO(2).
SL(3,R)/SO(3) (minus the points corresponding to
the singular points of a) is given by
e' X[SO(3)/Q]. This is like saying that the R-
origin is given by R )&S', R+ corresponding to
the values of the radius; so we see that a Weyl
chamber corresponds to a measure of radius, the
singular points to the origin of a polar coordinate
system, and the Weyl group to reAections through
the origin. Notice that the boundary SO(3)/Q is
three dimensional while SL(3,R)/SO(3) is five di-
mensional. This means that there are two indepen-
dent radial directions. These correspond to the
two independent generators of the Cartan subgroup
of SL(3,R). It is to these that we have identified
the independent degrees of freedom in the gauge
condition of Sec. III.

Being slightly cavalier about factor ordering, the
analog of A o on M is

I

late the constants. ' The algebra of such dif-
ferential operators has r independent generators
where r is the rank of the symmetric space, i.e.,
the number of generators of the Cartan subgroup h

of G. For SL(3,.R)/SO(3), r is equal to two. These
indeperident generators can be identified with Weyl
group-invariant polynomial functions of the gen-
erators of h.

For our purposes the most important differential
operator is the Laplace-Beltrami operator, which is
related to the Casimir operator on the Lie alge-
bra. Note that the contribution PI~PJ' to the
Hamiltonian (3.2) has zero brackets with PI, and
the expression pjp,' associated with it is the
second-order Casimir invariant of sl(3, R). The
Hamiltonian for the strong-coupling limit is thus,
essentially, the Laplacian on SL(3,R)/SO(3). In
addition, if p&,p2 are the generators

1 0 0
0 0 0
0 0 —1

0 0 0
0 1 0
0 0 —1

of the Cartan subgroup of SL(3,R) the Weyl
group-invariant polynomial that is associated with
the Laplacian is just

(P ~
)'+ (P2)' —P ~P2 .

The close relationship between this and the Hamil-
tonian after gauge restriction (3.18) has already
been pointed out. Note that all SL(3,R)-invariant
differential operators on SL(3,R)/SO(3) are gen-
erated by p~p,' and p~jj,p;. The physical interpreta-
tion of the latter operator is as yet obscure.

The gauge condition adopted in Sec. III effec-
tively restricts our attention to the submanifold E
of SL(3,R)/SO(3) obtained by the action of the
Cartan subgroup on the identity. If P&,Pz are the
canonical coordinates conjugate to pl and p2, then
E is given by the manifold of matrices



2660 MARTIN PILATI 26

Pl

P2

—
~ pi+ p2)e

The Laplacian on E is just

(B2)

and the "gauge" constraint

I.=xp„—yp =0. (C2)

The constraint (C2) generates rotations and implies
that the theory is cylindrically symmetric.

The gauge-fixing condition is taken to be

8

ap,
'+

ap, ' ap, ap,
(B3) y=0,

and the Faddeev-Popov factor is given by

(C3)

APPENDIX C: DISCUSSION OF A SIMPLE
GAUGE CONDITION

In this appendix we wish to discuss a simple
gauge condition that bears a close resemblance to
the one discussed in the main text. The theory is
one with two sets of canonically conjugate vari-
ables x,p„and y,p~ with the Hamiltonian

H=px +py
2 2 (C 1)

whose relation to (Bl) is obvious.
A crude way of looking at the effect of our

gauge-fixing condition is that it restricts the
domain of the theory from all of SL(3,R)/SO(3) to
the two-dimensional submanifold E. The Hamil-
tonian starts off as the Laplacian on SL(3,R)/SO(3)
and, through gauge fixing, is projected onto an
operator on E. As a result of the ambiguities of
quantization (in particular, those associated with
the ability to make a canonical transformation, see
Appendix C) there is no unique way of identifying
this operator on E. In Appendix C we argue that,
up to renormalization, the choices are equivalent,
and we choose the simplest, i.e., the Laplacian
(B3). Other choices are discussed in Refs. 40 and
41. Theorem (2.11) of Ref. 41 in particular gives
the relation between the operator and the measure
chosen on E complete with "renormalization"
terms that result from different choices of operator
and measure. It should be remembered that the
importance of SL(3,R)/SO(3), E, and the measure
on E is particularly enhanced by the exponential
representation that we have chosen for the strong-
coupling limit.

The subject of analysis on symmetric spaces is
highly developed. The topics of harmonic func-
tions, spherical functions, Fourier analysis, and
group representations are particularly important.
In addition the Green's function for the Laplacian
has been computed. While these things will be
important in subsequent papers they do not apply
to this paper and discussion of them has therefore
been omitted.

I y, i. )=x; (C4)

so the gauge condition is (locally) a good one ex-
cept at x=0. The breakdown at x=0 is a signal
that there is possibly a Gribov ambiguity. We
know that there is a Gribov ambiguity. Any point
on the negative x axis is the image under a global
"gauge" transformation generated by (C2) of a
point on the positive x axis. The constrained sur-
face defined by (C3) is twice as large as it should
be.

Using the constraints (C2) and (C3) the canoni-
cally conjugate pair y,p~ may be eliminated from
the theory. The Hamiltonian becomes

2H =p„ (C5)

Notice the strong analogy between (C4) and (3.22),
and (C5) and (3.18). Upon quantization (C5) be-
comes

(C6)

which is self-adjoint in the measure J dx.
This is not what we would get if we first quan-

tized (Cl) and then restricted ourselves to a rota-
tionally invariant theory. Doing this we obtain

1 8
2+ x Bx

(C7)

which is self-adjoint in the measure f ~

x
i
dx.

There seems to be an ambiguity in that gauge fixa-
tion and quantization do not seem to commute.
One might be afraid that the theory developed in
this paper (which is just a more complicated ver-
sion of this simple example) possesses this same
ambiguity. We will argue that, up to "renormali-
zation, " there is no ambiguity. If one has a princi-
ple that determines the renormalization of the
Hamiltonian then there is no need to worry about
these ambiguities. Such a principle, applicable to
the strong-coupling limit of general relativity, is
proposed in Sec. V.

To see that (C6) can be transformed into (C7)
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take dA'= —dn'+dp+'+dp ', (D3)

(C8)

with g a member of the Hilbert space of functions
square integrable in the measure f dx. Notice
that f dxP'P= f ~x ~dxP*P. Now

a2- a2

4x2

(C9)

so, up to the "renormalization" term —1/4x, the
combination g, f dx, a /ax has been taken into

P, f ixidx,
a' 1a

As long as there is some way to determine this re-
normalization term, the two ways of formulating
(Cl) plus (C2) are equivalent. Also notice that if,
instead of choosing p„=—ia/ax in going from
(C5) to (C6), the choice p„= t (a/a—x'+ 1/2x)
(which corresponds to a canonical transformation)
is made, then similar results are obtained, i.e.,

Equation (D4) is the Hamiltonian constraint
A j ——0 with A=gR. The spatial constraints
4;=0 do not play a role as a result of the as-
sumption of homogeneity. The case that is of
most interest to us is that of Bianchi type I
without matter, for which (D4) is

ag ap af =0.
an ap ap

(D5)

This represents a quantum Kasner universe.
The Hilbert space that is usually taken is the

space of f(p+,p, n) with one of two inner pro-
ducts. The first is

(g,p) =i f dp+dp
A=const

and this leads to the study of the Klein-Gordon
equation

a 1( a li a 1p ~( ) 0an'+ ap+'+ ap
'+ +'

(D4)

18 1+
Bx x Bx 4x2

x 1(a~
an

al(*
(D6)

APPENDIX D: QUANTUM COSMOLOGY

ds = N(t)dt +gtj(t)dx—'dx~,

with @j a diagonal matrix given by

g) )
——exp[2( —Q+p++ v 3p )],

g22 ——exp[2( —Q+P+ —v 3P )],
g33 exp[2( —Q —2P+ )]

(Dl)

(D2)

On the space determined by the variables Q,P+,P
(minisuperspace) the metric is given by

In an effort to gain a better understanding of the
possible structure of a quantum theory of gravity
the quantization of simplified models of gravity
was considered in the early Seventies. ' The
simplification was obtained by assuming homo-

geneity as well as other symmetries, i.e., only the
modes satisfying the symmetries were quantized.
In this way, the quantum field theory of general
relativity was reduced to finite-dimensional quan-
tum models.

In the simplest examples, the spacetime metric
was assumed to take the form

(D7)

where JP is defined by first using the Killing vec-
tor to decompose into positive- and negative-
frequency parts, P=P'+'+P( ', and taking

ty(+)/( i)y( —) (D8)

This inner product is 0 independent and gives a
positive-definite norm.

The wavelike solutions to (D5) have the form

i (p+ p++p p r»n)—=e (D9)

p+ +p =co2 2 2 (D10)

Many models other than the one represented by

which is independent of 0, but does not give a
positive-definite norm. The second requires a
timelike, hypersurface-orthogonal Killing vector
(although it can be generalized" ). This inner pro-
duct is given by

(1(,y) =-, f dp, dp
A=const

, aJy aq'
x 0 an-anJN
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(D5) were studied. ' A feature of many of them

that provides us with motivation is that they take
the form of a scattering problem in minisuper-

space. The asymptotic states are given by wave
functions of the form (D9), i.e., waves propagating
on the light cone of metric (D3), with the various

models, having different potentials, scattering one
of these states into another. The Kasner wave

equation (D5) is closely related to the strong-

coupling limit of the full theory, and we visualize
the perturbation in 1/G as providing a similar type
of scattering theory.

APPENDIX E: OTHER CHOICES
OF REPRESENTATION

In Sec. IV an unorthodox choice of representa-
tion for the canonical commutation relations of
~,~,t+,m+,t,m was made. In this appendix that
choice is motivated by eliminating the other obvi-

ous choices.
All of the choices will be discussed within the

formalism of exponential representations. Brief-
ly, what this formalism does is take a "small" Hil-
bert space h and associate with each element of A

an element in the "large" Hilbert space 0 on
which one is representing the canonical commuta-
tion relations of the fields. The relation of basic
importance is the following: if f,P'Eh are associ-
ated with

~
P),

~

tP' & &H, then

where (, ) is the inner product on h and

~ ~p~ ~2=(g, li). This is a generalization of coherent
states. For ultralocal theories one intuitively feels
that, because the dynamics at different spatial
points are independent, the theory should in some
sense reduce to the finite-dimensional quantum
mechanics of the theory at one spatial point. In
this rough way of thinking, h represents the Hil-
bert space of the finite-dimensional quantum
mechanics and the process of exponentiating it
"spreads" this out into a field theory.

Classically, the ultralocal limit of general rela-
tivity has as a general solution an independent
Kasner universe at every spatial point. We
thus expect the quantum theory to somehow be an
independent quantum Kasner universe (see Appen-
dix D) at each spatial point. As a result, the most
natural choice for h is the Hilbert space associated
with the quantum Kasner universe with one of the
two inner products discussed in Appendix D [no-
tice that even if (, ) for h is not positive definite

(, ) given by (El) is], but problems occur when

this is exponentiated. The elements of h are func-
tions of 0 as well as P+ and P, but the inner
products have integrations only over dP+ and
dP . There is no way to get rid of the 0 depen-
dence, and instead of representing t+(x), say, one
ends up being forced to represent r+(x,Q), an ex-
plicit function of Q. It is hard to make sense of
this, and we reject this approach.

To correct the above deficiencies we are led to
take the spacetime Harniltonian decomposition that
we have already made and make an additional
Hamiltonian decomposition with respect to
w, t+, t . In this approach, the Hilbert space h is
taken to be the space of square-inte rable functions

g(P+,P ) with the inner product dP+dP g"P.
The operator a'/aP+'+ a'/aP is positive defin-
ite and self-adjoint on this space, and it possesses a
completely, orthonormal set of eigenstates u such
that

cl

(jp ~ (jp

In using this to treat the pure quantum cosmology
case, with each u„, co y 0 is associated two time-
dependent states u e ' and u e'" that are ele-
ments of the space of functions of P+, P, and Q.
On that space we have the Q-independent,
positive-definite inner product

(pl, p2)= f dp+dp pi ~~ J$2—

where J is defined as in Appendix D.
To construct the exponential representation asso-

ciated with h we do the analog of what was done
in Sec. IV. We have operators B (x,P+,P ) and
B(X,P+,P ) which satisfy standard commutation
relations, and, in terms of them,

&+(x)= f dP+dP BtP+B,

m+(x)= i f dP—+dP Bt
ap,

(x)= f dg+dP BtP B,

(x)= i f dP+dP Bt — B,
and

H= —f dP+dP B + B.
ap, ' ap '

In addition we have the overcomplete set of states
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~p+,p )=exp i I [p+(x)t+(x)

+p (x)t (x)] dx ~0) .

The problem is now to include the "time" depen-
dence in these states, i.e., to do the analog of what
was done above for the u . There seems to be no

reasonable way of doing this. Finding the expres-
sions for the eigenstates of H would be difficult
and they would not have a simple connection with
the space h that one would need to motivate fol-
lowing the treatment of t)'Zap+'+ t)'rap and
u„given above.
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