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Raychaudhuri and Som have investigated the problem of a stationary cylindrically

symmetric cluster of uncharged particles in general relativity. In this paper we have con-

sidered the same problem with charged particles and have obtained some new interesting

results.

I. INTRODUCTION

Einstein investigated the problem of a station-
ary spherically symmetric cluster of particles mov-

ing freely under the influence of the gravitational
field produced by all of them. He showed that the
particles at the boundary of the cluster, for a given
gravitational mass, are constrained to move beyond
a certain critical distance so that the Schwarzschild
singularity is unattainable.

Later, in analogy with Einstein s investigation,
Raychaudhuri and Som studied the problem of a
stationary cylindrically symmetric cluster of parti-
cles and, in contrast to the case of spherical sym-

metry, found that there is no limit as far as the ra-
dial concentration is concerned, bui there is a limit
to the concentration per unit length of the cylinder
which is independent of the radius. Considering
an infinitely thin cylindrical shell of particles they
showed that unlike a thin spherical shell of parti-
cles, the gravitational mass per unit length is in-

dependent of the radius. This is not however gen-

erally correct as we have pointed out in Sec. III of
this paper.

Recently Banerjee and Bhattacharjee have
shown that the Reissner-Nordstrom singularity is
also unattainable in the case of a stationary spheri-

cally symmetric cluster of charged particles. They
have further shown that photons and neutrinos

moving radially outwards inside the system cannot
be trapped within the cluster.

In this paper we investigate the problem corre-
sponding to that studied by Raychaudhuri and
Som when the orbiting particles are charged. Ob-

viously this work will be of little astrophysical in-

terest. But we believe that our results will be of
some interest from the theoretical point of view. It

is interesting to note here that the solution of a
cylindrically symmetric cluster of charged particles
differs in some respects from that of uncharged

particles. Unlike the cluster of uncharged parti-

cles, there is a lower limit to the radius in the case
of a cluster of charged particles. In other words,
like a spherically symmetric cluster, the charged

particles at the boundary for given mass and

charge per unit length are constrained to move

beyond a certain critical distance. Of course there

is also an upper limit to the mass per unit length

of the cluster.
In Sec. III, we discuss the case of an extremely

thin cylindrical shell of charged particles. We find

that the gravitational mass per unit length of the

shell is not independent of the radius. We also ob-

tain a similar result for a cylindrical cluster of fin-

ite radius.
In Sec. V, we investigate the motion of photons

and neutrinos. From the analysis it appears that
there is a possibility of photons and neutrinos com-

ing out from the interior of a cylindrical cluster of
charged particles. This possibility exists in the
case of a cluster of uncharged particles also.

II. BASIC EQUATIONS

Let us consider the static cylindrically sym-
metric line element in Weyl's canonical form,

ds =e dt e~ (dr +dz )—
r2e —2ad y2

where a and P are functions of r alone. A purely
circular motion in the (r,z) plane is characterized

by
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dr dz

ds ds
(2)

Since there is only a radial electric field, the only
nonvanishing component of F"' is F' . Then the
Maxwell equation I'"'.~ =4m Jj" leads to

and

F = — e P for@=1)4 A (r)
r

J'='" "]'"--P f..„=4
4n.r

(3)

(4)

4 =+[""]'.-- p.

In view of Eq. (2), from consideration of the
Lorentz force equation with the hne element (1),
we get

'2 '2dd, 4~ dt
r (ra' —1) ' +a'e

ds ds

where A (r) is an arbitrary function of r and J" is
the four-current density. Here a prime denotes dif-
ferentiation with respect to r. Since the charged
particles have no radial motion and rotate perfectly
at random we get J' =J =J =0. J vanishes
owing to equal numbers of charged particles mov-

ing in opposite directions. Thus the only nonvan-
ishing component of J" is J .

The charge density 0 is given by

[A'(y)l' s 4p

16&r

also.
For the exterior static field the line element of

the form (1) is

ds2 ~2e2c (C y
—c+C2yc)2(dy2+dz2)

y (C r c+C rc) dy

+(C —c+C c)—2dr2 (10)

Since C2 is negative one must have

C&— (12)

Equation (11) shows that the particles at the
boundary for a given mass and charge per unit
length are constrained to move beyond a certain
critical distance. Hence we can conclude that there
is a lower limit to the radius of the cluster. It is
interesting to note here the difference between the
clusters of charged and uncharged particles. Ray-
chaudhuri and Som obtained only Eq. (12) in the
uncharged case. This shows that for clusters of
uncharged particles the restriction is not on the ra-
dius of the orbit.

In view of the static cylindrically symmetric na-

ture of the metric, the matter and the electromag-
netic field may be represented by

where H, C, and C~, and C2 are constants, C/2 be-

ing the mass per unit length of the cylinder. Fur-
ther, C& is positive and C2 is negative and is relat-
ed to the charge per unit length. Hence ra' & 1

gives for particles at the boundary of our distribu-
tion

1/2C
2C —1 C

2C+1 C,

=0,
s2 ds2

[ '( )]' ,
)

Smpr

1 3ri ——v3 ——0,
ra' [A (r)]' er22= —p,—,, (13)

1 —2ra' 8' 1—2ra'

(1 ra')—1

1 —2fcx

where p is the proper density of rnatter. From
Eqs. (1) and (6) we get

r r

dt
ds and

4 P (1 „a) [A r] e4 —2P

1 —2ra' S~pr

4 —2P

S~pr
' SmE )

———SmE2 ———SmE3 ——SmE4

(y) ~ 2p8 (14)
The geodesic will be timelike if and only if

[A (r) '
ra'& —, and ra'+" e P&1.

grrpr

These equations are confirmed from Eq. (22) later

where r"„and E"„repr eestnenergy-momentum ten-
sors for matter and electromagnetic fields, respec-
tively. r4 vanishes owing to equal numbers of par-
ticles moving in clockwise and anticlockwise direc-
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tions.
The Einstein-Maxwell field equations are TP ~P+EP (16)

Z~ —-g~Z = —S~T~,'V

Now the field equations can be written down in de-

tail,

—a ,2

r
A (r)

e
r

(17)

2a —2p 2 p
2a 2 8

1 —«' [A'(r)]' e' ' A'(r) 4. 2p
, + e

r 1 —2ra r 1 —2ra r

2a —2P(pit+ I2) 8 [ ] 4a —2P+ 4a —2Pra' [A (r)]' A (r)
1 —2ra 1 —2ra r

(18)

(19)

Equations (17)—(19) are not independent, there being an identical relation between them. This arises from
the existence of the Bianchi identity and the fact that the energy-momentum tensor T„"already satisfies the
conservation relation. Therefore one can take Eq. (17) and the sum of Eqs. (18) and (19) as equations of the
problem. The sum of Eqs. (18) and (19) is

I

e' -'P a"+-
r

4' 1 [A (r)]' 1 4a 2p A (r) 4a 2p1+—e + e
1 —2ra' 2 1 —2ra' r r 2 (20)

If m be the particle mass and n be their number density per unit coordinate volume, then one may have
the relation

mn =pV' —g =pre p2P-3a
S

[A (")1' 4 —2p

Smpr

1 —2ra' (21)

Equations (20) and (21) together give

4irmne = (ra"+a')(1 2ra')'~ +— ' — ' (r +1)e-1 [A (r)]
2 (1—2ra )'"

(r) (1 2 )1/2 2
1 ra [A (r)] e4a —2p

r S~pr
(22)

For m and n to be real and positive, one must have
ra g ~ and

+[A r]' 4 —2p

Smpr

which are the conditions already obtained in Eq.
(9).

Thus, finally we have three equations (5), (17),
and (22) to determine a, P, n, A (r), and cr

Mathematically the easiest way to construct a solu-
tion is to choose two quantities arbitrarily. Let us
choose a and A (r) as arbitrary. Equation (17) will
determine P and (22) will give n. Finally, one may
determine cr from Eq. (5).

III. ILLUSTRATIVE EXAMPLES

We shall now consider some special solutions for
an extremely thin cylindrical shell and a finite
cylindrical distribution. In constructing the solu-
tions we start with a suitable form of a and A (r)
and a cylinder with inner radius ri and outer ra-
dius r2.

Let us take

a'=br" andA(r)=br,

where b, h, k, and I are constants.
Equations (23) and (17), on using the inner and

outer boundary conditions, give solutions of the
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type

b k+1
P2 T1—
k+1 r2

' k+1

A. A thin cylindrical she11 of particles

Let us consider a very thin cylindrical shell of
thickness 6 arid inner radius rl =Tp.

—ln(C, r2 +C2r2 ), (24) (i) Uncharged shell

b 2 2k+2l'2 T1—
2k+2 r2

e(r)+e(r2 )+lrlHr2
C2

where

e(r)=h2 f r2 1e2adr

2k+2 '

(25)

(26)

We first find M for a very thin uncharged shell.
From Eqs. (30) and (22) on putting A (r) =0 we get

yo+6,
M = —, f (ra')'(1 —3ra'+2r a' )'/ dr,

(31}

where we have taken e~=1 since 6 is very small.
Then we have from the inner and outer boundary
conditions,

and

k+1
1—

k+1 r2
+In(C1r2 +C2r2 ) =0 .

(27}

k+2
' ' 2k+2

b f2 1—
2k +2 r2

—e(r, )+e(r, }=lnHr2

(28)

If N denotes the total number of particles per unit

proper length of the cylinder, then N is given by

N=f f f ndrdzdp. (29)

Then putting Nm =M, the total mass of the
particles per unit proper length of the cylinder, we

get

M =—1 — (1—3C+2C )' (32)
y11(a')11

2 C

where C/2 is the mass per unit length of the shell
and (a')0 is the value of a' at the inner boundary
of the shell. Obviously yo(a')0/C is comparable to
1 for a thin cylindrical shell. Hence it cannot be
neglected in comparison with 1. Only when (a')11
is of the form f(C)/yo will M be independent of
ro. One possible value of a', viz. , f(C)/r, is, how-

ever, ruled out, because from the outer boundary
condition f(C) comes out to be equal to C. This
makes M =0 in Eq. (32}.

Raychaudhuri and Som neglected the term o.' in
the factor (ra')' of the integrand of Eq. (31) which,
they argued, is small in comparison with ra"; and
so they obtained the result that M is independent
of ro in Eq. (32). Obviously this conclusion cannot
be generally true.

f2
M=2~ mne ~ r .

P)

%e shall now consider two cases.

(30)
(ii) Charged shell

From Eqs. (30) and (22), with ca=el'=1 for a
very thin charged shell, we have, using Eq. (23),

h(k+1)r k(1 2br k+1)1/2+ —1 h2r (1 2br k+1)1/2—1 l(r, +1)
2 1 —2bE'Q

2

b& k+1 2I —2

4~P"

' 1/2

(33}

Equation (33}shows that the gravitational mass per unit length of the shell depends on the radius ro
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B. Finite charged cylindrical distribution

From Eqs. (22) and (30) we get for a charged cylindrical distribution of finite radius a, using Eqs. (23),

—p I (k+1) k k+ ttit+ '
1 I 2&21—i&2I —le2aa

0 1 —2ba'+'u'+'

k 4 1 k+1)l/2 1 b& k+1&k+I &2l —2+ 2l —2 4a —2pIA

4~P'

' 1/2

du (34)

To avoid a singularity at r =0, we take k &0 and
1 & 1. Equation (34) shows that, as in the case of
charged cylindrical shell, here also the gravitational
mass per unit length depends on the radius a. e2at2 e2p —2a 2 r e 2a&2 (39)

of motion of these particles are given by null geo-
desics and such paths within the cluster under con-
sideration are given by

IV. TANGENTIALLY STRESSED
CHARGED CYLINDER

r e ~/=A, and e ~t=kp, , , (40)

The field equations for a tangentially stressed

charged cylinder are

P', 2 A (r)——u' = — e
r r

e 2+—2p(pn +ai2) 8~p + e 4~ —2p
(

A (r)
r 2

(35)

e 2a"—P"+ —a'2cx

r

=8n p0+ e~-2I'A (r)
r 2

where p~ is the tangential stress and p0 is the mass
density. Assuming that the interior field for the
stressed cylinder is the same as that of a cylindri-
cal cluster and comparing the field equations

(17)—(19) with Eqs. (35)—(37) we find that the
following conditions must be satisfied:

[A2(r)]i e4a —2P

8~r 1 2ra' '—
(38)

(37)

V. EMISSION OF NEUTRINOS AND PHOTONS

Let us investigate the motion of neutrinos and
photons inside a cylindrical cluster. The equations

ra' [A (r)]' e
Py=P

1 —2ra' Sm 1 —2ru'

It then follows that a solution of Sec. II may be in-

terpreted as the field inside a tangentially stressed
charged cylinder whose density and stress are given

by Eqs. (38).

where k and p are constants of motion. The dot
represents differentiation with respect to some af-
fine parameter. Thus from Eqs. (39) and (40) we

get
'2

e 2p —2a r 2 —2 —12a

d
=p —r e (41)

From Eq. (42) it follows that

(&
—2& —12a) 0

dr
(43)

for example, in the case of the solution in Sec.
III B. Thus there is a possibility of neutrinos and
photons coming out from the interior of a cylindri-
cal cluster of charged particles. This possibility
exists in the uncharged case also.
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Such paths have apses where r e '2~
=F2 for

some r.
Again

—2 —12a —12a —3(r e '
) = 2e ' r (1—+6r a). (42)

dI"
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