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Solitary waves of matter in general relativity
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The possibility that potentials which describe matter in general relativity obey nonlinear

differential equations with solitary waves as solutions is studied. A particular model

wherein the metric as well as the matter can propagate as solitary waves is presented. Ex-
plicit solutions to this model are exhibited. In these solutions either the matter or the
metric or both propagate as a single soliton. The use of soliton solutions to represent con-

centrations of matter is briefly discussed.

I. INTRODUCTION

The soliton concept has been widely used in parti-
cle physics to represent particles, even at a semiclas-
sical level, mainly owing to the localized behavior
of a soliton type of waves but also to their stability. '

It appears to us that solitons of matter in general re-

lativity might be a good representation of massive
objects, e.g., galaxies. The collision of two galaxies
shares some common features with the collision of
two solitons —for instance, the collision of two
galaxies does not destroy the galaxies.

In general relativity, equations having a soliton

type of behavior appear in the study of the vacuum
Einstein equations for axially symmetric waves with
two degrees of freedom. Also the vacuum Ein-
stein equations for stationary axially symmetry
space-times have a soliton type of solution
(Ernst equations). Because of the close relation be-

tween the vacuum Einstein equations for cylindri-
cally symmetry space-times and the Einstein equa-
tions coupled with irrotational perfect fluids with

p =m equations of state for the same type of space-
times, the soliton concept also has appeared in this
context. However, in this last case the matter does
not have soliton behavior because the potential that
describes the rnatter obeys the usual /inear wave

equation in cylindrical coordinates.
The methods used to solve the Einstein equations

in the above-mentioned cases are the inverse scatter-
ing ' and Backlund transformation methods. ' '

In this paper we want to study the possibility that
matter propagates as solitary waves or rather that
the potentials which describe the matter obeying
nonlinear differential equations admit solitary
waves as solutions.

In Sec. II we present some basic aspects of the
author's model of anisotropic fluid described by

II. A MODEL OF ANISOTROPIC FLUID

The main reason to study the model of anisotro-
pic fluid with two-perfect-fluid components '" in
the present context is the appearance, in a very na-
tural way, of two potentials that can be "forced" to
obey a soliton type of equation.

The stress-energy tensor for the anisotropic fluid
is formed from the sum of two tensors, each of
which is the energy-momentum tensor (EMT) of a
perfect fluid, ' i.e.,

T""(u,v) =t"'(u)+t""(v),
t""(u)= (p +w)u "u "—pg"',
t""(v)=(q+e)v"v' qg"—

(2.1)

(2.2a)

(2.2b)

two-perfect-fluid components. In the next section
(Sec. III) we specialize the above-mentioned model

to obtain matter evolution equations general enough
to include, . as a particular case, a known system of
equations with soliton solutions. In Sec. IV we

study the Einstein equations coupled to the above-
mentioned anisotropic fluid for a cylindrically sym-

metric space-tine. In Sec. V we analyze the possi-
bility of having solitons of matter. We present a
particular example wherein the matter, as well as
the metric, can propagate as solitary waves.

In Sec. VI we study three particular solutions to
the Einstein equations. The solutions obtained
describe cylindrically symmetric space-times or
cosmological models, depending on the value of an
integration constant. In these solutions either the
matter or the metric or both propagate as a single
soliton. Finally in Sec. VII we discuss some of the
possible generalizations and applications of the

'

model.
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u u"=v u"=1 u "Qv" .P P (2.3) Also, we have

uI'~u &=coseu" + q+e
p+w

sinu U",

The vectors uI' and U" are the velocities associated
with each fluid component, p and q are the pres-
sures, and w and e the fluids' rest-energy densities.

With the transformation

1/2

U"Up
———X"Xp——1, UpX" =0,

p=T" UpUv~ 0 =1"XpXv

(2.11)

(2.12)

In general, it is necessary to add supplementary
conditions to close the model; this point was treated
in some detail in Ref. 8.

1/2

(2.4a)

sinuu" +coseu",

(2Ab)

III. THE MATTER EVOLUTION EQUATIONS

The matter evolution equations are obtained in

the usual way, i.e., from the "conservation law"

(3.1)

where

[(p+w)(q+e)]' '2 „
p+w —q —e

(2.4c)

The quantities U", X",p, 0, and m are the fluid flux
velocity, the direction of anisotropy, the fluid rest-

energy density, the pressure along the anisotropy
direction, and the pressure on the "perpendicular
directions" to X&, respectively. These quantities are
related to the perfect-fluid components by

U"=u "/(u u*)'

X"=u "/( —u u*)'~

1p= —,(w —p+e —q)

+ —, I(p+w+q+e)

(2.6)

(2.7)

we find that the EMT (2.1) can be cast in the form

Ti"=(p+ n. ) U"U'+ (o~)X"X'.—ng"—' .

(2.5)

Some properties of this operator are

H~u =H~u'=O,

H~H, =H~, H„.=H,„,
(3.3)

(3A)

(3 5)

Also, H," can be written in terms of the new opera-
tor

Ppy Pyp — [1 ( u ug ) ] epy~pu u

(3.6)

We shall "project" Eq. (3.1) along the directions
u",v" and the directions that are perpendicular to
both u" and v". To perform this last projection we
introduce the projection operator

H„"=5,"—[1—(u v } ]

X[u"u„+u"u„—u u, (u"u„+u, u~)] .

(3.2)

1
o = ——,(w —p+e —q)

+4(p +w}(q +e)[(u "v„)' 1]}
'~'—,

(2.8)

as

H~=I,~I », (3.7)

1+ —,[(p +w —q —e)

+4(u„u")'(p +w)(q +e)]'~', (2.9)

(2.10)

where e& p is the Levi-Civita symbol. This repre-
sentation of H" is particularly useful for computa-
tional purposes.

Transvecting (3.1) with u~, u„, and H„we get,
respectively,

(p+w) „u'+(p+w)u". „+(q+e) „u"u v~+(q+ ) euv' &+u(q+e)u u~v" „(p+q) „u. "—=0,
(q+e) „u"+(q+e)u'.„+(p+w) „u "u u +(p+w)u". „u"u„+(p+w)u u u „(p+q) „v. "—=0,
(p+w)u" „u"Hq+(q+e)u" u. "Hq —(p+q)'".Hq ——0 .

We shall specialize the velocity of each fluid component in the following way:

u„=P,„/(P P' )' ',

(3.8)

(3.9)

(3.10)

(3.11a)
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In other words, we impose the condition of irrotationality.
From (3.10), (3.11), and (3.3) we get

(3.11b)

(y,py'P), p+ (y, py'P), p H"=2(P+q),pH" . (3.12)

This last equation will be satisfied identically if we choose

p+w =FP ~P'

q+e =HP

J +q = , (F4,.—0'+HI,.0' G»—
where F, H, and G are arbitrary functions of the scalar potentials p and 1(.

The evolution equations for (( and P are obtained directly from (3.8) and (3.9). We find

4,A'F 0+0'0, Ho0+ 2F,pk' 0,A' 2H, A—'4,p0'P+H, 0' O'Pf, p+ , G, 0'—=0

&, &'F 0+0' 0, Ht:jP+ 2H, A' 4,p4' , F, 0'—4—,p4' +FA '0' 4,p+ , G,.0'=—0

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

T„„=FPqP, +HP qQ,

, gq, (FP P' +—HP g' G) . —

(3.19)

It is interesting to point out that the evolution equa-
tions (3.18), as well as the EMT (3.19), can also be
obtained, in the usual way, from the Lagrangian
density

W= —,&—g (FP P' +Hg ~P' G)—
=&—g V+q). (3.20)

In Refs. 8 and 9 we studied the particular case of
a fluid in which the condition (3.1) was implement-
ed by t""(u).„=t"'(U).,=0, i.e., we had a kind of
minimal coupling between the fluid components.
This particular case is the specialization E=H=1
and G=O of the present model. Now, with the
specifications (3.13)—(3.15) we have a different

where we have used the notation QP—:P ~' . Now
if we solve (3.16) and (3.17) for F P and H f we
obtain

F 0= 2'&,aP', ~y0' 0, Fy4' 0,— , Gy——
(3.18a)

H P = , F~P P —,HgP P ——HpP g ———,Gp

(3.18b)

where H~ =dH/r}p, F& =BF/B1(, etc.
By using (3.13)—(3.15) the EMT (2.1) can be cast

2(FH)'~ P'"P qtan(2a ) =-

(3.21b)

(3.21c)

2m=FP P' +.HP, g G, —

2p=G+[(FP P' Hf P' )—
+4FH($ 1( ')']'"

o.=p —G .

(3.22)

(3.23)

(3.24)

The special case G=O is of particular interest due
to the "mass term" character of G, as indicated by
(3.20). Also when G=O we have o =p, i.e., we have
the "stiff" equation of state along the anisotropy
direction.

IV. EINSTEIN EQUATIONS COUPLED TO
MATTER

The Einstein equations
1

Rpv p gpvR = —Tpv (4.1)

I

kind of coupling, i.e., t"'(u).,= —t"'(u).,@0;there-
fore, the fluids interact through a force density
f"=t""„differen. t from zero.

The particular choice of the physical variables
(3.11) and (3.13)—(3.15) tells us that the one-fluid
variables are related to the potentials P and P by

u„*(P pP'P)'~ =cosa/ „+(H/F)'~ sinai „,
(3.21 a)

U&(g pP'P) = (F/H)'~ sin—aP „+cosa/ &,
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coupled to the EMT (3.20) are equivalent to

Rq, ——(F—P qP „+Hf qg „,—g„—,G) . (4.2)

In order to study the system of equations (4.2) to-
gether with its integrability conditions (3.18) we

choose the particular metric

ds =e (dt dr )—tf(d—B+hdz) (t/—f)dz

(4.3)

where tp, f, and h are functions of t and r only.
This metric has been used to study cylindrically
symmetric waves with two degrees of freedom; also
particular cases of (4.3) are homogeneous space-
times" of the Bianchi types I through VII.

The component Rg~ of the Ricci tensor computed
with the metric (4.3) is zero. Since the metric ten-

sor associated with (4.3) depends only on t and r, we

have that p and 1( also depend on these two vari-

ables (t, r). This can be proved easily using the fact
I

that a symmetry of the metric is also a symmetry of
the Ricci tensor. Therefore, Eq. (4.2) implies G=O.
Using this fact we find that (4.2) for the metric (4.3)
reduces to

tppo —~pii too—/t+ f fo'+ f'ho' t—
2(F—No'+Hgp'), (4.4.)

tppp+tpii tpo/t+—f f~ +f h~

2(FP—&'+Hg, '), (4.4b)

~i«+f 'fpf, +-f2hph,

(tf'hp)p —(tf'h, ), =0,
where ~p=&~/&t, y, =~y/ar, etc. Also the evolu-
tion equations (3.18) can be written as

2(+0001+Hypy) ), (4.4c)

fpp+fo/t —fi i
—(fo' —f~')/f —f (hp —h, 2) =0,

(4.5a)

(4.5b)

F(Pop+No/t gati)= 2H—t(Po' Pi') 2+—p(0o'—P&') Fp—(P go—p
—P, P, ),

H(Pop+Co/t Pi) )= —,F—y(fp' —f)') ——,Hg(1(p' —1(,') —H~(popo —y, 1(, ) .

(4.6a)

(4.6b)

The equation resulting from the difference of Eqs. (4.4a) and (4.4b) follows from the other field equations.
From the sum of (4.4a) and (4.4b), and (4.4c) we get

[[ t '+f (fo'+—fi')+f'(ho'+hi')+2F(4o'+P ')+2H(go'+g ')]dt
2

Thus,

+2[f f f, +f h h, +2(FP P, +HP P, )]dr j . (4.7a)

where 0 is related to f, h, F, H, p, and 1( by

A=X ff,h]+A[FH, P, P]
and

(4.7b)

(4.8)

&[f,hl —= I [[f '(fo'+f '—)+f'(ho'+h ')]dt+2(f 'fof +f'h, h, )d I,
A[FH, W, P]= I t[[F(go'+P—~')+H(gp'+g&')]dt+2(FP, P, +Hg, g, )dr j .

(4.9)

(4.10)

(t /f)dz2— (4.11)

whose metric coefficients are a solution to (4.2).

The integrability conditions for X and A are exactly
Eqs. (4.5) and (4.6), respectively. Thus, any solution
to (4.5) and (4.6) will generate the line element

ds = (dt dr ) tf(dB+hdz—)—

I

We can also get the same type of solution by setting
G=O in (4.2) and choosing the metric that is ob-
tained by letting t~T(t, r) in (4.3), where T is a
function of the indicated arguments. It happens
that the Einstein equations, in this case, tell us that
T obeys the usual vvave equations. This fact can be
used to perform a change of variables, and finally,
to end up with (4.11).

A variety of particular solutions to (4.5) are
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known. Also, particular cases of the metric (4.11),
when H=O and F=1, have been widely studied. ' '
Recently we studied the case H =F=1 that corre-
sponds to a massless complex scalar field. '

First we notice that in order to maintain the
character of velocity potential of P and t/i, the
"gauge" freedom of these quantities reduces accord-
ing to

V. SOLITONS
p-p'=p'(p), Bp lay~o, (5.4a)

(5.4b)

with

(tror , '),o (tr—,r ')-, =o, (5.1a)

Particularly interesting are the soliton solutions
to (4.5) obtained using the "inverse scattering" tech-
nique or Backlund transformations. The starting
point of the inverse scattering technique is the fact
that Eqs. (4.5) can be written as the matrix equa-
tion'

In other words, (5.4) is the most general transforma-
tion of potentials that leaves (3.11) invariant. ' It is
rather apparent that the "contact" transformation
(5.4) cannot change the soliton character of a partic-
ular set (P,P).

To analyze the physical consequences of the
choice (5.3), let us compute vr, cr, and p; from
(3.22) —(3.24) and (4.11) we get

~=(a/2) v te "[(Po —P, 2)P
f h

rlf h]=t
fh h2f+f I (5.1b)

r=(&
l t o)r, = (5.2)

To a known solution of (5.1), say r„we can associ-
ate another solution y as follows:

+(4.' 0')0']-,

a'=p =« ~2)'~« "[[(0o'—0 i')0
—(4o' —PI'9 'l'
+4(p p y y )2]1/2

(5.5)

F=-, a P, H= , a P- (5.3)

where a is a real constant, makes the system (4.6)
equivalent to the system (4.5), or by noticing that
(4.6) with (5.3) can be cast as (5.1a) with r =r[$,1(].
We believe that other specializations different from
(5.3) might make the system (4.6) admit solitons as
solutions. This point is under active consideration
by the author.

Now we shall examine the "gauge" freedom that
we have in the choice of the scalar functions P and

where X is a 2)&2 matrix function of t, r, and the
complex spectral parameter A, . Solitons in this con-
text are related to single poles of the "scattering
matrix" X. The known solution y, is called the
"background" or "seed" solution. The general for-
malism used to find soliton solutions to (5.1) is
presented in Ref. 2; also the particular cases of 1-
and 2-soliton solutions are presented in some detail.

The soliton solutions to (5.1) are metric solitons,
since they are independent of the matter content of
the space-time. The solitary-wave solutions to (4.6)
are solitons associated with matter, since the poten-
tials P and P are velocity potentials from which are
derived the velocities of each fluid component.
That for some particular choice of the functions F
and H the system of equations (4.6) admits a soliton
type of solutions can be proved by noticing that the
specialization

(5.6)
The function 0 in this case can be cast as

Q=X[f,h]+a X[/, g], (5.7)

sInce

(5.8)

One of the properties of the solitary waves is that
they are localized, i.e., the functions that character-
ize the wave are different from a constant in a finite
range of the space variable at any given value of the
time variable. We see that the localized character
of p and 1( for solitons can be propagated to m and
o =p as indicated by (5.5) and (5.6). We shall re-
turn to this point in the next sections.

VI. PARTICULAR CASES

The particular cases that we shall consider are
particular solutions to Eq. (5.1) for the metric coef-
ficients f and h, i.e., solutions to the Einstein equa-
tions (4.5), and particular solutions to the same Eq.
(5.1) for the scalar fields P and g, i.e., solutions to
the integrability condition of A with F and H given
by (5.3). The solution for the metric coefficients f
and h and the solutions for the velocity potentials P
and f do not need to be equal, e.g., we can have the
metric propagating as an n soliton and the matter as
an m soliton. We shall call such a solution an n-m
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soliton. If the metric coefficients (potentials) do not
propagate as a soliton we shall assign to n (m) the
value n =0 (m =0).

A. 0-1-soliton solution

A solution to (5.1) is given by

f=r', h=0, (6.1)

where a is an arbitrary constant. The simplest soli-

ton solution to (5.1) for y=y[$, 1(] is the 1-soliton
I

pp cosh(kx +e)=r 6.2a
cosh(Px+e) '

sinh(x /2)
cosh(px+e) '

1
where k =p+ —,, p and e are arbitrary constants,
and

(6.2b)

x =2lnI [r +(r t )—'/ ]/t I . (6.3)

From (4.11), (4.9), (5.7), and (6.1)—(6.3) we get

solution obtained from the seed solution P, =t ~

and P, =0, i.e.,

2[&2++2p2)+[+2 J)/2
ds =, [cosh(Px+e)]' (dt dr ) —t(t d—0 +t dz ) .

,z)"/2

And from (5.5)—(5.7), (4.9), and (6.1)—(6.3) we find

a (r t )' [R—2+R~cosh (px+e)]
t '~ +~ a '+' +o ' [cosh(Px+e)] +

a (r t )' I[R—2 R~cosh—(px+e)] +[2R3cosh(px+e)] Ip=o =
t ~~ +' & ~+~ +' ~ [cosh(px+e)] +'

where the functions R ~, R2, and R 3 are defined as

p'r' r
R& ——— + k tanh(kx+e) —p, +tanh(px+e)

r t (
2 2)1/2

—pt pr2 2 2

sinh(x/2)+ —,cosh(x/2) —k tanh(kx+e)
1

r2 r2 (
2 r2)1/2

(6.4)

(6.5)

(6.6)

(6.7a)

(6.7b)

—R3=sinh(x/2)[p +k tanh (kx+e) —pk tanh(px+e)tanh(kx+e)]

+ —, cosh(x/2)[p tanh(px +e)—k tanh(kx +e)]

+pr(rz —t2) '/2[ —, cosh(x/2) —2ksinh(x/2)tanh(kx+e)+psinh(x/2)tanh(px+e)] . (6.7c)

I

(6.5) and (6.6). This factor makes the pressures and

the density localized. Thus, this solution describes

a solitary wave of matter propagating in a Kasner
"background. " When t represents a space coordi-

nate, the metric (64) describes a space-time with

cylindrical symmetry and the singularity at t =0
describes an infinite wire of matter. Equations (6.5)

and (6.6) tell us that we have localized pressures and

density, as before. Thus, this solution represents a
cylindrical solitary wave of matter incident on an

infinite wire and reflected from it.

B. 1-0-soliton solution

By using the solution (6.1) as a seed solution we
rind"

First we notice that the timelike character of t and
the spacelike character of r are determined by the
sign of t '/ e in (4.11), i.e., the factor of dt dr-
in (6.4). This sign can be chosen to be either posi-
tive or negative, since we can always add the in-
tegration constant im to Q. Thus, the role of t and r
can be interchanged. For a discussion of this point
see Refs. 2 and 14. When t is a time coordinate, the
metric (6.4) represents a "perturbation" to the Kas-
ner space-time. We recover the Kasner metric let-
ting a ~0 in (6.4). The space-time represented by
(6.4) has a big-bang type of singularity, since the
pressures m. and o. and the matter density p blow up
at t =0 as-indicated by Eqs. (6.5) and (6.6). The sol-
iton character of the solution can be noticed by the

—(2+a ~)appearance of the factor [cosh(px+e)] ' +' ' in
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2~ cosh( ly +5 )

cosh(ay +5 )
' (6.8a)

Equation (5.1) for y=y[P, P] admits the solu-
tion'

where

sinh(y /2)
cosh(ay+5) ' (6.8b)

f=g(t+r),

(6.10a)

(6.10b)

y =21n(Ir ro—+[(r—ro) —t ]' I/t), (6.9)

ro and 5 are integration constants, and l =a+ —,.
I

where A is an arbitrary constant and P an arbitrary
function of either t —r or t +r.

From (4.11), (4.9), (5.7), and (6.8)—(6.10) we get

„(d 2 d 2) 2t cosh(ly y5) dg2 2
sinh(y/2) dod 2(( t) cosh[(1 —l)y —5]

cosh(ay+5) cosh(ay+5) cosh(ay p5)
2~ 2+@2/8

2 2 (/2 cosh(ay+5)exp (aA) f(g') d(t+r)
[(r —r, )' —t']'" (6.lib)

where the prime means derivative with respect to the argument. And from (5.5) —(5.7), (4.9), and (6.g) —(6.10)
we obtain

a 2[(r —ro )
2 —t 2]'/ exp (aA—) f (g') d ( t~ r)

16t ('+ '+' / cosh(ay y5)
tt [(r —ro)2 —t2]' [1/(2Alp') /t]'/ exp (aA) f—(q') d(t/r)

0'=
2 2gt'+ +' 'cosh(ay+5}

(6.12)

(6.13)

First we want to point out that Eqs. (6.10b) and
(6.11) imply f g' =0. Therefore, Eq. (3.11b) is
meaningless and the two-fluid interpretation of the
solution breaks down. But, the anisotropic-fluid in-

terpretation of this solution is still valid as a limit,
since in (2.7) the term g ~g' for a v& given by
(3.21b) cancels out.

The metric (6.11), the pressure (6.12), and the
density (6.13) have a singularity at t =0. This is a
big-bang type of singularity or a wire located at
t =0 depending on the timelike or the spacelike
character of t. When a =0 the metric (6.11) de-

scribes a solitary gravitational wave propagating in

a Kasner background or a cylindrically symmetric

l

solitary gravitational wave incident on an infinite
wire and reflected from it. The localized character
of the gravitational wave is propagated to the quan-
tities m. and p=o as the presence of the factor
[cosh(ay+5)] ' in (6.12) and (6.13) indicates. One
of the matter potentials propagates as a wave, but
this is not a soliton type of solution, despite the fact
that P can be chosen to represent a localized wave.
Furthermore, a localized behavior of t/i does not
propagate to mand p=(.r, because of the exponent
appearing in (6.12) and (6.13). Loosely speaking we
can say that the pressures and the density propagate
as waves modulated by a gravitational single soli-
ton.

C. 1-1-soliton solution

From (4.11), (4.9), (5.7), (6.8), (6.9), (6.2), and (6.3) we get the line element (6.11a) with

2(a 2+ + 2p2) + z 2~2
2

e cosh(ay+5)[cosh(Px pe)]'
(r2 t2)1/2[(r r )2 t2]a2/2

And from (5.5)—(5.7), (4.9), (6.8), (6.9},(6.2), and (6.3) we find

P=o=

(2 (r —t )' [(r —ro) —t ]' [ R+2Rc (so(ph+xe)]
t"'+ +' ~ '+' 'cosh(ay ~5)[cosh(Px ~a)]'+'

a (r t )' [(r ro) —t ]' / [—[R2 ——R&cosh2(px ~e}]2~[2R2cos(px ~e)]2]'/2
g() p~2pg2p2) ~g2/2

cosh(ay + 5)[c os h(P x+E)]

(6.14)

(6.15)

(6.16)
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The metric (6.11a) with (6.14) presents the same
behavior as the metric (6.11a} and (6.11b); thus the
remarks that we made about (6.11a)—(6.11b) also

apply in this case. Equations (6.15) and (6.16) tell
us that the pressures and the matter density pro-
pagate as a single soliton modulated by a 1-soliton
gravitational wave.

VII. DISCUSSION

0 =(I+a )X[f,h] . (7.1)

Thus, this new 0 generates a solution to Eqs.
(4.2) —(5.3) for the metric (4.3). The different quan-
tities associated with the fluid are obtained by put-
ting p~f and lb~h into the corresponding general
expressions for these quantities. This solution-

generating technique can be used to transform an
n-soliton gravitational wave in an n-n-soliton solu-
tion. Solutions to the vacuum Einstein equations
for the metric (4.3) can be found in Refs. 2, 13, and
14.

In Sec. VI we studied different cases wherein the
localized character of the 1-soliton solution for P
and lb or f and Jt propagates to m and p=o.. We
also tested this property numerically using the 2-

The solutions to the vacuum Einstein equations
for the metric (4.3) are closely related to the solu-

tion to the Einstein equations (4.2) for the same
metric. This relation is a consequence of the fact
that the term that represents the matter, A, enters
only in the metric through co in a linear way as indi-
cated by Eqs. (4.7b) and (4.8). This fact can be used
to transform any known solution to the vacuum
Einstein equations for the metric (4.3} into a solu-

tion of (4.2) [with the restriction (5.3)] for the same
metric. From a solution to R» ——0 for the metric
(4.3) we have f, h, and X[f,h]. Now, letting P ~f
and P ~h in (5.7) we get

soliton solution presented in Ref. 18. For this
reason solitons might be used to represent concen-
trations of matter.

Some physical aspects of the two-fluid model, as
well as the "solution" (3.13) and (3.14), need to be
better understood in order to apply the model to
more realistic situations, e.g., the description of
galaxies.

The methods used to obtain metric solitons de-

pends heavily on the particular form of the metric
associated with (4.3). Whether this form can be
changed by performing a general change of vari-

ables, without losing the soliton solutions, has yet to
be studied; specifically is the soliton character of
these solutions stable under an arbitrary change of
variables? An answer to this question can be given

by studying the invariants of curvature associated
with the particular solutions, a task that is not easy
to accomplish owing to the algebraic complexity of
these types of solutions.

To end this section we want to add that the La-
grangian density (3.20) is interesting by itself, since
many models of field theory are particular cases of
(3.20), e.g., the P field theory, ' the two-
dimensional generalization of the sine-Gordon equa-
tion, ' etc. Thus, all those models have a fluid in-
terpretation given by (3.21)—(3.24). Also, some of
them have soliton solutions, but when coupled to
the Einstein equations they yield corn. plicated cou-
pled systems of equations too difficult to study us-

ing standard techniques, even for simple space-
times like (4.3) [with t~T(t, r)]. The otigin of
these difficulties is the appearance in those theories
of a "mass term" different from zero (G+0).
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