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Spinning fiuids in general relativity
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We derive the equations of motion for a fluid with intrinsic spin in general relativity
from a variational principle. Our theory is a direct extension of the theory of spinning
fluids in special relativity.

I. INTRODUCTION

The treatment of spin angular momentum in spe-
cial and general relativity has received quite a bit of
attention. A recent paper by Bailey' contains many
earlier references. In this paper we consider the
field equations in general relativity for a continuous
medium with internal spin. It is thought that the
spin of "particles, " photogalaxies, turbulent eddies,
or primeval black holes could play an important
role in the early epochs of the Universe. '

A special-relativistic variational principle for a
spinning fluid in special relativity was formulated
some time ago by Halbwachs. Halbwachs's varia-
tional principle gives the special-relativistic Weys-
senhoff theory for a spinning fluid. Here we gen-

eralize Halbwachs's variational principle to general
relativity and obtain the Einstein equations for a
fluid with internal spin. It would also be possible
for us to treat the Einstein-Maxwell theory in a
medium with spin. This would be the general-
relativistic version of the Lorentz dielectric theory
and has been studied in Refs. 1 —3. For simplicity
we shall just treat the gravitational case.

II. HALBWACHS'S VARIATIONAL PRINCIPLE

a;=U;/c, (2.3)

whereas the spin density of the fluid is described by

1 2 1 2Stl=ptt(a ta J
—a Ia t) . (2.4)

In Eq. (2.4) p is the conserved density of the fluid

(p U'). $.
——0, (2.5)

where the semicolon denotes covariant differentia-
tion and ~ is a scalar function proportional to the
magnitude of the spin of the fluid and has the di-
mensions of angular momentum per unit rest mass.
With the choices (2.3) and (2.4), the spin vector S;
of the fluid is associated with a;:

jk I 3S;= g,JkISJ U =pea; .
2c

The fiuid also satisfies the auxiliary condition

SjUJ=O .

(2.6)

(2.7)

The angular velocity of the spin vector is given by

1

J 2 (a ";a&i—a ";a&J)

Minkowski metric. The vector a; is related to the
Eulerian four-velocity of the fluid via

=Q iapj ~
—' Ig. (2.8)

Q ia~j =ggj ~
P. (2 1)

Halbwachs introduces an orthonormal tetrad of
vectors QI'; which he uses in his variational princi-
ple. Here p, v, ...=1,2, 3,4 label the tetrad vectors
and i,j,...=1,2, 3,4 label the components. These
vectors satisfy

where the overdot denotes differentiation along the
fluid flow

(2.9)

The spin kinetic energy density of the fluid has the
form

g

apiav g pv (2.2) Y =—S"8"J
gJ

where g;J is the spacetime metric and gz is the = +pKQ ga .J- U (2.10)
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This form for the kinetic energy density was given
earlier by Unal and Vigier who also briefly discuss
Halbwachs's variational principle. The Lagrangian
density for the spinning fluid has the form

~/= &—gF(p, s)/c v'—gp—xa'ia '. Uj/c

+&—gA, ,(g; U'UJ+c )

+&—g A,i(p U'). ; +&—g A, iX U'

+&—g A,4S'; U'+ AF "(g,jaq'a„j re,—),

where A, 1, A,2, A,3, k4, and AF are Lagrange multi-

pliers associated with the various constraints. We
have generalized Halbwachs's variational principle

I

by considering the entropy s and the Lin particle
identity variable X. F(p,s) is the energy density of
the fluid. The Lagrangian density for a nonspin-
ning fluid, defined here by a"=a '=a '=0, has
been discussed in detail in Ref. 6 to which we refer
the reader.

The variables to be varied in Wj are U', p, a "', s,
X A 1 A 2 jII 3 and A,"". Since a ' does not appear in
the kinetic energy terms in Wj it may be left out of
the variations without changing the final results.
Also the constraint for A, is the same as that for A, i

and these may be combined together into one term
whose Lagrange multiplier we call A, 1. Thus, we
have the final form of the Lagrangian density for
the fluid

Wj —v' gF/c —v' gp—ka';—a ' JUj/c+.v' —g Ai(g&U'UJ+c )+v' g A2(pU—').;+&—g Ap';U'

+V' —g A 4s; U'+ v' —g A,
"

(gij a "a 'j—I ) +V —g A, (g ja 'a j—1)+2V' —g A,
'

g ja "a 1

+2~ gA14g —Ja i'Ujlc+2V' gA24g—ja2'UJIC (2.12)

The spin density of the fluid S;J is defined by

Bwj Bwj&—gs"=c a" . —a".
IJ I ~'Vj J ~'Vi

da da
(2.13)

I

the Weyssenhoff convective form for the spin ten-

sor. In Sec. III we carry out the variations that
yield the equations of motion for a spinning fiuid in
general relativity.

which gives, when applied to (2.12),

1 2 1 2
Sfj pa (a;a j—a ja; ) (2.14)

III. FIELD EQUATIONS

from which we see that our earlier definition of the
spin density is consistent with the field-theory de-
finition (2.13). The spin of a fluid particle is given

4, 7

In order to generalize Halbwachs's Lagrangian
density Wj (2.12) to general relativity we only need
add on the gravitational Lagrangian density
V' —g R, where R is the scalar curvature. This gives
the total Lagrangian density

1 2 1 2s,z
——a.(a;a j —a Ja;), (2.1S) W=c, v' —gR +W/, (3.1)

gr;, cF;;— —
~0;k

For the spin variables f"~a ",

(2.16)

from which we see that the spin of a Quid particle
is proportional to the scalar a(x). Later we shall
prove that Ir is constant along the flow for our prob-
lem.

An equivalent way to introduce spin in field
theory is via the Belinfante-Rosenfeld spin tensor

k.ilJ'

where ci ——c /(16m. k) and k is the gravitational con-
stant.

We now outline the results of varying the action
associated with (3.1) with respect to the field vari-
ables a", a ', U', p, s, X, and g;J. For more details
of this calculation see Refs. 4 and 6.

Variations with respect to a" and a ' lead to the
field equations

plea; le+2k, "ai;+2k, ' a—2;+2k, '
U; Ic =0 (3.2)

and

and we obtain

~" = —,S"Ukk
ij 2 ij

pKa ( /c +Icpa ( /c +2k a 2) +2k, a ii

+2k, U /t." =0 .
Dotting (3.2) with U; leads to

(3.3)
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)(,
' = p—aa; U'/(2c )

=pea;U'/(2c ) .
The same procedure applied to (3.3) yields

)(, =—pea'; U'/(2c ) .

(3.4)

(3.5)

If we now dot (3.2) with a ' we obtain

A,
' =0,

which with (3.7) gives

i=0.

(3.8)

(3.9)

Next if we dot (3.2) with a" we obtain

A,
"=pi~a "a';/(2c), (3.6)

This means that the magnitude of the spin is con-
stant along the flow. Dotting (3.3) with a ' gives

A,
' =—icp/(2c) . (3.7)

I

whereas the same procedure applied to (3.3) pro-
duces

122=i~pa ', a', /(2c) =A," . (3.10)

If we next multiply (3.2) by a'J and (3.3) by a J,
then add the resulting equations, we find

pk(a';a J
—a;a'J)/c+2A, "(a2a J+a(;a'J) pea —Ja'kU"U;/c +pea'Ja 'kU U;/c =0. (3.11)

If we switch i and j and subtract the resulting equa-
tion from (3.11) we arrive at the equation of motion
for the spin,

s,J +sJk U; U /c +sk; UJ U /c =0 . (3.12)

This equation expresses the fact that the spin under-

goes Fermi-Walker transport along the four-
velocity U' and has also been derived in general re-

lativity by Mathisson and Papapetrou using con-
siderably different methods than those employed
here.

The variation with respect to the density p leads

~2, k U +Ka;a /c =Fp/c, (3.13)

2$(U;+A@;+A,4s; —p&a ka;;/c
+psik U /c —k2 ip—3 (3.14)

I

where Ep ——BI' /Bp.
Variation with respect to the four-velocity leads

to the expression

l

In a nonspinning fluid a"=a '=a '=0 and (3.14)
gives the important velocity potential (Clebsch) rep-
resentation of the four-velocity. For the case of
spinning matter the four-velocity does not come out
in a potential representation. If we dot (3.14) with
U' and employ (3.13) we find

A, ( ———pFp/(2C3) . (3.15)

This is the same solution for A, ( as for a nonspin-
ning fluid. The variation with respect to X and s
lead to simple equations which are the same as in
Ref. 6. Since we shall not need these equations ex-
plicitly in this paper we shall not write them out. If
one were to differentiate (3.14) to obtain an expres-
sion for U;, then these equations would have to be
used to eliminate A,3 and A,4 from the resulting equa-
tion, which would be the generalized Euler equa-
tion.

The variation with respect to the metric g;k leads
to the Einstein equations for a fluid with internal
spin. This calculation is somewhat tedious and we
give only the final result which is

8mk

c4
F UUk/ + i (F F )+ U k)U Uk J [ U(k] J

c
(3.16)

where the parentheses around indices imply symmetrization, A(;k)
——,(A;k+2k;). If we make use of the form

for F(p,s), F= —p(c +e), where e is the rest specific internal energy then (3.16) can be written

G'"=
4 p(1+e/c +P/pc )U'U +g'"P+ 2pU's"' Ui+pU'"—s'J J+[pU'"].Js'J

c C
(3.17)

where P is the pressure P =p (Be/Bp), . The first
two terms on the right-hand side of (3.17) give the
energy-momentum tensor for a fluid without spin:

Tz p(1+e/c +P/pc )——U'U"+g'"P . (3.18)

The remaining terms on the right-hand side of
(3.17) give the intrinsic spin contribution to the
energy-momentum tensor

7 k U( k)IU + U(k )J +[ U(k] J
C
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As far as we are aware this spin contribution to the
energy-momentum tensor has not been derived pre-
viously although it is a straight-forward generaliza-
tion of Halbwachs's treatment of spinning fluids in

special relativity. The symmetric energy-
momentum tensor T'",

Z-ik+ haik (3.20)

satisfies the Bianchi identities T .k ——0 which lead
to the relativistic Euler equation for the fiuid.

IV. CONCLUSIONS

—cA~U .;—ck,2U p;k . k

—cA&U X;—cA4U s;,k k (4 2)

and then to carry out the Belinfante-Rosenfeld sym-
metrization procedure. This again, of course, leads
to the symmetric energy-momentum tensor given in
(3.17).

The equations of motion of the fluid also follow
from the variational principle. The spin s;J under-

goes a Fermi-Walker transport and the generalized
Euler equations follow from the Bianchi identities
or by differentiating U; in (3.14) and using the other
equations from the variation principle.

We have given a detailed treatment of the equa-
tions for a spinning fluid in general relativity. Our
procedure was to follow Halbwachs's introduction
of a tetrad to represent both the spin density and
four-velocity of the fluid. We were then able to for-
mulate an Eulerian variational principle, which is
correct in special relativity, to derive the form of
the Einstein equations. The resulting energy-
momentum tensor for a spinning fluid is given in
(3.17) and has apparently not been previously de-
rived. An alternative derivation of T' is to calcu-
late the canonical energy-momentum tensor tk.

V —gt; =c5; Wf —ck (4.1)

which has the form

There are several suggested applications of the re-
sults of this paper. First one could study exact
solutions to the Einstein equations for a spinning
fluid in general relativity. In a cosmological con-
text the galaxies would be the spinning particles of
the fluid. The study of such a fluid of galaxies in
various anisotropic Bianchi universes would give an
indication of how the spin interacts gravitationally
with the anisotropy of the spacetime. Israel stud-
ied a simple model in a Bianchi type-I universe and
found that spin induces a Lense-Thirring rotation
of the local inertial axis relative to the directions
along the spin of the fluid.

The work by Bailey and Israel (Refs. 1 —3) is the
closest to that presented in this paper. Their study
does not make use of an explicit Lagrangian densi-

ty, as we have done, but derives various relations
which must be satisfied via Noether's theorem.
Their theory is therefore valid for arbitrary La-
grangian densities. Our work, on the other hand,
deals with a specific Lagrangian density that de-
scribes spinning fluids in special relativity. The
work of Israel and Bailey also allows for other
fields to be present in the Lagrangian density. This
we can do by adding more terms to describe these
fields. For example, Maxwell's theory and the gen-
eralized Lorentz dielectric model would be a first
step.

Our formulation of spinning fluids in general re-
lativity can also be used to investigate the equations
of motion for a spinning fluid in the Einstein-
Cartan metric-torsion theory. In a preliminary
study we investigated the introduction of torsion
into the fluid variational principle of Ref. 6. We
can now extend this work using the results of this
paper to give the first variational derivation of the
equations of motion for a spinning fluid in the
Einstein-Cartan theory. We are presently studying
this problem.
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