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The neutrino perturbations on the background of perfect fluid spacetimes with local ro-
tational symmetry can be treated with the aid of the Debye-potential (two-component
Hertz potential) formalism. This formalism reduces the Dirac equation to a single decou-

pled equation for a complex scalar g. The Weyl spinor pertaining to the neutrino is ob-

tained by differentiating this scalar g. The class of spacetimes studied here contains a
wide range of well-known examples. It falls naturally into three cases each of which has
been investigated in detail retaining the general form of the functions appearing in the
metric. It is observed that the method yields considerable information even at this gen-

eral level of discussion. Finally, some specific examples, namely the Godel universe, the
anisotropic spatially homogeneous cosmological models, and the Taub spacetime are stud-

ied illustrating the above-mentioned scheme.

I. INTRODUCTION

The Hertz-potential formalism for electromag-
netic perturbations on the background of curved

spacetimes was introduced by Cohen and Kegeles. '

Later, the authors extended this formalism to in-

clude perturbations of arbitrary spins, both integral
and half-integral using spinors. In particular, the
neutrino and gravitational fields can be studied
within this framework. They showed that the for-
malism may be applied to the generalized
Goldberg-Sachs class of spacetimes which consists
of those spacetimes which admit a shear-free
congruence of null geodesics along the repeated
principal null direction of the Weyl tensor.

In this paper we shall consider a subclass of the
above-mentioned generalized Goldberg-Sachs class
of spacetimes, namely, the perfect fluid spacetimes
with local rotational symmetry given by Ellis and

Ellis and Stewart. It will be our purpose to inves-

tigate the behavior of neutrino perturbations super-

posed on the background of these spacetimes.
Such a study has been carried out for electromag-
netic perturbations by Dhurandhar, Vishveshwara,
and Cohen for the subclass and by Cohen, Vish-

veshwara, and Dhurandhar for the Godel uni-

verse. The subclass consists of a wide range of
spacetimes, namely the Robertson-Walker models,
Kerr, Schwarzschild, Godel, Taub-NUT

(Newman-Unti- Tamburinoi anisotropic spatially
homogeneous cosmological models, etc. The neu-

trino perturbations in the Robertson-Walker
models and the Kerr spacetime have been already
studied by Dhurandhar, Vishveshwara, and Cohen
and will not be included here.

We make use of the null-tetrad formalism of
Newman and Penrose to examine the neutrino
behavior, the null tetrad being given by Wain-

wright for the subclass of spacetimes under con-

sideration. In Sec. II we give the generic form of
the metric and its specializations, the null tetrad,
the required spin coefficients, and the equations
governing the Hertz potential of the neutrino per-
turbations. In Sec. III we discuss in detail the
equations which still are in the generic form. It is

seen that a considerable amount of information is
secured even at this general level of discussion. In
Sec. IV we treat some important spacetimes with
an example for each of the three cases, namely, the
Godel universe, anisotropic homogeneous cosmolo-

gies, and the Taub spacetime.

II. THE GENERIC FORM OF THE EQUATIONS

The generic form of the metric for perfect fluid
spacetimes with local rotational symmetry is given

by the line element
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s = — +X (dx') + Y [(dx ) +t (dx ) ]
(dx )

F2

+ (2dx —ydx )dx —hX (2dx' —hdx )dxF (2.1)

where F, X, and 7 are in general functions of both x and x', and t, y, and h are functions of x only. The
functions t, y, and, h satisfy conditions given in references cited above. "'

An extremely important simplification is available in the present case. The perfect fluid spacetimes with
local rotational symmetry fall into three distinct cases:

(i) X=1, Y= Y(x'), F=F(x'), h =0,
(ii) h =y =0,
(iii) F=1, X=X(x ), Y= Y(x ), y=0.

With these specializations it is easy to show that the spacetimes under consideration form a subclass of the
generalized Goldberg-Sachs class of spacetimes.

Wainwright has given the following null tetrad for the metric (2.1):

k, —= — —,—XOXh ——,n,:— —,XO, —Xh+—,I,= (0—0, Yi +itY) . (2.2)

We also mention the directional derivatives which will appear in the equation for the Hertz potential:

a Q na $ ~aa = a = a
Bx' Bx' Bx'

(2.3)

The spin coefficients which are present in the equation are mentioned below in order to make the discussion
self-contained. The other spin coefficients have been given in Ref. 6. We list the following five spin coeffi-
cients:

t2 i 1 (yY0+hY)),2v2 Y t 2v2 tY~

2v'2 X ' y' 4v2 tY' ' F

e= — —Xp — ' — Xh 2—1 F F i i 1 3'2

2v2X ' F2 4v2 tY2 ' F (2.4)

1 l, i ) 1
Xh

3', z

v2 Y X ' 2v2tY2 ' F

1
h

2v'2 tY F
Xi Fp Xp
X F X

The commas denote partial derivatives with respect to the coordinates.
The Hertz potential is a complex scalar tb which is governed by a single decoupled equation obtained in

Ref. 2. The Weyl spinor for the neutrino is obtained by simply differentiating this scalar function P. We
now simply state the equation for the complex scalar function P, namely, Eq. (4.13b) of Ref. 2,

[(6+p y)(D+e) —(5+13——~)(5+P)]/=0 . (2.5)

The Weyl spinor Pz, 3=1,2 is given in terms of g by the following relations:

(8+&9 6= (~—+»0 . — (2.6)
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For a field of spin s, 2s differentiations are necessary. In our case s= —,. As is evident the governing equa-

tions of f assume relatively simple forms when we divide the problem into the three cases mentioned above.

Writing out the derivatives and the spin coefficients we have the equations given below.
Case (i):

Y, & y 2 1 F—F- + + ' +i
Bx Bx' Y 4tY F

F 1 . y2—F + —l
(jx ()x ' 2F 4tY F

1 iy 8 8 i 8 1 tz
Bx Bx ~ Bx

+ + — +— &y 3 3 r 3 1 &2
+ —— +

Bx Bx t Bx
/=0 . (2.7)

Case (ii):

a 1 a Yi Yp Xp
X gx' XY Y 2 X 2 F

1 0 1 Xp 1 FiF — F
X (jx' 2 X 2 F

i 0 1 ~,2
2+ 3+—

t (jx3 2 t
i () 1 ~2+-

Ox' tax' 2 ~
P=0 . (2.8)

Case (iii):

a 1 a
axP X ax'

+— Yp 1Xp i Xh2
Y 2 X 4

1 g 1Xp )' Xh2
()xP X (jx' 2 X 4 tY2

1 ih 8 8 i 8 1 &z

Y t gx' ()x' t ()x' 2
+ + — +— —ih 8 8 i 8 1 t2

t ()x' gx' t ()x' 2 t
+ —— +— /=0 . (2.9)

The equations, though relatively simpler than if they had been obtained without the specialization into

three cases, are still quite difficult. However, by dividing the equations into two portions by using the tech-

nique of the separation of variables, it will be possible to make them more tractable. In the parallel case of
electromagnetic perturbations the equations were somewhat simpler. We intend to follow a similar ap-

proach to deal with the present situation.

III. DISCUSSION OF THE GOVERNING EQUATIONS

We have seen that the equations are quite complex. However, they naturally divide into two parts: (i)

one portion containing the derivatives 8/Bx and 8/Bx'; (ii) the other part containing the derivatives 8/Bx
and 8/Bx .

The first part we call the "radial-temporal" part of the equation while the latter part we term the "angu-
lar" part of the operator. It may be noted that derivatives 8/Bx enter into the angular part of the operator
in case (i) and similarly 8/Bx enters that of case (iii). But this is of no consequence as they are Killing vec-

I'mXO tkX '
tors for the respective cases and the solutions contain the factors e'" and e', respectively, where co and k
are constants. Hence the derivatives are reduced to merely multiplicative constants. We first discuss the
solutions of the angular operator and then proceed to the more complex radial-temporal operator.

A. The solutions to the angular operator

We treat cases (ii) and (iii) explicitly and the solutions to case (i) can be easily obtained from that of case
(iii) by a simple transformation. In case (i) if we assume

Q=Z(x')X(x, x )e'""

in Eq. (2.7) we get a separated equation for X,

(3.1)
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8 i 0 t, 2 COy

QX2 t QX3 2j
0 i 0 t, 2

QX2 t Qx3
7+vX =0, (3.2)

where a is the separation constant.
The corresponding equation for case (iii) is obtained by setting

Q=Z(x )X(x,x )e'

in Eq. (2.9). The separated equation is thus

(3.3)

i 8 t2 kh
2 t Q

3

8 i 8 t2 kh—+ ' + 7+F1=0 .
Bx ~ Bx

(3.4)

It is easy to see that by replacing k by —co and h by y in Eq. (3.4) it goes over to Eq. (3.2). Therefore we
treat the cases (ii) and (iii) separately and with due detail.

Case (ii) The .angular part of the equation for this case is obtained by the method of separation of vari-

ables,

Q=Z(x, x')X(x,x )

in Eq. (2.8). The separated equation is

(3.5)

i 3 1~2
Bx t Bx

+ — +— a s a +—' X++X=0,
BX2

(3.6)

where a is the separation constant. It may be observed that this equation is simpler than the ones obtained
in cases (i) and (iii). As a result it is easier to find the solutions to Eq. (3.6). From the conditions given in

Refs. 3 and 4 on the function t, it can essentially assume the following functional forms:

(a) t =sinx, (b) t =sinhx, (c) t =x, (d) t =const .

We examine each of the above four cases in succession.

(a) t=sinx

If we write

y( 2 3) 8(x2)elms (3.7)

in Eq. (3.6), the equation for 8 becomes

d m +, cotx
dx slnx

m+ + —,cotx e+ae =0 .
dx slnx

(3.8)

Here we merely state the solutions; the details of the calculation and transformations have been worked out
in Ref. 6. The solutions are given in terms of the Jacobi polynomials':

8(x )=(1—cosx ) (1+cosx )~ &„' ' '(cosx ),
where a'=

~

m + —,
~

and P'=
~

m ——,
~

and n satisfies

n(n+a'+P'+1)+ —,(a'+P')+ —,(a'+P') +—„=a .

Regularity implies that n be an integer which affects the allowed values of the separation constant a.

(b) t=sinhx

Setting X=8(x )e™in Eq. (3.6) gives the following equations for 8(x );

(3.9)

dx sinhx
2+ . 2+-'coth ' 8+De=0.

dx sinhx
(3.10)
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The solutions for 6 are given in terms of hypergeometric functions:

8=Hz ~ (1 z)—~~ F( —nn+ a'+P'+ l,a'+1;z),

where z= —sinh (x l2) and a'=
~

m + —, ~, P'=
~

m ——, ~, and n is the solution of

n n +a'+P'+1 + —,(a'+P')+ 4
(a'+P')'+ —,'+a=0

(3.11)

and A is a constant. The regularity conditions impose complicated constraints on the parameters.

(c) t =x

Again writing g(x,x ) =8(x )e' " we get an equation for 8 which is essentially the spherical Bessel
equation, namely,

(m+ —, )

(x )

d6 l d8+ + o.— 8=0.
d(x )

Setting y=v ax and B=V'y f, the equation for f is the spherical Bessel equation

d f 2 df m(m+1)
, +— + &-

dy y dy
'

y

(3.12)

(3.13)

The solutions for f are j (y) and y (y) and hence
the solutions for 9 are given by

The solutions are plane waves given by

+ik2x +ik3x7=e (3.16)

)y4 2 Jm(~~x )~B=a x )( ' (~ 2)
(3.14)

(d) t =const

Equation (3.6) simply reduces to

The outgoing and ingoing solutions are given by
appropriate combinations of the solutions (3.14),
the h~ and h~, respectively.

where the separation constant a=k2 + k3
This completes the discussion for case (ii).
Case (iii) The an. gular operator for this case ap-

pears in Eq. (3.4). This equation is a little more
involved than the one in case (ii) due to the pres-
ence of the last term kh/t in each of the brackets.
%e now resort to each of the functional forms for

(a) t =slIlx, it = —c cosx

a2 a2

w» + X=0. (3.1 5)
The equation (3.4) with these substitutions be-

comes

8+ +(ck+ —,)cotx
1

Bx sinx Bx

l 8 1

3
—(ck ——,)cotx X+aX=O .

x2 sinx2 gx3
(3.17)

This equation is similar to Eq. (3.8) and can be similarly solved in terms of Jacobi polynomials. Since this

is a more general equation we again state the solution

X=(1 cosx')~'"—(1+cosx')t""P{' '(tc osx)e™3

where

a'=
f
ck —m ——, /, P'=

/
ck+m ——, /,

and n satisfies

n(n+a'+P'+1)+ —,(a'+P')+ —,(a'+P') —c k + —,=a,
where, again, n is an integer restricting the permitted values for the separation constant a.
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(b) t =sinhx, h =c coshx

Equation (3.4) reduces to

l 8 +(—, —ck)cothx 2

Bx sinhx Bx

8 l
3 +( —, +ck)cothx X+aX=O .2

x2 sinhx2 QX3
(3.18)

As in case (ii) the equation has its solutions in terms of hypergeometric functions. " Setting
z= —sinh (x /2) the solution is

X=z "(1 z)~ "—F( n, n —+a'+(t3'+ l,a'+1;z),
where

a'= Ick+m+-,' I, 0'= /ck —m+ —,
'

/,
and n satisfies

n(n+a'+p'+1)+ —,(a'+p')+ —,(a'+p') —c k2+ —,+a=0.
(c) t =x, h =A(x ) +8

imx.Setting X=8(x )e' "'
we have the following equation for 8:

kA (x ) +kB+m ——,

X

d

dx

kA (x ) +kB +m + —,

8+a.6=0 .
X

(3.19)

The simplification for this equation leads to

d'e i de + a+A'—
d(x2)2 x2 dx2

(A 'x'+8')'+8'+ 8=0, —
(x 2)2

(3.20)

where A'=kA and B'=kB+m.
Writing y=A'(x ) we get the equation in the new independent variable y as

d 6
y + + —, + 1 ——(y +8')'+8'+ , 8=0 . —

dy
' A' y .

(3.21)

Changing both the dependent and the independent variables in the equation by the transformations

8=f/~y and y=iz we get the Whittaker equation for f,
1

d f ) i a, 1 ) (8+2)
+ ——,+—(,+1 28')+——

dz 4z A '
z

f=0. (3.22)

The solutions are readily given for f in terms of confluent hypergeometric functions, "

(3.23)

1

—s/2 n / +)2 F(, +p E, 1+2@;z), —
f —* N+

U( —,+p E, 1 2+@;z), —

where K=(i/4)(a/A '+ 1 —28') and )M = (8'+ —,)/2. Recapitulating all the transformations for the variables,
we write the solution for 8(x ) in the final form

r

—(i/2)A'(x2)2 F( —+p It 1+2@z)8-, (x')'"+' X
U( —, +p E, 1 +2z(M) . —

(d) t =const=A, h =Bx +C

(3.24)
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d 8
d(x )

2 2+[a+A' (A—'x +B') ]8=0,

where

kB
A

kC+m
A

Setting x=(A'x +B') we have the equation

(3.25)

de 1 de p 1

dx 2 2x dx 4x
(3.26}

where p =(a+A')/A'. The final change of the
dependent variable 8=x '~ f obtains the Whit-
taker equation for f,

d f i p 3

dx " 4x 16x
(3.27)

The solutions for 8 are finally given by
r

3 3F —— —'x
4 4'2~

8(x)-e "ix i X .

3 3
0 ~'L/

4 p 2 pell

(3.28)

This brings us to the final case and the simplest
one in the above functional forms of t. As before
the equation reduces to

This completes the investigation of the solutions to
the angular operator.

B. The solutions to the radial-temporal operator

These solutions represent the part complementa-

ry to the angular operator solutions found above.
There is a close analogy between the behavior of
both the operators in the electromagnetic and the
neutrino cases. In case (i} the operator is purely
temporal while in case (iii) it is purely radial. In
case (ii), however, no such simplification exists and

one needs to investigate the combined interlocked
spacetime development of the Debye potential. In
cases (i} and (iii) the development of the Debye po-
tential is purely temporal and radial, respectively.
But the equation for case (ii) is extremely compli-
cated and thus one needs to impose strong con-
straints on the functions F, X, and Y to extract
some information.

Second, the separation constant cz which occurs
in both the angular operator and the radial-
temporal operator assumes only certain fixed
values being an eigenvalue of the angular operator.
This must be borne in mind while finding solutions
in the case of the radial-temporal equation.

Case (i) We n.ow revert to Eq. (2.7) and set

Q=Z(x')X(x', x')e ™~.
After carrying out the separation one obtains an
equation for Z(x'):

d d . 0'Z
+icoF+G — +icoF —G Z+ =0,

dx' dx' Y
(3.29)

where

1 F1 icG= ——
F 4Y2F

This equation determines the development of the Debye potential in the x direction. Equation (3.29) may
be written out explicitly:

d'Z
d(x')

F1 /C dZ 2 2 2 Y1 a+ G +co F — ' (icoF G) ia)F )
——G (

—— Z=0.
2Y F dx' Y

(3.30)

The term Y1/Y—F 1/F multiplying dZ/dx can be "transformed away" by making the following change in
the variable x '. %e define a parameter u by

F
Y

Then Eq. (3.30) assumes the form

(3.31)
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d Z ic dZ 1 (JYz
2 2 YF2 dye F2

where

(3.32)

1=G +co F — ' (icoF G)—icoF—, —G, .
Y

The middle term in dZ/du can now be transformed away by changing the dependent variable, namely, Z.
We define

lc dQZ=Z exp
4

This immediately furnishes an equation for Z:

d Z Y a
du F F+ J — ——g ——g' Z=O,

where

ic 1, dgg= — and g =
2 YF2 du

(3.33)

(3.34)

This equation is in the WKB' form and for high values of co can be easily solved by the above-mentioned
method. The equation

d2Z
+p Z=O

dQ

has the solutions (A/V p )exp(+i Ip du), where A is a constant and

1 JY2 c Lc,1 2, 1Y F
F2 16Y2F2 4Y Y F

(3.35)

The WKB approximation is valid whenever (1/p )dp/du « 1.
We now briefly mention the method for securing solutions to case (iii).
Case (iii) The c.orresponding equation to (3.29) of case (i) is the following which has been obtained after

setting Q=Z(x )X(x,x )e'

d ik Yp —H
dx X Y

d ik a+——H Z+ Z=O,
X Y2

(3.36)

where

1Xp ic XH=—
2 X 4 Y2'

This equation expresses the time development of the function Z and hence of the Debye potential 1(t. The
further analysis of Eq. (3.36) is carried on as in case (i). Equation (3.36) becomes

Y,p dZ a &kX,0 k 2 . kY, p

d (x')' Y dx Y' X' ' X'
YpH

Y
Z=0. (3.37)

To eliminate the first derivative in Eq. (3.37) the following transformation is necessary:
1/2

Y i X pZ = — Z exp — dx
X Y2 (3.38)
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The equation then assumes the form

d Z k u t'k X,o ~,o

Y' X X Y+ + +— ' +
'2

Fo 1 ~,oo Z=O.
2 F (3.39)

For large values of k the equation reduces to

d Z k a
d (x0)2 X2 Y2

+ + (3.40)

This equation may be solved by the WKB method once the functions X and 7 are given.
Case (ii) Thi. s case, when treated in the most general way, has no Killing vectors and hence no immedi-

ate simplification is possible. However, we mention the relevant equation and consider an important case in

which somewhat strong restrictions are imposed. This case will be useful when we consider specific exam-

ples in the following section.
The radial-temporal equation is given below as

~o 1 Xo 1 ~i
p ' —p

X (j~' XY P 2 X 2 I'
1 8 1 Xo 1 ~i a—F —— ——I' ' +— ' Z+ Z=O
X (j~' 2 X 2 F

(3.41)

We now consider an important simplification which will be required when we discuss the anisotropic, homo-
geneous cosmologies in the next section. We assume that X and P are functions of x only and E=1. This
reduces the equation to a tractable form,

~o 1 Xo
asap X ax' ~ »

+— a 1 0 1Xo aZ+ Z =0
X ()~' » X y' (3.42)

Clearly 8/Bx' is a Killing vector and we may set

~kx'f ( o)

The equation for f then becomes
r 2

d'f X,o Y,o df 1 X,o 1 X,oo

d(x ) X Y dx~ 4 X 2 X
ikX p k~ ikFp jI Xo&p
X' X' Y' 2 X1' Y'

(3.43)

The first derivative term can be made to vanish by defining a suitable independent variable. Define

f=f&XY .

Then the equation for f becomes

d2 6+, f=0,
d(x )

Y'

(3.44)

(3.45)

where

X,oo 1 ~,oo X,p~, oX'2 y+ XF
Xp

2 X

2 2

1 ~,p

4 Y
Ik Xo
X X

~p k'
+

In the next section we will consider certain important specific spacetimes which can be treated by the
methods described above.

IV. SPECIFIC EXAMPLES OF SPACETIMES

The examples which we investigate, one for each case, will illustrate the foregoing material. We have
chosen some typical examples the first of which, namely, the Godel universe, we examine from first princi-
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ples. In the case of the other two, namely, the anisotropic spatially homogeneous cosmologies and the Taub
spacetime, we use the above results. The results obtained will then be compared with the electromagnetic
ones. Some comparisons and contrasts will be highlighted.

A. The Godel universe

The Godel universe' is described by the metric

ds = —(dx ) +(dx') +(dx ) —2e dx dx ——,e (dx ) (4.1)

where a is a parameter relating to the "rotation" of the universe. This is a dust (pressure=O) solution of
Einstein's equations.

Comparison of (4.1) with the generic form of the metric for perfect fluid spacetimes with local rotational

symmetry immediately furnishes the relevant functions:

F=l, X=1, Y=l, y=e, t= e ", h=O.

The solution falls under case (i) in the classification scheme. Using Eq. (2.7) immediately gives the dif-

ferential equation for the Debye potential g:

8 8 l 8 8 l cK

ax'+ ax' + 2~2 Bx Bx' 2&2

i V 2 + +iv 2e " + —,a i v 2 —+ i v'2e —~* + —,a /=0 . (4.2)-ax~ ~ ' - ~ ~ -ax 2

ax' ax' ax' ' ax' Bx' ax'

This partial differential equation completely describes the behavior of the potential g. We observe that

8/Bxo, 8/ Bx', and 8/Bx are Killing vectors, and hence we may set

I lkox+ tk&x+ tk3Xp=e Z(x ) .

With this substitution and after rearranging terms we have an equation for Z(x ):

(4.3)

dZdZ0 22 -ax' 2+a + —2(ko —k3e ) —v 2k3e '" — k, + +kp Z =0.
d(x ) dx 4 2v2

(4.4)

—axThe terms in the square brackets can be rearranged in ascending powers of e " which will eventually aid
in the solution:

dZ dZ

d(x ) dx
+a +[A+Be " +Ce "]Z=0,

where

(4.5)

2

ko +k, + —,B=4kok3 —v 2ak3, C= —2k3

—axThe equation (4.5) can be reduced to the following form by the substitution u =e

d2Z 1 g B+ +—+C Z=O.
dQ2 ~2 g2 g

(4.6)

Finally by the transformation U=2v 2k3u/a the equation may be brought into the Whittaker form,
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d Z 1

2 + 4
dv

r

2v 2kp —a 1 1 k)a
2o. v a v

kp+k( + ~—2 8
Z=O. (4.7)

The solutions for Z are the confluent hypergeometric functions with the parameters E and p:

E(—,+p E, 1—+2p;u),
Z —u/2 p, +1/2 +,

U( —,+p E, 1—+2p;u),
(4.8)

where

2v'2kp —a
I( =

quadratic

Q(u)=A +Bu+Cu' . (4.10)

and

kp +k) +k)a/V 2

1 (k')+—,&0. (4 9)

Although the expression (4.8) gives the exact solu-

tions it seems difficult to extract useful informa-
tion from it. To examine the problem from the
physical point of view, it is necessary to go back to
Eq. (4.6). It is evident that the solutions are oscil-

latory when A+Bu+ Cu )0 and damped when

A+ Bu+ Cu &0. The coordinate u assumes
values between 0 and oo as x varies from ao to
—oo. One observes that Eq. (4.6) is slightly dif-
ferent from the one for the electromagnetic case.
This is due to the difference in the spins of the
neutrino and the photon. However, in the geo-
metric optics limit (high-frequency limit) the equa-
tions agree. The results coincide with the behavior
of the null geodesics. This is seen as follows.
Since Q/Qxp, 8/Bx', and 3/Bx 3 are Killing vectors,

kp, k~, and k3 are constant along the null geodesic
where k, a =0,1,2,3 is the tangent vector to the
null geodesic. This fact immediately implies that
for motion of the zero-mass particle to be possible,
we must have

(k')'= (k')' —(k ')'+2 kpk3

Q

We note that for u =0 and u large Q (u) & 0, imply-
ing that the solutions are damped. The solutions
are oscillatory only if the maximum value of Q(u)
becomes positive. This can be checked by solving
the quadratic Q(u)=0. The roots are given by

1
u+ —— — ~2kp+(kp —k, )'~

v'Zk, .
(4.11)

The solutions are oscillatory when the roots are
real, i.e., when kp ) k& and when u &u&u+.
For u & u and u) u+ the solutions are damped.
This behavior of the solutions agrees satisfactorily
with that of the null geodesics and the electromag-
netic perturbations.

B. Anisotropic spatially homogeneous
cosmological models for a dust source

These models' are described by the following
line element:

ds = dt +X dx +—Y dy +Z dz, (4.12)

where X, Y, and Z are given functions of t. The
models are spatially homogeneous but anisotropic
as the name suggests and belong to a Bianchi
type-I universe. The general form (4.12) is not lo-
cally rotationally symmetric but can be made so by
setting two of the functions X, Y, and Z equal. To
be specific we set Y=Z. The functions X and Y
are given by

X= t [ , Mt (t +X)]—
In the high-frequency limit we have

A= —(kp +ki ), B=4kpk3,

and

and

Y = [ , Mt (t +X}]'", —

C= —2k3

and the inequality 3 +Bu +Cu )0 reduces to
(4.9) on raising the indices with the help of the
metric tensor. To examine in detail the behavior
of the wave function it is necessary to study the

where X is the anisotropy parameter. Since
h =y =0 the model comes under case (ii) of the
classification.

We set f=Z (x )e' " ' ' in Eq. (2.8), where
k—:(k~, k2, k3) and r =(x ',x,x ) and the dot pro-
duct is Euclidean. The equation becomes
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d2Z X Y dZ 1 X 1 X . X k ikY 1 XY 2 3

t2 X Y dt 4 X 2 X X X XY 2 XY Y
(4.13)

Z=v'XYZ . (4.14)

The equation thus assumes the form

where the dot represents differentiations with
respect to the cosmological time t. The term in
dz/dt can be made to vanish by defining a suitable
dependent variable Z:

case (iii) of the classification scheme when one
suitably transforms the time coordinate. The
geometry is described by the line element

ds2= —(dx ) +(2n) U(dX+cos8dg)

+ (t +n )(d8 +sin 8dt/r ),
(4.17)

d'z k2'+k3'
dt2

+ G+ Z=0,
Y2

(4.15) where x is the newly defined time coordinate by
the equation

where G is the function given in Eq. (3.45).
The most important simplification is obtained in

the high-frequency limit. In this approximation
(4.15) becomes

d2z k& k2 +k3
dt X Y

(4.16)

From this we observe that the solutions are always
oscillatory for large values of the constants ki, k2,
and k3. For small values of t,

t 2/3y —1/3

(4.18)

and U(t) = —1 + 2(mt +n )l(t +n ) where m
and n are positive constants. The spacetime has
singularities at t =t+ ——m+(m +n )'~ Acr.oss
the t =t+ surfaces the spacetime may be extended
to the NUT space.

Comparing (4.17) with the generic form of the
metric, we find that I' =1,X =2nV U, t =sin8,
h = —c cos8 and Y=(t +n )'~ . We write the
perturbation as

and Q=Z(x )e' e(8,$) (4.19)

Y-(tX)' '

and anisotropy plays an important role in the per-
turbations. The oscillations of Z(t) are rapid.
However for large t, X-t' and Y-t and the
anisotropy parameter X becomes less effective.
The anisotropy dies out and has little effect on the
neutrino perturbations. Since both X and Y in-
crease as t increases the oscillations of the Debye
potential gradually slow down. The term in Y de-
cays quicker and therefore in the later stages, the
parameters k2 and k3 are less significant. As t in-
creases further the oscillations due to the constants
k2 and k3 become arbitrarily slow; the behavior is
similar to the electromagnetic perturbations.

The case of Kantowski-Sachs spacetimes, which
we examined in the electromagnetic case, can be
studied in much the same way as the foregoing.
We shall not discuss these cases here.

and substitute it in Eq. (2.9). This substitution
yields equations for both Z and e. The equation
has been already discussed in the previous section
case (iii) (a) t=sinx, h = —c cosx . The solutions
for 8 are given in terms of the Jacobi polynomials.
The constant c has value unity.

The equation for the temporal development
Z(x ) is the following:

d ik Yo d ik
X

+ Z =0, (4.20)

where

1Xo i XH ——
2X 4Y2

The transformation

C. The Taub spacetime

The Taub spacetime' is an interesting one as it
exhibits rather peculiar properties. It comes under

(t +n ) exp —tan
2 7l

[4n '(t+ —t)(t t )]'~"— (4.21)

transforms the equation to a form which can be
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tackled by the %KB approximation. The equation
assumes the form

d Z k ~ @ Xp Yp

d(x ) X F2 X X F
'2

1 Yp

4 Y

It is interesting to examine the equation for large
values of k. With this approximation only the
terms in k and a remain in the equation. Writing
the functional forms of both X and 1; we have the
equation

Z=o. (4.22)
2 Y

d2Z

d(x ) 4n U t2+n
+ + (4.23)

As t ~t+, U~o, the oscillations become extremely
rapid and Z-e' ~ " U. En this limit we find that

I.+'+n'
+

U 2(m +n 2)'r2 (t+ t)—
Therefore the oscillations speed up as the square
root of the time lapse from the singularities. The
term in a has no such drastic effect.

This completes the discussion of the specific ex-

amples which we have worked out to illustrate the
method. Several such examples may be examined
on the above lines.

V. CONCLUSION

We find that the neutrino behavior in the perfect
fluid spacetimes with local rotational symmetry

lends itself to investigation by the two-component
Hertz-potential or the Debye-potential formalism.
The entire information of the neutrino perturbation
is contained in a single complex scalar which obeys
a decoupled equation. The problem can be divided
into three cases each of which is fully studied in a
general manner. It is seen that even this general
approach yields considerable information about the
perturbations without having to resort to any
specific functional forms. It is observed that in
the high-frequency limit the equations show re-
markable resemblance to the ones pertaining to
electromagnetic perturbations. This is in fact con-
sistent as both the perturbations, the neutrino and
the electromagnetic, behave in a way similar to the
corresponding null geodesics, since both the neutri-
no and the photon are zero-mass particles. Finally
some specific examples are studied, one for each of
the three special cases mentioned in the text.
These specific examples help to get insight into the
actual machinery of the methods applied. Further-
more the present calculations can perhaps be used
for the study of astrophysical phenomena involving
neutrinos in physically interesting spacetimes such
as the anisotropic spatially homogeneous cosmolo-
gles.
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