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We show that the equations of general relativity contain an O(2, 1) cr model. This o-
model structure emerges from a 3+ 1 decomposition of the Einstein equations which

holds irrespective of the presence of symmetries in the space-time. This includes, in par-
ticular, the stationary (one Killing vector) and the Ernst (two Killing vectors) formula-

tions of the gravitational field. From this connection with the o. model we find a new

family of solutions of the Einstein equations. These solutions have (3,1) signature and

one Killing vector. They are complex or real and they depend on two arbitrary functions

(one holomorphic and one antiholomorphic). In particular, in the presence of two Killing

vectors they give two different subclasses of solutions: one is associated with the instan-

tons of the o. model and the other is of Taub-NUT (Newman-Unti-Tamburino) type.

I. INTRODUCTION

Nonlinear 0. models, Yang-Mills theory, and, of
course, general relativity are known to admit a na-
tural geometric formulation. Our aim in this pa-
per is to study the connection between the struc-
ture of these theories and the correspondence be-
tween their respective solutions. Here we will em-

phasize the connection between general relativity
(GR) and the cr model. The connection with
Yang-Mills theory will be studied elsewhere. ' The
Zelmanov formulation of GR, based on a 3 + 1

decomposition of the field equations R& ——0, is
particularly well suited for our purposes. This
decomposition is invariant under the transforma-
tion

x~ =xp(x p,x'),

x'=x'(x') (i = 1,2,3),
i.e., it is chronometric invariant (CI). The four-
dimensional Einstein equations for g» are project-
ed into a three-dimensional space of metric

hlJ glJ gplgpJ /gpp

in which (CI) operators are defined. [For instance,
the derivatives *c),=c)' —(gp /gpp)c)p replace the or-
dinary ones c);.] We show that in the equations
Rp„——0 lies a nonlinear O.-model structure. By ex-

pressing the projected equations Rpp=0 Rp =0 in
terms of a new set of variables (two kinds of po-

tentials V, P) and in terms of the conformal metric

y;J = Vh,j (instead of h,j itself) an O(2, 1) cr-model

structure for the complex potential g'= V+iP em-

erges. The (V, P) parametrization is related to the
standard (cr',o,o ) one by V= I/(o''+cr ),
/=a/(cr'+. cr ) (see Secs. II and IV). The o field
lies in a three-dimensional space with metric y,&,
corresponding to CI covariant derivatives *V;.
[For Einstein equations with Euclidean signature
an O(2, 1) o model appears too but for a real poten-
tial g'+ ——V+/. ] This connection is general, in-
dependent of the presence of any isometry group
(i.e., of any symmetry in the space-time). In par-
ticular, in the presence of one Killing vector field,
the CI derivatives *V; become the ordinary covari-
ant ones V; with respect to the metric y,j and it
gives the 3 + 1 decomposition considered by Gib-
bons and Hawking in the context of gravitational
instanton isometrics. In the presence of two Kil-
ling vectors one recovers the well-known Ernst for-
mulation of the stationary axially symmetric gravi-
tational field. The Ernst equation (Re g') V g'

—( V I') =0 is just an O(2, 1) o model in three-
dimensional flat space [in this case W' depends only
on x3 and p=(x& +xq )' ]. The gravitational
field in the presence of two Killing vectors has
been extensively studied in the literature. ' The
known solutions can be grouped in three different
physical situations: (i) stationary axisymetric grav-
itational fields, ' (ii) colliding plane waves, '

(iii) cylindrical waves, ' depending on whether both
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Killing vectors are space-like [cases (ii), (iii)] or one
is space-like and one is time-like [case (i)]. Howev-

er, we point out that all the known solutions in-

volved in the situations (i), (ii), and (iii) above cor-
respond to solutions 8' of the 0. model not given by
holomorphic functions. As was found by Belavin
and Polyakov, ' the holomorphic mappings are in-

stantons, i.e., self-dual solutions of the O(3) tr

model. Moreover, they provide all (rather than
merely some possible) instanton solutions of this
model. ' Holomorphic (antiholomorphic) map-
pings also provide self-dual solutions for the O(2, 1)
o model. We are therefore led to investigate
whether these solutions are compatible with the
whole set of Einstein equations (i.e.), if it is possi-
ble to find a solution of Einstein equations associ-
ated with the holomorphic mappings). We find a
new family of solutions of Einstein equations hav-

ing one Killing vector field associated with these

mappings. This family can be complex or real
with (3,1) signature. This is a Lorentzian solution
which does not exist in the Euclidean [i.e., (4,0)
signature] regime. It is given by

ds = —[8'l(u, u)+ f~'2(u, u]dt

+2dt dz+dx +dy (A)

In particular, (a) if 8'l(u, z r) =8'2(u, z—r)—:Ã—
(where we have put t=is), (A) gives a Lorentzian
real metric of Peres's type. For 8' independent of
U (i.e., in the case of two Killing vectors), 8'l(i2, )

=8'2(u}—:8' gives the metric associated with the
holomorphic solutions of the cr model. The choice
8'=a rational function gives the solution associat-
ed with the (multi)instanton solutions of the o.

model.
On the other hand, (b) if we put g'l ——0 or 8'2 ——0

in either the complex or real solutions (A) or (B),
we obtain metrics of Taub-NUT (Newman-Unti-
Tamburino) type as considered by Gibbons and
Hawking. Here, the connection with Taub-NUT
metrics appears in the presence of two Killing vec-
tors. Note that the metrics associated with the in-

It depends on two arbitrary (one holomorphic
and one antiholomorphic) functions N'l(u, u) and
8'2(u, v) (where u =x+iy, u =x iy, u =z+i—t).
The Wick rotation y =it (t= iy) map—s (1) onto a
different solution. This solution is real and of
plane-wave type but with signature (2,2), i.e.,

ds =dx dt +[5',(x —t,z+.y)—
+ 8'2(x+ t,z+y )]dy' 2dy dz . —

(B)

stantons of the o model are neither axisymmetric,
nor of Taub-NUT type.

Following Pohlmeyer's reduction for the O(3) o
model one can relate the O(2, 1) cr model to the
sine-Gordon and to the Liouville equation (see Sec.
IV). In this way, besides the holomorphic func-
tions, several types of solutions can be found:
Painleve transcendents, ' complex multisolitons,
and Liouville-type solutions. In the axisymmetric
case, several solutions of Einstein equations are
known, which depend on Painleve transcendents of
3rd and 5th type. However, for solutions that
are not axisymmetric, we show that the only solu-
tions of the o. model that are compatible with Ein-
stein equations are the holomorphic functions. In
the nonaxisymmetric case, the reduction from the
O(2, 1) o model to the sine-Gordon or to the Liou-
ville equation is not compatible with the Einstein
equations.

In Ref. 27 we generalize the above solutions to
the case when there is no Killing vector. In this
case, the metric depends on holomorphic (and an-

tiholomorphic) functions of both u and u, U and U.

This provides a unifying pattern in which a wide
variety of situations can be considered.

II. O(3) and O(2, 1) NONLINEAR o MODELS

As is well known, the O(3) nonlinear o model is
defined by

i.e., the equation of motion of the O(3) o. model is

g2 a
(

b 2 b) a (4)

For the O(2, 1) o model, Eq. (2) is replaced by

(
1 )2+ ( 2)2 ( 3)2

Different parametrizations can be used. By defin-

ing

a=]
3

g (o')'=1
a=1

The field o =(o',o. ,o ) belongs to S . That is,

~ = —,(i}„o')(8"o')+—,A[(o') —1],
A being a Lagrangian multiplier.

From the Euler-Lagrange equations and the con-
straint (2), it follows that

A=o'U 0'
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V= 1

1+
+2

cr +o
the Lagrangian for the O(2, 1) o model can be writ-
ten as

o(p i)= [(VV) —(V1(|) ]

and the corresponding equations of motion are

VV VQ

V V

2(VV)(VI()
V

V
— V+Q+b(V' P—')

(1+bP)' —b'V'

V— V Q
—b(—V —Q )

(1 bg—) b—V

In the hyperboloid standard parametrization
(o',o,o') defined by (5) the dilations (13)
correspond to

o'+o'= —(o'+o'),
b

cr' o=b—(a'' —cr ),
0 =0

i.e., hyperbolic rotations (of angle log b) in the
(o i,oi) plane. The translations (14) correspond to

By defining 8'+ ——V+/, 8' = V—g, these equa-
tions read

V'g+ — (V5'+)'=0,2
(g'++ W' )

V'g — (Vg' )'=0.
(@'++@' )

(9)

0 +0' =0 +0
cr —o =o' cr ——a (o +o ) —2ao
-1 -3 1 3 2 1 3 2

o'=o'+a(o '+o'),
and the Ehler's transformations give

Putting /=i', these can be written in the compact
orm

cr'+cr'=o'+o +b (o' o) 2bo— —
-1 -3 1 3
O —0 =0 —0

V g' — (VS') =0,
(Reg')

(10) cr =o'+b(cr' —o') .

where 8'= V+iP
In terms of g=(1+Ã}/(I —8'), the O(2, 1) o

model reads

(g—1)V'/ =2'( Vg)

In this parametrization, the O(3) o mode& [Eq.
(4}] reads

(WW+1)V W=2W(VW) (12)

Here, W=(o'+io )/(1+o ) with (o',cr,o ) satis-
fying (2}.

The Lagrangian (7) has the three-parameter
group of isometrics SL(2+) realized by' (i) dila-
tions

III. EINSTEIN EQUATIONS IN PRESENCE
OF ONE KILLING VECTOR FIELD-

THE STATIONARY GRAVITATIONAL FIELD

Let g& be the metric of an oriented four-
dimensional Riemannian manifold M. In the pres-
ence of a one-parameter isometry group (E=c}/c}x
being the Killing vector, X being the group
parameter), it is possible to choose a coordinate
frame such that the components of g& are in-
dependent of X . By introducing the notation

goj
N) =

goo

V+f=b(V+&),
V f=b( V —i)'j), —

(ii) translations

V+/= V+&/&+a,

V—1(t= V—p —a,
(iii) Ehler's transformations

(13)

(14)

"ij=gij—goigoj

the squared length reads

ds = V(dx +cujdx/) h;/dx'dxi . —

One can project the Einstein equations 8& ——0 into
the three-dimensional space (B) of metric h,&. The
projected equations must be invariant under the
transformation
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X =X +P(x~),

xJ=xj,
which does not affect the stationarity of the field.
Under such a transformation,

Note that

(V )p,„——(VV ——,VJ VVJ)(vt, „),
(V PV )» ——(VV $VJ)( ) .

We have

—V V— V VVJV+ V PVJP=O, (26)
2 2V i 2V

but V, h,j, and fJ
——();coJ —Bito; are invariant. The

projected field equations contain co only in the
combination given by fJ. These equations are

(17)

—V P ——V VVJ$=0,1 2 2
2 V '

which can be summarized as

V (V+iP) —[V(—V+iP)] =0.
V

(27)

(28)

(18)

R"="'RJ+ f' f ' — (~—v)",
2 VV

(19)

fi~ =~~e Jkf"

f, =v he,,„fj',
(20)

(VxA)'= e J"8;fk .
2 h

Then, Eq. (18) can be written as

l

(V x V'"f—)'—.
V V

This allows us to define P such that

v'"fk =Vkd

i.e., Eq. (18) is equivalent to writing

(21)

(22)

where ' 'R'J is the three-dimensional Ricci tensor
of 8 calculated with respect to the metric h,J. All
quantities on the right-hand side of Eqs. (17)—(19)
are defined with respect to the metric h,J. Indices
i,j,k are lowered or raised by h,J and V stands for
covariant differentiation with respect to h,J.

To fix the notation we recall that

Then, in terms of y;J, V, and P, the Einstein equa-
tions Rz ——0 can be written as

V 5' — (VS') =0,
ReS' (29)

' 'R' — (V; VV) V+V;QVJp) =0 .
2V

(30)

Here 8'= V+i(t) We se.e that Eq. (29) describes an

O(2, 1) nonlinear 0 model [the same as Eq. (10)]
but in a three-dimensional space of metric y,j.
Equation (30) determines y;J. Equation (29) for the
complex potential 8' arises from the Einstein equa-
tions with Minkowskian signature. Einstein equa-
tions with Euclidean signature also give rise to an
O(2, 1) cr model but for the real potential
5'+ ——V+/ [Euclidea. n signature corresponds to
the Wick rotation r =it, P =if in the metric (16).]
In this way, stationary four-dimensional real Min-
kowskian solutions of Einstein equations are relat-
ed to three-dimensional complex solutions of the
O(2, 1) o. model. Real Euclidean solutions of Ein-
stein equations are connected to real solutions of
this model. Recall that V is the goo coefficient of
g„„. P does not enter directly into the metric g„„.
P is related to co through

V.(Vkp/V ) =0 .

In terms of P, Eqs. (17) and (18) read

(23) fk=(Vx~)k= (31)

Roo 1 2 1 - 1

V 2 4V'
=—V V— V VVJV+ —V $VJP=O,j

(24)

V f=—V P — V QVJV=O.1 2 3
2V' ' (25)

We express these equations in terms of the metric

Vh;i (instead of h; )

IV. EINSTEIN EQUATIONS IN THE PRESENCE
OF TW'0 KILLING VECTORS FIELDS

ds =A, v(dx'+a)2dx ) + — dx'dxi,
V

where

(32)

In the presence of two Killing vectors g&, can be
written in the canonical form ' as
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yjdx'dx'=e r[(dx') —A(dx )']

+s2(dx2}2 (33}

For instance, the Kerr solution corresponds to

cosha+iacosP —mg=
cosha+iacosP+m

and A, =+1. V, ~, y, and s depend only on x and
x . In this case Eq. (10) reads

a,P, being prolate spheroidal coordinates related to
p, zby

2 2
A,B3 —84 +A, 83—

s

84s
B4 8'

s
cosha= —, [ [(z+1) +p ]'/

[(z 1 )2+p2]1/2j

( 3 )
'83$ 84$

R 34 = ~4'V+ ~A'—
s s

83,4 S2

(35)

(3) 2 2 4 83$=ra y a y+ a~+a a,y-
s s

"'R„=o (J =2,3,4)

which give

a3 s AB4$ —0.
On the other hand, from Eqs. (30) we have

4$

"'R» —— , [(V,V)'+(Vgt)'],

(3)' 'R34= [V2VV4V+V3QV4$],
2V

(37}

2[(V4$) +(V4$) ] .

As is known different physical situations described

by the metric (32) are
(i) axially symmetric stationary fields '2 (for

g= —1, x'=t, x2=q, x'=p, x'=z},
(ii) cylindrical waves' (for A, = 1, x'=z, x =q,

x =p, x =t);
(iii) colliding plane waves' ' (for A, = 1, x =p,

x =y, x3=z, x =t) For all the. se situations, s is
taken equal either to x or x and the coordinates
are of cylindrical type.

For situation (i), Eq. (34) gives the well-known
Ernst equation, extensively treated in the current
literature, i.e.,

[A(B,@')'-(84g')']=0. (34)
1

Reg'

From y,j as given by Eq. (33), we obtain

2a" 84$ 83 s
R33 =A34 f—33 P+ Bg +A, ()4f-

s s s

cosP= —, [ [(z+1) +p ]'/

+ [(z 1)2+ 2]1/2
]

Here m and a stand for the mass and the angular
momentum per unit mass, respectively, satisfying
m —a =1. For a =0 it gives the Schwarzschild
solution, r =1 + cosha and 8=P being identified
as the Schwarzschild coordinates.

It can be pointed out that all the known solu-
tions involved in the situations (i), (ii), and (iii)
mentioned above correspond to solutions of the 0.

model [Eq. (34)] which are not holomorphic func-
tions. As we will see below, this is so because for
the situations (i), (ii), and (ii) above, s is not a con-
stant.

In what follows we will take A, = —1, x'=t,
x =z, x =x and x =y as Cartesian-type coordi-
nates and we ask for solutions g'= V+i P of Eq.
(34) given by holomorphic functions, i.e, V and p
satisfying the Cauchy-Riemann equations

a, V=a„y,

a„v= —a„y,
that is,

V= —,[8'(u)+ g'(u )]

(39)

1 Q =X+A,
P =—[5'(u) —8'(u )]

2l Q =x —lg
L

From Eq. (34), this imposes s = const.
The problem is to see if the ansatz (40) is com-

patible with the other set of Einstein equations (35)
and if it leads to a nontrivial metric. As is easily

seen from Eqs. (26) and (27), we can generalize the
ansatz (40) to include two different functions g'1

and 8'2, namely,

V= —,[g'1(u}+8'2(u)],

8 +—8 +B, I' — [(8 8')'+(Q, g )']=0.
P =—[8'1(u }—g'2(u )],1

2l

(41)

(38} which allow V and P to be complex. Because of
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the holomorphy (antiholomorphy) of 8'~ (g'2}, from
Eqs. (37) it follows that

[g')(u)+ &z(u )]
2

(42)
(3)

R„y ——0.
On the other hand, s =const, from Eq. (35), gives

rotations of the coordinates, it is not possible to get
the signature to be Euclidean. The %ick rotation
t =is, z=ig (which in this case is equivalent to set-
ting t =i r, A, ~iA, ) does not change the signature
of the metric.

On the other hand, the %ick rotation

t =iy (y = it—),

(3)
R„y ——0.

We see that Eqs. (42) and (43) are compatible and
allow us to determine y easily as

[g',(u)+ g', (u)]
2@=in

2

maps the solution (47) into a different solution

ds'=dx' «'+—[@',(x —t)+ &,(x + t)]dy'

—2' dg, (48)

+g&(u)+g2(u } .

Then ds2 [Eq. (33}]can be written as

[a', (u)+ N', (u )]
pg)dx dx

2
dQ dQ

(44)

+dz2. (45)

&.e.,

a„~=—2a„[I/(a, +e,}],
8„-co=—2B„-[I/(&)+&p)],

which gives

g& and g2 can be eliminated by a conformal
transformation

dQ —+dQ; e dQ —+dQ ~

g&(u) g2(u)

We can determine co—= to, from Eqs. (31), (32), and
(41). One gets

fx = ~yto =
V2

1 ~y0f = ~xto=
g V2

which is real and of plane-wave type, but with sig-
nature (2,2).

In particular if
(a) g

&

—0 or g 2
—0, then V=+ip, the three-

spatial metric y,j is Aat and ~ and V satisfy the re-
lation VXco=V'(I/V) [which implies in this case
V (1/V) =0]. This gives a metric of the Taub-
NUT type as considered by Gibbons and Hawking,
It can be noted that here the metric is complex
with signature (3,1). In this case, there is no real
metric with signature (3,1). The only possibility to
have a real metric with this signature is V=+/ =
const (the flat space-time).

A real metric of Taub-NUT type, but with sig-
nature (2,2) is obtained from the solution (48) with
8'& ——0 or 8'2 ——0.

(b) If &&(u)=$'2(u) the solution (47) is real and
it is of Peres type (Petrov type .

All components of R,b vanish trivially except
for Zoo ———,V' V. Because Vis harmonic, it is not
bounded. Otherwise it would be a constant.
Rigorously speaking 7 V=4~pa, where po is a dis-
tribution concentrated at the singularities. In the
vacuum case, the singularities of V are the sources
of the field. The zeros of V describe event hor-
izons. This generalizes to the case when matter is
present satisfying

co= —1/V+const . (46) 8mk
Rpy 4 ( Tp~ g gp~Ty)

C

ds = —[g'~(x+iy)+8'2(x iy }]dt-
+2dt dz+dx +dy (47)

The signature of the metric is (3,1). This is a
Lorentzian complex metric. By appropriate %ick

By replacing V, y;J, and y given by Eqs. (41), (45),
and (44) in the canonical form (32), we obtain

In this case, V V=4' for p positive definite
representing the density matter in the space.

In particular, the homographic function

(u —ao). . .(u —aq)

(u —bo} (u bq)—
corresponds to the (multi)-instantons solutions of
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the 0. model as considered by Belavin and Po-
lyakov; ao, . . .,aq represent the positions where
the instantons are centered

au+b
CQ +d

with 5=ad—cb—+0, describes a single instanton
located at po ———d. The metric coefficients associ-
ated with it are

e =cosp,

C) C2 ——E,
it can be written as

(a„p)(a„p)
a„a„p+

cos sin

cos p —K
sinp

(B„p)(8„-p)sinp
(51)

V= 1 —b,(x+d)
(x+2) +y

Ay

(x+0) +y
b, (x +d)

co, =1+
(x +d )(x +d b,)+y—

The field f is given by

—2b, (x +d)y
[(x+d)(x+d —b, )+y ]

b[(x+8) —y ] (q f 0)
[(x+d)(x+d —6)+y ]

Here we have taken a=1 in order to have V„=1.
Without loss of generality, we choose c =1, i.e.,
8'=1—6/(x +d). Note that this solution requires

V&ig; (x = —d, y =0) is a zero of the denomina-
tor. At the point (—d, 0) the metric g„, has a true
singularity.

Following Pohlmeyer's reduction for the O(3) o
model one can relate the O(2, 1) model to the
sine-Gordon and to the Liouville equation. We
can choose a basis in C given by (cr,B„cr,B„o) [we
recall that cr =(o',o,o)], such that'

cosP 1 —cos—
E

In particular,
(i) if %@0we can always choose E = 1 and we

get the sine-Gordon equation

B„B„-p+sinp=0 .

(ii) If E =0 (i.e., C& ——0 or C3 ——0), Eq. (51) is the
Liouville equation

+ea(.u, t7)
u

whose general solution is given by

2A'(u )8'(u )a u, u =In ~

[A (u )+8(u )]

A and B being arbitrary functions.
On the other hand, from Eq. (6) we have

1+V' —(t"
2V

1 +$2 V2

2V

(a„o)'=C, ,

(8„-o) =C2,

e a(u, r7)

(49)

(8„-P) —(8„-V)
(B„o) = (53)

i.e., in terms of the (V,P) parametrization we have

where Ci and C2 are constants and a is in general
a complex function on u, u. Here

o(B„o)=o(B„o)=0; o. =1 .

(Recall that o"cr =o'~o'~+o2o2 —o'3o'3 )

this parametrization, the O(2, 1) o.-model equation
reads

B„B„-a=C~ C2e —e

(a„y)(a„y)—(a„v)(a„v)(a„)(a„)=

a„y=+(B„v),

O„y=(a„V)+g(u) .
(54)

For the case (ii), if C, =0, C2 —1, from Eq. (52)
and (53) it follows that

By putting

C) C2—(B„a)(B„a)
(Ci C2 —e )

Here g(u ) must be nonzero because (Q o )2+0.
Then it is not possible to obtain Eqs. (40) (i.e,
B„V=8„Q,B„-V=8„Q)which give V, P as linear
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combinations of holomorphic and antiholomorphic
functions.

In the nonaxisymmetric case (i.e., s =const), the
solutions of the sine-Gordon as well as of the
Liouville equations are not compatible with the
Einstein equations because they exclude V, P to be
holomorphic (antiholomorphic) functions.

It can be pointed out that the equation con-
sidered in Refs. 8,9, and 10 is an O(2, 1) cr model,
even when s is not a constant.

The above solutions (47) and (48) can be general-
ized in a simple way to the case when only one
Killing vector is present. In this case 8'& and 8'q

also depend on U =x3 —t, i.e.,

such that

(Latin indices run through only 1,2,3.) These
transformations relate all the coordinate systems
which are at rest with respect to the same reference
frame. CI can be considered as three-dimensional
tensors invariant with respect to (57) and covariant
with respect to (58), in a three-dimensional space
of metric h;j =g j =go;goj/goo. The CI derivatives

1 ~ ROI'
a,= a„a,=a, —— a,

V'goo
' '

goo

ds = [tt—', (u, u)+ 8'z(u, u)]dt +2dt dz

+dx +dy

ds =dx dt +—[8'i(u, v)+&~(u, U)]dy

+2dy dz .

(55)

(56)

replace the ordinary ones. Note that

di c)o c)o c)i=+i c)o ~

*a,*a,—*a,*a, =~„*a,,

where

A;k = —,U V("Bkco;—*c);cok),

These solutions can also be generalized to the
case when there is no Killing vector to include
holomorphic (antiholomorphic) functions depend-

ing on u, u, u, and v. This is considered in another
paper.

V. GENERAL CASE:
NO KILLING VECTOR FIELD

We will consider here Zelmanov's formalism on
chronometric invariants (CI) to give a 3 + 1

decomposition of Einstein equations when there are
no Killing vector fields. Let us consider the
transformations

E; = —*8;in'+ *Bo(Vco;) .

v'V
——=*c)oD+DjtD'j+AjiA 'i

+ 7 E~—EEJ, (59)

3;k and E; generalize the homologous quantities

f;k and 8;in' V of the stationary case. Let us de-
fine

D;k= —, c)oh;k, D='c) lurch .

The Einstein equations for g„„can be expressed in
terms of E;, 3;k, D;k, D, and the three-dimensional
curvature R;k for h;k. This gives

7=x (x,x'),
x'=x'(x'),

(57) l

*V'j ( h 'jD Dj —A'j) +2'—A 'j, —
V J (60)

~ik ~oak (Dij +Aij )(DIc +A/c )+DDik Dij Dl + 3Aij Afc ++i +k + ( ~i+k + +k+i )+
2

These equations generalize Eqs. (17)—(19) of the stationary case. Equation (60) can be written as
\

*Vj( VA'j)+*V'j(h'jD D—'j)+ A'+ ) —(cVocoj) =0 .

(61)

(62)

'V' ( jVA)=je'j 8 (VAk) .

%e can express Ak as



CONNECTION BETWEEN THE NONLINEAR o MODEL AND THE. . .

(63}

which generalizes Eq. (21). The equation

'V, (I 'JD D—'J) e—'~"V, ('a,~„)=0

determines 'Bo91'k. From Eqs. (62) and (63) it follows that
r

"doD+DJ&D J+2A AJ+'v EJ E,.E—~+2'v =0.J V.

By expressing this equation in terms of V, P, and ( Bo91'k) and in terms of the metric (Vhik), we obtain

(64)

(65}

'v (V+ip) ——[*v(V+ip)] +*Vk('r}~")+ [('t} Ak) +('i} 8'k)(*t} Q)]+. DkD —+ D),D—'"=0.
V

(66)
This equation generalizes the Ernst equation of the gravitational field to the case when there are no sym-
metries in the space-time. Besides the potentials (V,p), this equation involves other fields (r}oA'k) and D~i,

whose geometrical meaning is not immediately apparent. These fields vanish when stationarity is required.
The first terms of Eq. (66) look like an O(2, 1) 0 model. However, the coupling with the other fields basical-

ly destroys its simple geometrical interpretation.
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