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Origin of the gravitational constant and particle masses in a scale-invariant scalar-tensor theory
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A viable scalar-tensor theory of gravitation is formulated by imposing global scale invari-

ance to the matter part. Nonvanishing masses m of elementary particles as well as the
gravitational constant 6 emerge through the cosmological background value of the scalar
field. The scalar field maintains a dynamical degree of freedom in exchange for conformal
invariance enjoyed otherwise by the gravity part. The temporal developments of 6, m, and
the scale factor of the Universe are determined simultaneously by solving coupled differen-
tial equations. In the simplest single-scalar model the result is not a variable-6 theory in

the usual sense. Departures from the standard theory occur through the time-dependent

cosmological term. Of particular interest among the solutions are the asymptoticalIy stand-

ard solutions.

I. INTRODUCTION

Scalar-tensor theory was first conceived in an at-
tempt to make a theory of gravitation in comformi-

ty with Mach's principle. ' It offers a natural way
of extending the standard theory of Einstein.
Particularly noteworthy is the fact that the La-
grangian contains no dimensional constants in the
unit system with c =Pi= 1, which we assume to be
true constants throughout this paper. The usual
gravitational constant G having a dimension of
length squared emerges through a cosmological
background value (BGV) of the scalar field. It is
one of the natural consequences of the theory that
G may vary with the cosmic time t.

The absence of a dimensional constant implies an
invariance under global scale transformation and
eliminates one of the major disparities between the
standard gravity theory and the theory of elementa-

ry particles; it is increasingly evident that the cou-
pling constants of all the fundamental interactions
among elementary particles are dimensionless.

In many of the scalar-tensor theories ' ' the glo-
bal scale invariance has been limited to the gravity

part; the invariance is broken explicitly in the
matter part by introducing fixed-mass terms. As is
well known, however, in the loml field theory of
elementary particles, the invariance can be main-

tained if the masses are generated spontaneously by
means of nonvanishing vacuum expectation values
(VEV's) of certain scalar fields. ' Obviously the
simplest scheme one mn conceive is that there is
only one such fundamental scalar field which is
identified with the scalar gravitational field.

It is also encouraging to observe that the trouble-
some scalar long-range force then no longer occurs
in the weak-field limit, thus keeping the theory vi-

able without jeopardizing the successful experimen-
tal tests of the standard theory. This approach al-

lows one to understand all the dimensional "con-
stants" in nature, i.e., G and particle masses, in

terms of a common origin, the cosmological BGV
of the scalar field. Because of the expected variabil-

ity of the BGV, 6 and particle masses may also
change as the Universe expands.

Now in our simplest theory with only one scalar
field (called the "single-scalar model" in Ref. 4), 6
and a particle mass m change precisely in such a
way that the dimensionless product Gm remains
unchanged. As a consequence, in the "microscopic
unit frame" in which m stays constant, G also stays
unchanged, unlike what is expected in Dirac's large
numbers hypothesis (LNH). " This inherent
discrepancy with LNH may be avoided by assuming
a more complex theory by introducing two scalar
gravitational fields, for example (corresponding to
the "two-scalar model" in Ref. 4), as suggested by
Bekenstein. ' We still believ- that our simplest sen-
sible alternative to the standard theory deserves de-
tailed studies, partly because the observational situ-
ations on the variable G are still controversial. '

Theories which embody LNH have also been for-
mulated in terms of the scalar-tensor theory with a
single scalar field, but by choosing a special value of
the coupling parameter of the scalar field such that
the theory is conformally invariant. ' ' The scalar
field is then deprived of dynamical degree of free-
dom, resulting in no physical long-range force
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which might affect the tests of general relativity.
One is now free to choose the scalar field and hence
G (t) in accordance with LNH, if one wishes.

We insist, however, that any physical quantity
which develops with time must be of dynamical na-
ture. ' From this point of view we avoid the con-
formal coupling. As we have pointed out, the
theory with a dynamical scalar field can be made
viable if the matter part is globally scale invariant.
(The matter part is allowed to be conformally in-
variant as well, like in the model given in Sec. II,
whereas the gravity part is not. )

As was also emphasized above, not only m but
also 6 are time independent in the microscopic unit
frame. It may appear that nothing differs from the
standard theory. We do expect some differences,
however, because the scalar field is still present, act-
ing, roughly speaking, like a time-dependent cosmo-
logical term. It is unlikely that deviations from the
standard theory can be detected by analyzing plane-
tary motions or similar phenomena at the present
epoch. It is still highly probable that modifications
should be significant in phenomena which take
place on a cosmological time scale.

In this paper we confine our considerations to the
basic structure of the theory, leaving more details to
future publications, including practical applications.
In Sec. II we present the formulations. We begin
with writing the Lagrangian in the "primary unit
frame" in which the sector of the scalar field takes
the simplest form. The relation to the microscopic
unit frame is also exhibited. In Sec. III we derive a
dynamical equation which determines the temporal
behavior of the BGV of the scalar field together
with the scale factor of the Universe. Some of the
solutions of this nonlinear equation are given in Sec.
IV. Of particular interest are the "asymptotically
standard solutions" which tend to the standard
solutions as t~ao. This type of solution suggests
an interesting scenario that the standard theory pro-
vides an accurate description of the Universe in re-
latively recent epochs, while deviations might have
been significant in earlier epochs. Section V con-
tains concluding remarks.

theories with some scalar Higgs fields. ' The basic
Lagrangian is given by

W=( g)' —( f —P R+L) (2.1a)

where

L = , &—g—"'d„4dA+LM+Lt (2.1b)

The dimensionless constant f is reasonably as-
sumed to be of order unity, while e =+1 accord-
ing to whether P is a normal field of positive metric
or a ghost field of negative metric. The matter La-
grangian LM is given by

L~ = ——,
'

1( (9 —9 )y ,
' F„—,F—&", (2.2a)

where

&qQ=(dq+ , A ~—„op+ieAq)$,

Q&„=P(B„,A —„—crg ieA„—),
(2.2b)

(2.2c)

I„„=a„~„-a„z„, (2.2d)

with A ~& being the Lorentz connection expressed
in terms of the Ricci rotation coefficients (u, P are
for local Lorentz transformations). The interaction
Lagrangian [apart from the gauge couplings includ-
ed in (2.2b) and (2.2c)j is

Li+L2, (2.3a)

where2&

L, = —cog 4

L2= —gAN .

(2.3b)

(2.3c)

The Lagrangian (2.1) is characterized by the ab-
sence of dimensional constants; all the constants f,
e, co, and g are dimensionless. Consequently the
theory possesses global scale invariance. It should
be understood that these constants as well as c and
A are true constants.

If P has a BGV u(t) which varies sufficiently
slowly as a function of the cosmic time t, the factor

1

—,f u (t) in the first term of (2.1a) gives a time-
dependent gravitational constant,

G(t)=(f /Sn )u (t) . (2.4)
II. FORMULATION

We consider a combined system of a tensor gravi-
tational field, a scalar gravitational field P, and the
matter, which we choose, for the sake of illustra-
tion, to be an interacting system of a massless elec-
tron and a photon. It is straightforward to extend
the model by including other types of gauge

m(t)=gu(t) . (2.5)

It immediately follows that they satisfy the rela-
tion

G (t)m (t) =f g /Sm =const . (2.6)

Likewise substituting u(t) for P in (2.3c) yields the
time-dependent electron mass m (t),
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The constancy of this product exemplifies a general
feature of the present theory that dimensionless
numbers are true constants.

The field equations are derived as follows:

(2.7a)

tv~ g+pv=~~ gpv ~

Q~Q, =Q ~ f, Aq~A, „=Aq .

(2.11a)

(2.11b)

(2.11c)

direct matter source.
Suppose we apply a conformal transformation

f pR+eUp+aLt lap =0,
yq—+aL, gay =0,

V„F'I' ieger"—P =0 .

(2.7b)

(2.7c)

(2.7d)

Choose a special Q given by

Q(x) =v, P '(x),

so that

(2.12a)

Here T&„ is the symmetric energy-momentum ten-
sor including P and the matter, as given by

T„„=ea„pa„p

(2.12b)

is a constant. The interaction term L2 becomes

(2.13a)

where the electron mass is given by

+gag g +g (2.8) (2.13b)

Z-'Oy2=2 4 —y
ap

3 —8

(2.9a)

By taking a trace of (2.7a) and using (2.7c) we

transform (2.7b) into

( )1/2 (2.14a)

which is a true constant. For this reason the new
unit frame may be called the microscopic unit
frame.

We obtain

Z '=e+6f '. (2.9b) G, =(f /8m. )v, (2.14b)

Since LI contains no dimensional constants, the
right-hand side of (2.9a) vanishes. We then obtain

Z —1 y2 (} (2.10)

For the conformal coupling ef = —6,
Z '=(} from (2.9b), Eq. (2.10) ceases to be a
dynamical equation of p . We avoid this choice be-

cause we want a theory by which P is determined

dynamically. But this requires us to accept an im-

portant (though sometimes taken for granted) as-

sumption that there is a preferred unit frame among
the other conformally transformed unit frames.

Only in this special frame, hereafter called the pri-

mary unit frame, the P sector of the Lagrangian
takes a simple form as in (2.1).

Once we choose Z '+0, Eq. (2.10) implies that
has no direct coupling to the matter. This

decoupling frees f from being constrained by the
well-established experimental tests of general rela-

tivity, thus leaving the theory viable. If we broke
scale invariance explicitly by introducing a fixed-
mass term —mage with a constant mo, the right-
hand side of (2.9a) would be 6mol(tg, yielding a

is a truly constant gravitational constant and

L'= ——,g,g,"Bp4B„4+L, +L, )

—m, g, g, , (2.14c)

with

'"v.»y, e. =sign(Z '), (2.14d)

III. COSMOLOGICAL EQUATIONS

We assume that P in the primary unit frame is
separated into BGV u(t) and a fluctuating part

and L,M being (2.2a) with starred fields, and

L~) ———cpv~ ~ Notice that e, =e due to the well-

known conformal invariance of the massless electro-

dynamics.
The field 4 couples only to the tensor gravita-

tional field and represents a deviation from the
standard theory in spite of the constancy of G, and

m, in this unit frame.
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o(x): where

P (x)=u(t)+o(x), (3.1) H=a/a . (3.8b)

where u =v, with U(t) the BGV of P as introduced
before. In accordance with (2.10) with Z '+0, we

may reasonably assume

Other components give no new results.
We must also impose the condition

(3.9)

and

QQ(t) =0

o(x) =0 .

(3.2a)

(3.2b)

The only independent component is for v=0. We
obtain

aoo+3Hu '[ev +f ii

Equation (3.2b) shows that the locally fluctuating
field o(x) is a free field playing no significant role
in the limit of flat spacetime, a crucial consequence
of the scale invariance assumed for the matter part.

It is convenient to rewrite (2.7a) as

Gpv=f ~ derv ~

where

(3.3a)

[rq„f (gq—, VqV, )Q —] (3.3b)

is the source of the tensor gravitational field. We
separate this also into the BGV a~&„' and the rest
M „'„',where

f H—u+(1+z)p] =0, (3.10)

where Woo is taken from the right-hand side of
(3.8a) divided by f . By differentiating (3.8a) with
respect to t and combining the result with (3.10) we

obtain [by using (3.8a) again to eliminate p]

ii+ —,(1 z)f eU—+3(1+z)uH +2Hu

+(2+3z)Hu =(1+z)f cpu

(3.11)

Equation (3.6) is satisfied trivially if we choose

0=0.

+g~ ( —2
6'g~ BpUB U —cov )

f (g„, ——V„V, )u ] . (3.4)

Equation (3.11) then simplifies to

3(1+z)H +2H = (1gz)f cou (3.12)

which is a standard equation for H(t}. For co ——0
we recover the usual Friedmann solution

It seems reasonable to interpret the spacetime-
dependent part ~&" as the physical energy-

momentum tensor of the combined system of the
matter and the field o(x).

We now assume that the Universe is described by
a spatially flat Robertson-Walker metric,

with

a(t)=aot ', (3.13a)

yo = i (1+z) (3.13b)

We next assume u +0 and solve (3.6} to obtain

g = —1, g; =a (t)5; (i,j+0) .

Equation (3.2a) is then put into the form

—(a u)=0.
dt

For a z'„' we assume the ideal fluid as usual,

~ pv=u [(P+P)upuv+Pgijv] ~

with the equation of state

p=zp .

(3.5)

(3.6)

(3 7)

(3.14a)

which together with (3.8b) is substituted into (3.11):

u uu '+B)u uu +B2u+B3u u '+B4u =0,
(3.14b)

with

1 1

Bi ————,(3+z), Bz ——,(1—3z), ——
(3.14c)

Bs ————„ef (1—z), 84 —,cpf (1+z) . .
——

The 00 component of (3.3a) reads as

3H =f u '( , EU +cou 3—f Hu+p)—,

(3.8a)

This is our fundamental equation that determines

u(t), and hence a(t) through (3.14a). The energy
density p(t) is then given by (3.8a).

Before solving (3.14b) we briefly discuss the con-
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formal transformation to the microscopic unit
frame. By substituting u(t) into P in (2.12a) we ob-
tain

u(t)=At~, (4.2a)

where A is an arbitrary constant, while p is subject
to the condition

Q(t) =up/u (t)=m p/m (t), (3.15)
(P 1)(—P —2)+Bi(P—1)'

where we have chosen Q(tp)=1 for the present
ePoch tp by adjusting vp v(—t—p) In. the second
equality of (3.15) we have used (2.5) with
m p =m ( tp ). From (2.1 1a) we find

+B&p(p 1)+—B,p'=0. (4.2b)

Substituting (4.2a) into (3.14b) we also find

ds, =Q 'ds =[m(t)/mp]ds . (3.16)
with

a (t)= aptr (4.3a)

This implies that the time and length in the micro-
scopic unit frame are measured in units of m '(t),
in agreement with the physical situation that the
time scale of atomic clocks, for example, is provid-
ed by the atomic levels which are determined by the
Rydberg constant (me )

The metric gpp
———1 in (3.5) is transformed to

gazoo ———0 . This can be brought back again to
the form of (3.5) by introducing the time coordinate
t, in the microscopic unit frame according to
dt, =Q '(t)dt. The new scale factor a, is also de-
fined by a, (t, )=Q '(t)a(t). Now the first term in

(2.14c) multiplied by G„[with tI) in (2.14d) replaced
by v(t)] may be interpreted as a time-dependent
cosmological term

y= —,(1—P) .

The obvious restriction y & 0 gives

P&1.

(4.3b)

(4.4)

It should be noticed that in the limit of a constant
u, i.e., P—+0, Eq. (4.3b) gives y = —, which differs
from (3.13b). This is not surprising because we
have started from (3.6) which would not exist if
u =0 was chosen at the outset.

We next consider the case cp+0. For the power-
type solution t~, the first four terms of (3.14b) give

while the last term yields t ~. These
behaviors agree with each other only for P= —2.
Substituting u —t into (3.14b) gives

A(t)= —4m iZ
~

'G, u, (v/u) (3.17)
12+9B1+6B2+4B3+B4——0 . (4.5)

@@—1 g) 2@—2
67TF 6 @2 0 (3.19)

which is in fact verified to be equivalent to (3.14b).

IV. SIMPLE SOLUTIONS

We first assume cp ——0 and solve (3.14b):

giving a departure from the standard theory. By
using (2.14b) and choosing v/u t', -we obtain an

approximate expression

A(t)-t ', (3.18)

which for t —10' yr turns out to be close to the ob-
servational upper limit 10 cm . The value
might be even smaller if u(t) is nearly constant as
suggested by the asymptotically standard solutions
to be discussed in the next section.

One can derive an equation for 4(t, ) correspond-
ing to (3.14b) (cp ——z =0, 4 =d@/dt, ):

u (t) = t t'F(t),

with the condition

F(0)=1 .

Substituting (4.6a) into (4.1) yields

(P —1)(P 2)F"'FF'

'+Bi�(—

P 1) F"FF'—

(4.6a)

(4.6b)

where

+Bgp(p 1)F"+B3p F' F—'=0, (4.7a)

In other words, the power-type solution -t with
cp+0 is allowed only if the parameters ef and cp
satisfy (4.5) exactly. Since such a precise tuning of
the parameters is rather unnatural, we do not study
the choice cp+0 any further.

The solution (4.2a) has only two adjustable
parameters, the overall scale and the origin of t, in-
dicating the presence of more general solutions. We
seek them by making an ansatz

u uu '+Biu uu +B2u +B3u u ' =0 .

One immediately finds a power-type solution

(4.1)

F'=F+ —F,
t t2F"=F+2 F+ — F,

P 1P(P—1)-
(4.7b)

(4.7c)
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F"'—F+3 F+3
P —2 (P —1)(P—2)

3 F.
P(P —1)(P—2)

We first assume the form

F(r) =1+At~.

with the condition

apO,

(4.7d)

(4.8a)

(4.8b)

tions with —1 &P &0, or infinite in F solutions
with —2&P&1, as illustrated in Fig. 1(a). The
corresponding time t, i in the microscopic unit
frame is always finite. %e also find that the scale
factor a, (t, ) in the microscopic unit frame col-
apses at this time with an infinite derivative, like

the standard Friedmann solution with k =+1.
An example is shown in Fig. 1(b). It is easy to
show by using the power-type solution that a (t )

behe aves like r, as t, —+0 for any p. This implies
that the deceleration parameter q, defined with

and
~

A, t
~

&& 1. We substitute (4.8a) into (4.7) and
expand the result into a power series of At T,he.
sum of the zeroth-order terms vanishes for P that
satisfies (4.2b). The first-order terms give

At (alp)[az+(E+1)a+E] (4.9)

with E=(28i+82+3)P—28i —4. Equation (4.7a)
is satisfied for any small A,t if the quantity in
square brackets in (4.9) vanishes. We obtain two
solutions for a; the one a = —1 is ruled out in view
of (4.8b), while the other is

a = E=(1—z—)( 2 P+ 1) .

The condition (4.8b) is met if

P& —2.

(4.10)

(4.11)

The third parameter A, can be absorbed into the
scale of t apart from the sign. For this reason we
write the approximate solutions as

1.0

F+(r)=1+i (4.12)

with t « 1. For a given P subject to (4.2b) we now
choose tp such that tp «1 and solve (4.7) numeri-

cally for the "initial values"

F+p ——1+tp (4.13a)

F+p ——1+ 1+—tp~, (4.13b)

F,-,=1+ 1+ " + '—"r-+p=
p

+
p(p

rp . (4.13c)

The solutions may be called F+ and F solutions,
respectively, according to the signs in (4.13).

The solutions obtained so far for z =0 (dust) may
be classified into two major categories.

(I) F solutions with —2&P&0 and F+ solu

tions ioith 0&P & 1:The function F(t) starting from
F(0)=1 either vanishes (F ) or diverges (F ) at
t =ti, which is finite in F+ solutions and F solu-

0
0

I

05 1.0
t/t

FIG. 1. TG. 1. Typical solutions of the category (I). (a) F(t)
for F+ with P =0.2, F with P = —0.5 and P = —1.0.
The se scale of t is arbitrary, but chosen such that t~ =1.0
for P=0.2 and &=—0.5. (b) a+(t+) in arbitrary scale
for the solution F with P =—1.0. Curves for other P's
look nearly the same.
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respect to t„approaches the value 2 (from above) as
t, ~O. From the typical curve in Fig. 1(b) one
finds that q, should be very large in a large portion
of the interval 0&t, &t, &. The observation seems
to indicate that q, &2. This would be compatible
with the theory only if we are now at the epoch t, Q

which is much smaller than t, &.

(II) F solutions with 0 & p & 1 and F+ solutions
with —2 & p & 0: In all the solutions in this category
the function u (t) approaches a constant for t +Oe-.
See Fig. 2(a) for some examples. We also find that
a (t) —u

' (t) tends to the standard solution
a (t)-t as given by (3.13). These features can be
seen most clearly in Figs. 2(b) and 2(c), where

3P F'

p —1 F"F (4.14a)

and

15

10

Q

10

10

10 10
t

10

(a)

(b)

1= —3B) —4+B25 ——,B35 (4.14b)

1

are plotted. Notice that q —+ —, as t—+ oo, the stand-

ard value for the Einstein —de Sitter solution
(z =0).

The solutions of the second category may be
called "asymptotically standard solutions. " We
find that the asymptotic standardization occurs
whenever u (t) behaves as a power function of t for
t~0 and develops smoothly toward t~ oo, and
also toward t, ~ oo. This is by no means trivial
since, as we showed before, the standard solution
(3.13), which is derived by choosing u=0 at the
outset, can be entirely different from the solutions
of (3.14) (even with the limit p —+0 taken after-
wards).

It should be remembered that we have left the
scale of t completely arbitrary, by choosing A, =1 in
(4.8a). Only if we are able to compare our theoreti-
cal calculations with phenomena that take place on
a cosmological time scale can we determine where
we are on the plots of Figs. 1 and 2, and with what
value of P, and hence what values of ef through
(4.2b) and (3.14c). We must also decide which time,
t or t„should be used in analyzing observational re-
sults. It might also be necessary to study how the
solutions differ if we assume the spatially closed or
open models of the Universe. We should be content
here with rather qualitative discussions on the solu-
tions we have obtained by a numerical method. The
results of our approach based on a more analytic
Inethod including a rigorous proof of the asymptot-

0.01
10 10

T r &
(

7

10
t

10

1 ~ ) ~ r ~

ic standardization will be reported elsewhere,
though some of the results have been already used
above in discussing general properties of the numer-
ical solutions.

V. CONCLUDING REMARKS

Our scalar-tensor theory incorporating the micro-
scopic matter system in the form of local field
theory has been chosen to be invariant under global

Q I & I I I I t s I I i i I I I

10 10 10 10 1

t

FIG. 2. Typical solutions of the category {II). {a) u {t),
(b) 5(t), and (—c) q(t), for F+ solutions with p = —0.1,
—0.4, and —1.0, respectively. The scale of t indicated is
for P= —0.1. Those for P= —0.4 and P= —1.0 should
be multiplied by 10 and 100, respectively.
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scale transformation but not under conform al
transformation. This is almost a unique choice if
one tries to maintain the dynamical degree of free-
dorn of the scalar field, and also to survive the
current experimental tests of gravity within a
reasonable range of the value of the coupling
parameter. The scalar field equation together with
the Einstein equation results in the coupled dif-
ferential equations that determine the temporal
development of the BGV of the scalar field [and
hence G(t) and m (t)] in conjunction with the scale
factor of the Universe, essentially in the same spirit
as in Ref. 2. One then arrives at a unified view that
the BGV of a single scalar field provides the ulti-
mate origin of all the dimensional quantities in na-

ture.
Also stated tacitly is that dimensional parameters

which are not put in the Lagrangian have been
brought in through the initial (or boundary) condi-
tions in solving the differential equations, a charac-
teristic shared by the mechanism of spontaneous
symmetry breaking. In fact, each solution of our
third-order differential equation contains three in-
tegration constants, the origin of t, the overall scale
of u (t) and the scale of t Altho. ugh the first one is
trivial, the last two do have dimensions. In this
respect we have something in common with
Terazawa's view that the mass scales in nature have
their origin in the nonvanishing Hubble's parameter
and the cosmological average of the energy-
mornentum tensor. '

The theory, which certainly differs from the
standard theory, turns out not to be a variable-6 or
variable-m theory in the sense that 6 stays constant
in the unit frame in which m is constant. In other
words, the Einstein gauge and the atomic gauge'
coincide with each other. If unambiguous evidence
is accumulated to support a changing G (in the
atomic gauge), one must go beyond the simplest
model ""

We have not attempted to exhaust all the possible
solutions of our nonlinear equations (3.14b) or (4.1).
Among the solutions discovered so far, however, the

asymptotically standard solutions are of particular
interest. A conjecture might be proposed that the
standard theory applies to the present (or relatively
recent) Universe just because we are already in the
asymptotic region; in much earlier epochs the
Universe could have been different considerably
from what one infers on the basis of the standard
theory. According to our theory, deviations would

have occurred as a larger cosmological term as one
goes back to the earlier epochs. Notice that the
time-dependent cosmological term (3.17) is given
essentially by H 5, as one finds from (4.14a).
Deriving realistic and quantitative results and ap-
plying them to cosmological and other phenomena
will be left for future investigations.

Other possible solutions which might help our
understanding of cosmology are those giving the
behavior a (t)-t~ with y ) 1 (hence q & 0) for t~ 0,
yet reproducing q & 0 at the present epoch. We then
have a '(t')dt'= oo, thus offering a resolution

0
of the horizon problem. If we insist on a solution
of the form u (t) = t ~F(t) with F(0)= 1, we must ac-
cept P & —2 as required by (4.3b). But this is in
contradiction with (4.11). The horizon problem
might be outside our present approach. Neverthe-
less, the outstanding importance of the problem
seems to justify searching for different kinds of
solutions. Solutions with ca+0 may also be worth

examining in more detail.
We abandoned the highly attractive principle of

conformal invariance. As a consequence the pri-
mary unit frame assumes a preferred status among
all the other unit frames obtained by applying con-
formal transformations. Only in this preferred unit
frame the P sector of the Lagrangian takes a simple
form, as in (2.1). It is certainly one of the funda-
mental questions if we are paying too high a price
for insisting on having dynamical equations for
G(t) andm(t).

Basically the same theoretical development can
also be applied to the two-scalar model in which
one of the scalar gravitational fields is expected to
give an additional finite-range term to the Newtoni-
an potential. ' This second simplest model might
deserve further studies in connection with the hor-
izon problem as well as allowing variability of di-
rnensionless numbers, as suggested by LNH.
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