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Brans-Dicke cosmology with the cosmological constant
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The Brans-Dicke equations with the cosmological constant are studied. We present ex-

act solutions in the spatially flat Robertson-Walker metric in the matter-dominated
universe. A brief discussion on this cosmology is given.

'2a

where the subscript zero denotes the present value
and an overdot denotes a derivative with respect to
t. The solutions, however, may not be expressed in
terms of elementary functions (recall that the

Some years ago Brans and Dicke' proposed a
tensor-scalar theory of the gravitational field based
on Mach's principle. The Brans-Dicke (BD)
theory is consistent with experiment as long as the
Dicke constant ~ is about equal to or greater than
500. In the limit cu —+ 00, the BD theory reduces
to the Einstein theory for a constant BD scalar
field P. In order to determine the solutions of the
BD equations for cosmology (when applied to
cosmology with the cosmological principle) for a
given value of co, it is always necessary to have one
more initial condition than needed for determina-
tion of the solutions of the Friedmann equations.
The BD equations in the absence of the cosmologi-
cal constant A, can be solved analytically in the
case of zero space curvature (k =0) and zero pres-
sure (p =0). In general, the BD equation for the
case of k+0 and A,+0 uniquely determines the
scale factor a (t), the matter density p(t), and the
BD scalar field P(t) for all t provided the present
values of five variables, e.g., pp, Hp tip Pp and Pp,
as well as equations of state and the constants co

and k are given. Hubble's constant Hp and the de-
celeration parameter qp are defined by

a aii
Hp ———,qp ——

a

Friedmann equations with k+0 and A.+0 lead to
elliptic integrals). Also, the case k+0 and A, =O
cannot be solved analytically even for p =0. In
this case the present values of four variables are
necessary to determine the solutions.

In this paper we present analytic solutions of the
BD equations with the nonvanishing cosmological
constant for the case k =0 and p =0. The solu-
tions for a (t), p(t), and P(t) are determined by pp,
Hp, qp, and Pp. Hence, in this case the theory has
a predictive power for Pp which in turn provides
the present changing rate of the gravitational "con-
stant" for a given value of co. As in the case k =0
for the Friedmann equations (with or without A, ),
the multiplicative factor for a (t) cannot be deter-
mined in terms of other observable quantities. A
brief discussion on the BD cosmology with k =0
and A,+0 is given.

We start with the following Lagrangian density
for the BD theory with the cosmological constant
A, (Ref. 5):

g "a„OaWW= V' —g —$(R +2k, )+co

+ 16m&~,

where WM denotes the Lagrangian density of the
matter. In this work we follow the "Landau-
Lifshitz timelike convention. " The Euler-Lagrange
equations of motion for g&„and P are

(4)
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where the energy-momentum tensor of the matter TM&„ is defined by

TM„„2(——g)—]g2 ~~M
QgPv

The equivalence principle (TM» ——0) is satisfied. This can be easily checked by using Eqs. (3) and (4), and

the Bianchi identities.
We now apply the theory to cosmology where the universe is smeared out into a homogeneous isotropic

distribution of the matter. The metric is then given by Robertson-Walker form

drdr =dt2 —a (t) +r (d8 +sin Hdqrs)
1 —kr

and the energy-momentum tensor is that of the
perfect fiuid

TM»= p(t)g„—„+[p(t)+ p (t)]a„a„, (7)

where p is the mass density, p is the pressure, and

dx
tty=g»tc =g»

ddr

Then, Eqs. (3) and (4) reduce to the following three
equations:

I

which is consistent with the principle of equiva-
lence. The gravitational "constant" is given by

2co+4 1

2co+ 3

and Go =6& is the Newtonian gravitational con-
stant.

We now set k =0 in Eqs. (8)—(10) and consider
the matter-dominant universe where the pressure
can be neglected. Defining

3a 3k
~

Sm' co P 3a +
a2 a2 P 2 y2

(8)
(13)

2a
a

a k
+A

a a
and using Eq. (1), we rewrite Eq. (8) as

Sn co P + 2a +
~ ~

a 2A, 8m p —3p
3+2co P 3+2co

+ (10)

These are the BD equations with the nonvanishing
It can be checked that Eqs. (8)—(10) lead to the

continuity equation

3H e 3'—=—Sm +—+A, .
2

~ ~

Eliminating P from Eqs. (9) and (10) and using
Eqs. (1) and (13), we obtain

3qH co@ 3'=—Sm +-
2co+3 2co+3

(14)

p+(p+p)
3a
a

We eliminate e from Eqs. (14) and (15) to find a
quadratic equation for A, :

4co co+1 ~ 2 161rco co+ 1
A, + 2co(co+1)qH (2co+1)(2co+3—)H + +

A, +coq H
(2co+ 3) 2co+ 3 2'+ 3

+2(2co+ 3)(1 q)H + [(—co+ 1)(q —2)—1] +co4 16m'co Sm.(co+ 1) g
2N+ 3 2co+ 3

=0.
(16)

This equation determines the values of A, provided we are given the present values of Ho, qo, po, and Po as
well as co.

Next, using A, obtained by solving Eq. (16) and combining Eqs. (14) and (15), we can express e in terms of
H, q, p, and P. The result is

1

3H
3qH2+6H +Sm — —2

2co+ 3

2co

2N+ 3
(17)
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where A, is given by Eq. (16). Equation (17) deter-
mines ep in terms of the observable parameters Hp,
pp, qp, and Pp for a given value of tp.

Since both A, and eo can be expressed in terms of
pp Hp qp and Pp, the solutions of the BD equa-
tions will be written in terms of A, and ep as well as
the other four initial values. This enables us to
write down the solutions in a compact way.

We now proceed to solve Eqs. (8)—(10) for a (t).
The combination, Eq. (8) —Eq. (9)—( —, ) Eq. (10),
gives the following equation for Pa:

(20)

the left-hand side of Eq. (10) is (Pa ) 'd(Pa )/dt,
we can rewrite Eq. (10) as

—(Pa )=8m + f(t),d 3 P&o 2A,

dt 3+2&@ 3+ 2'
where f(t) =P(t)a (t) is the solution of Eq. (18),
expressed in terms of elementary functions. Defin-
ing the solution of Eq. (20) by h (t)=P(t)a (t), and
taking the time derivative of f(t)=P(t)a (t), we
obtain

d2
(pa3) gA(—ga )=4m' ppap

dt2
(18}

f(t)=h(t)+3f(t)—
a

(21)

where

z 2(4+3'�)
3+2N

and ppap is an integral constant of Eq. (11):

p(t)a'(t) =ppap' . (19)

Equation (18) can easily be solved. Observing that

It is elementary to solve Eq. (21}for a (t). Howev-
er, since Eqs. (8)—(10) are coupled equations, the
consistency of the solution with all equations must
be checked. This consistency leads to a constraint
among the integral constants and the correct num-
ber of the integral constants is recovered The .ex-
act solutions with initial condition a (t) =0 at t =0
are the following.

(1) Positive A, :

a(co)
4m

a (t) cc A coshrtV A(t t,), —

rt~A(t t, ), —
+A tanh

' —[(4r/k)' —A']' '
A,

'"
2

rt~X(t t,)—
+A tanh

' +[(4 /A, )'—A']'"
for B&0,

(22)

a(co)

a (t) cc A'sinhgv A,(t t,
'

)——4a
tanh +A' [(47r/A)—+A ' ]'.rim A,(t —t,

'
)

gatv A,(t t,')—
tanh +A'[(4r/A, )'+A ']'"

A.
'"

2

SP(co)

for 8&0,

where

4m

A.

'2
3 1

2A, 4+3 po

4p [(1+co)ep+H p]
2

(23)

(24)

(2) Negative A, :

4m
a (t) cc A sing@' —A,(t t ")——

ill

a~a~ — tan +A —[A —(417/A, ) ]
4~ re A(t t,")—

,
—

2 2 j/2
A, 2

qv' A,(t t,")——
tan +A + [A (4n/A, ) ]'—'

2

(25)
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In Eqs. (22), (23), and (25}

A=~B, A'=O' B—, a(t0)=, P(tp)=4+3' 4+ 3Q)

3+2co

3

' 1/2

(26)

and 5=sgn[(1+rp)op+Ho], and t„ t,', and t,"are given by

1/2
2

h i 4m/A, —A

ZvZ 4 a+A

2
h i f(4m/A, ) +A' ]—A'

qv Z (4~/X)

2 i [A (4n—/A)]' , A—
gv' —A, ( 4p/—A),

As mentioned earlier, multiplicative factors for a (t) in Eqs. (22), (23), and (25) cannot be determined in
terms of Hp, pp, qp, and Pp.

In the limits ep
——0 and tp moo, th-e solutions in Eqs. (22) and (25) become, respectively,

g (t) ~ sinh~~3 t for A, & 0, a (t) ~ sin
~3k, V' —3A,

2 2
t for A, &0. (28}

These are nothing but the exact solutions to the Friedmann equations with k =p =0 and A,+0.
The present age of the universe is

Pp/P p+ 4m/A, .
cosh for A, &0, B&0,

' 1/2
4n /iL A—
4/~ A

, 4o/Po+4 /~, —A +[(4 n, )'+A']'"
to —— sinh ', —2tanh

rl A A' 4m A,
for A, &0, B&0, (29)

1 . , 0o/po+4rr/}", —A+[A —(4m/A, ) ]'~
4n/A, — . for A, &0.

The corresponding age of the universe for the Friedmann equations with k =0, A,+0 is

tp=

coth '(V3/AHp) for A, &0,
3A,

cot (v'3/ —kHp) for A, & 0.
2
—3A,

(30)

For numerical illustration of our results we consider the following two examples.
(a) Hp ——50 km/sec MPc, Pp ——3.5)&10 o g/cm3, qp ———,, to=500. In this case the calculated values of A,

[from Eq. (16)] are both positive; A, =7.6X10 /sec and A, =9.4X10 /sec . These values are smaller
than the experimental upper limit of 10 /sec . We also have
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ep ——— ——0.16X10 "/yr, to=i.OX10' yr for A, =7.6X10 /sec6 0

ep ———0.20X10 "/yr, tp 1—.—0X10' yr for A, =9.4X10 37/sec

The above present changing rates of the gravitational constant are also smaller than the experimental

upper limit of
~

ep
~

=10 ' /yr.
(b) Hp ——50 km/sec Mpc, pp ——5 X 10 g/cm, qo ——l,co=500. We have the two values of A, =—1.6

X10 /sec and A, = —1.8X10 /sec and

&p= —0.20X10 "/yr, tp ——0.94X10' yr for A, = —1.6X10 /sec

&p=+0. 16X10 "/yr, tp ——0.94X10' yr for A, = —1.8X10 /sec

(31a)

(31b)

(32a)

(32b)

Note that in the cases of Eqs. (31a) and (32b), the
gravitational constant is an increasing function of

In conclusion, we have presented analytic expres-
sions of a (t) for the BD equations in the k =p =0
and A,@0case. The solutions are determined,
apart from multiplicative factors, by four values

Ho, pp, qp, and Pp (or Gz) for a given value of to.
For some typical values of these initial conditions,
the predicted values of A, and ep=(G/G)p are well

within the observed upper limits. The predicted
ages of the universe are also reasonable but they
are in general smaller than the corresponding ages
obtained from the Friedmann equations with the
same initial values. (In the latter case, there is al-

ways one less independent initial value. )

Finally, we present the solution of a (t) for the
BD equations in the k =p =A, =O case. The solu-
tion is well known. However, our present formu-
lation enables us to write it in the following com-
pact way:

a(t)~[t(t —2t, )] '"'

where

1 3

4~g 3+2co

'1/2
~

+ ~)&o+~o
I

~

Po
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5As is seen when P is transformed to g, this Lagrangi-

an density is nothing but the one which represents a

scalar field interacting with gravitation. (However,
the scalar field is not supposed to contribute to the
matter so that the equivalence principle is satisfied. )

In this version, the cosmological term corresponds to
a mass term for the scalar field. There is no reason
to prohibit this mass term unless some invariance is
assumed, such as invariance under conformal trans-
formation for which the Dicke constant is also
uniquely determined.

Compare this solution with the solutions in Ref. 4
where the physical meaning of t, is still unsettled.


