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Second-order contributions to gravitational deflection of light
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Using a parametrized expansion of the solar metric to second order in the Newtonian po-
tential we calculate the trajectories of photons scattered by the Sun. In general the photon
is scattered in two directions orthogonal to its initial momentum because of the anisotropic
features of the solar field. We calculate both components of the deflection as measured by
an observer within the solar field.

I. INTRODUCTION go =o

In two earlier articles' (hereafter referred to as
papers I and II} we discussed light propagation in
the solar environment and introduced a
parametrized post-linear (PPL) form of the solar
metric. The usual parametrized post-Newtonian
(PPN) form of the metric can be used to compute
gravitational effects on particle motion in the solar
system to second order in GM/c R =e =2)&10
(i.e., to order e ), where M and R are the mass and
radius of the Sun. The PPL metric is simply an ex-

tension of the PPN metric with which the relativis-
tic effects on light and radio wave propagation in
the solar system can be computed to this same order
(e ). In paper II we used the PPL metric to calcu-
late the deflection of light to order e for photon or-
bits in the equatorial plane of the Sun. Here we

complete our development of the light deflection by
repeating these calculations for the most general

photon trajectory.
In paper I we demonstrated that knowledge of

light propagation to order e" requires knowledge of
every term in the metric to that same order. The
first nonvanishing contribution to light deflection
arises from those terms in the metric which are
linear in the Newtonian potential U. To this order
(e ) the metric (sometimes referred to as the linear-

ized metric) has the Cartesian components

g 1+2M (1.1)r

M
g;J =5,) 1+2y

r

where r is related to the usual PPN coordinates by
r =(x +y +z }'~. Then, the deflection is given
to first order (i.e., to order e ) by

(1 )
M 1+cosQ
I' 1 —cosex

' 1/2

for an observer with radial coordinate r when the
observed angular separation of the Sun and star is
a. (Note that here and henceforth we use
geometrized units. )

Although the metric contains higher-order terms
which are formally treated as though they are of or-
der e in the usual PPN categorization of terms,
these terms are actually only of order e for any
realistic solar model (paper I). Thus, any proper
treatment of light propagation to the next nonvan-

ishing order beyond the terms linear in U will re-

quire a systematic expansion of the solar metric to
second order in U. Such an expansion was present-
ed in paper II. The resulting parametrized post-
linear (PPL) metric has, in the gauge we use (see pa-
per II), the following Cartesian components when

the solar gravitational field is assumed to be station-
ary and all terms smaller than e are neglected:
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R 3cos 0 —1

r 2

75)+52 e,j.kJJXk
Roi =—

3 9

+ 'Y 2r r

(1.5)

Y $
—Y2 —Y3 —Y4 —0 e (1.12)

M R
U = 1 — J2P2(cos8) — J3P3(cos8)

r r 2 r 3

(1.13)

To obtain the expressions for gop and g,j. given in
Eqs. (1.5) and (1.7) we assumed the Sun was axially
symmetric and truncated the expansion of the
Newtonian potential,

M A+ —,A +2-
r2 r

(1.7)

Each new term in the metric is a term of order e .
Here J2 is the dimensionless quadrupole moment
parameter of the Sun and J is its total angular
momentum. A is a quantity with units of centime-
ters which vanishes identically in general relativity,
given by

A—:—, Y, fpo(r)II(r)d x+Y2 fpo(r)U(r)d x

+ Y3fP(r)d x+Y4 fpo(r) d x

where

p, (r)4~r'dr,
p

Y f Y2 Y3 and Y4 afe constants, and where pp H

and P are the baryon mass density of the Sun,
specific internal energy density of the Sun, and

pressure within the Sun, respectively. Because 3
appears in g,j but not in gpp it cannot be combined
with the mass M if both terms are to be correct to
order e . The angle 0 appearing in the quadrupole
term of the Newtonian potential is the angle be-

tween the symmetry axis of the Sun and the posi-
tion vector r of the photon. If we assume the Sun
is symmetric about its angular momentum vector J
then we have

J r
cos0 = (1.10)

(Since we are only keeping terms in the metric to
order e and since cos 0 appears only in terms of
order e, we need no more than the lowest-order
form of cosO. Thus, we calculate cos8 in terms of
vector components exactly as in Euclidean space. )

The arbitrary parameters in the metric are y, P,
b, ~, and 62 (from the usual PPN formalism) and A,
Y] Yp Y3 and Y4 (from the extension of the PPN
metric to post-linear order). In general relativity
these take the values

y =@=6,)
——A2 ——A =-1, (1.11)

at the quadrupole term since J2M/R is less than or
on the order of e for any realistic model of the Sun
(even if the Sun had a rapidly rotating inner core as
suggested by Dicke ). If we wish to consider light
deflection by any object other than the Sun we must
be careful to include enough terms in the expansion
of U so that each component of the metric is ex-

panded to the same order. In particular, for Jupiter
we find that J2M/R is larger than e =4&& 10 ' by
a factor of about 80. Thus, to study Jovian deflec-
tion to order e we might want to expand U further.
However, it does not seem unreasonable to assume
that the terms beyond the quadrupole will be sig-
nificantly smaller than e . (For example, for the
Earth we know that J4 is on the order of J2 and
that J3 is even smaller. ) Since every other post-
linear term in the metric is less than or on the order
of e for Jovian deflection, any results we derive us-

ing Eqs. (1.5)—(1.7) can be expected to be valid to
order e for Jovian deflection in addition to being
valid to order e for solar deflection.

II. PHOTON TRAJECTORIES

To find the equations of motion for a photon we
begin with the dynamical form of the Lagrangian,

dX dX~
(2.1)

5'aPP .aP (2.3)

At this point we choose a set of spatial coordi-
nates in which the Euler-Lagrange equations will be
the simplest. In the equatorial plane (papers I and
II) we worked with polar coordinates. However, in

where A, is an aA&ne parametrization of the trajecto-
ry. Since the field is time independent we immedi-
ately have the condition

aL,
pp

—— ——const=—E . (2.2)
«}(dx /dA, )

In addition, we must impose the requirement that
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To undeflected z =r cose, (2.6)

ual

of
on

if we orient them so as to put the star in the xy
plane at x =+ oo and such that the initial photon
path is parallel to the x axis with impact parameter
y=b (see Fig. 1). This expedites the analysis for
two reasons. First, note that x is approximately an
affine parametrization of the trajectory. In fact, we
would just have

dx
(2.7)

E-

deflected
ition of

if there were no deflection. Furthermore, first
derivatives with respect to x of y and z will be small
(because dy/dx and dz/dx are essentially the two
deflection angles; see Sec. III}. These facts can be
used to great advantage in simplifying the equations
of motion.

When we use the first integrals (2.2) and (2.3) the
equations of motion in these coordinates take the
following form to order e:
$2y 1 1 ~g2+— 1 ~goo dy

goo Bx coax

Path of undeflected photon

FIG. 1. Geometry of a general photon trajectory: The
AEB plane is parallel to the xy plane. Point C lies in the

xy plane. The observer is at point E and the Sun is at the

origin 0 of the coordinate system.

~goy ~go 1 1 ~g 1 ~goo+-
Ox By 2 g By g By

(2.&)

three dimensions it turns out to be most convenient
to use the ordinary Cartesian form of the PPN
coordinates,

j2z BgO

dx Bz 2 g Bz
+—

goo

(2.9)

x =r sin8 cosP,

y =r sin8 sing,

(2.4)

(2.5)

We then substitute the P PL metric [Eqs.
(1.5)—(1.7)] and the equations of motion become (to
order@ )

dy —(I+y }M +(I+—y }M—y = 2(y —I +P ——,A )M ——A —+X Gfy 1 2 3 2 b b 7~i+~2 1J,—
r 8x 3 4 r4 r3 4

d z 7~i+~2 3bx 2b2 —x
2 4 5 3' 5dx 4 r r

'2
5bx ~y b(3b —2x )

r7 J r 7
J

b x—
(2.10)

r 7

+ —,(1+@)J,MR
3 J„

r

(2.11)

2x(4
J J

r

J~x Jy b—3(1+})J,MR'—J J r5 J r5

The solutions of these equations to order e which satisfy the boundary conditions

y~b as x~~, (2.12)
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~0 as x~ oo
dx

z~0 as x —+oo,

dz ~0 as x —+oo
dX

(2.13)

(2.14)

(2.1S)

y=b — (1+.y) +—[(x +b )' x]+—b (1+y)
b b b

2

1—
( 2+b 2)1/2

T

—[2(1+y)—P+ —,A] 1 ——Arccot —+M x X

b b b

~]+~2 Jz
[(x +b ) —x]

b

2
R+ —,(1+y)MJ2 . . 2, , [(x—'—+b') x]+— bx[(x2+—b )'/ x]—

(x 2 +b 2
)
3/2

Jy+ 4[( 2 b2)1/2 ]
b(2x +3b )

b (x2+b2)3/2

my x bxJ J 2

g2 (x2+ b 2) 1/2 (x 2+ b 2)3/2 (2.16)

75]+62J„x 7h/+52 Jy1— + —X
4 b ( 2+b2)1/2 4 b2 ( 2+b2)1/2

(2.17)

III. DEFLECTION ='(/ gyyMd ='(/ gxx& ~ (3.3)

0 goi
N =Q goo dt — dx— (3.1)

We now know the trajectory of the photon and
may solve for the observed deflection angle 5a. We
assume that the observer is at rest with respect to
the source of the field (the Sun or Jupiter) and at
some realistic distance from it (r =1 astronomical
unit for solar deflection; r =4—6 astronomical
units for Jovian deflection). Thus, it is necessary to
construct an orthonormal frame which is at rest
with respect to the PPN frame in which to compute
5a. Such a frame has the following dual basis (ac-
curate to order e ):

co =~gdz ='1/ g dz . (3 4)

(This is clearly an orthonormal basis. Furthermore,
since the spatial components of a velocity transform
as

tt =Vgxxtt (3.5)

a

g dt
' (3.6)

an object at rest in one frame is also at rest in the
other. ) The corresponding basis vectors are

='(/gxxdx ~ (3.2)

1 8 gox 8
ex=

Qg Bx g Qg„„Bt
' (3.7)
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a go, ae-=
g~Vg» (3.8) 5aii = +AEB,

5ag = +BEC .

(3.17)

(3.18)
go. ae-=

't/gxx ~z goO+gxx ~t
(3.9)

Notice that the proper time r of an observer at rest
with respect to the Sun is related to the coordinate
time t by

5n~~ is the amount of radial deflection of the pho-
ton. 5az is the amount of deflection orthogonal to
the radial plane and is zero to order e . Since

(3.19)

—dr =goodt (3.10) z'= =tang BDC,dZ

dx
(3.20)

from which it follows that the four-velocity uE of
the observer is we find that to order e

dt 3 1

dv» Q g~» (3.11)
5m~~ =y

6o.g
——z' .

(3.21)

(3.22)

Thus, we see that eo is the four-velocity of the ob-

server and the basis vectors e„-, e-, and e- are an
orthonormal basis of the three-surface orthogonal
to the observer's world line.

The tangent vector u to the photon trajectory has
the components

Using some elementary spherical trigonometry we
find that the total deflection angle is given to order
e'by

dx=V gxxu +gxx (3.12)
(This is essentially just because the expansion of

)( 2+ )2+g2]1/2 (3.24)

+gxx tt +gxx di,—dz
+gxx u +gxx

dA,

(3.13)

(3.14)

u~ u" dy

u u dx
(3.15)

in the orthonormal basis of the three-surface
orthogonal to the observer's world line. An unde-
flected photon would have u~=u'=0. Thus, the
deflection angle is fixed by the values

x =—pcosP, (3.25)

with q,g both of order e is just e +2) to order e . )

Note that if we were interested only in the total de-

flection angle to order e we could neglect the z
motion of the photon entirely. We will calculate
both components of the deflection to order e by
finding y' and z' to that order.

The differentiation of y and z is straightforward.
To eliminate x from the results we solve the rela-
tions

u u dz

u" u' d
(3.16) y =pain/, (3.26)

At this point we see that the deflection will be
determined to order e only by the trajectory of the
photon (we need only calculate dy/dx and dz/dx)
and not by the geometry of the three-surface in
which the angle is measured. To illustrate the de-
flection in the simplest way possible we treat x, y,
and z as flat-space coordinates and sketch the pho-
ton trajectory as a curve in Euclidean space in Fig.
1.

for x/(x +b )'~ and b/(x +I2 )'~ to order e .
[By examining expressions (2.16) and (2.17) it is
clear that y' contains one term of order e and
several corrections of order e and that z' contains
only terms of order e . Thus, any substitutions
need only be correct to order e to maintain the e
level of accuracy in y' and z'.] To eliminate b from
the results we solve the first-order (i.e., e ) equation
of motion,

Referring to Fig. 1, the total deflection angle 6a
is the angle HAEC. It is convenient to split this
into two components, 5m~~ and 5czz, which we de-
fine as

b—=sing+(1+y) (1—cosP ),M
r b

(3.27)
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for r/b to order e . Finally, we make use of the
fact that

(3.28)

to order e (see paper II) and of the first-order (i.e.,
e~) form of 5a from Eq. (1.4} to express the result
in terms of r and a. We thus obtain the following
results to order e:

M 1+cosa
(1 )z

M 1+cosa
~2(1 ) ~

3
&~

M na. —+sina cosa
r sina r slna r4

Sln a

A 1+cosa+-
r sina

7~1+~2 J. 1+cosa
r sin a

+ —,(1+y) Jg, 2, +cota-
sin a

1+cosa
2

3
+cota(1 —3sin a)

sin a

2

Jy 1+cosa J Jy4
3 +cota(2+3sin a) +2 (1—3sin~a)

Sln a J2
(3.29)

7~i+~2 Jx . Jy 1+2cosa —cos a
2

slna+ 2r sin a

M R ~z Jx Jy 1+cosa+(1+y) Jq z
— + 2

3
+cota

r J J J sin a (3.30)

For a limb-grazing ray we have (paper II)

b =R 1+(1+y) +O(e'),
R

)

R M Ra =arcsin —1+(1+y) 1 ——
r R r

M+0
R

(3.31)

(3.32)

Substituting these into Eqs. (3.29}and (3.30) gives (to order e )

y„' g ——2(l+y) ——(1+y) + I[2(1+y)—P+ —,A]m —2(l+y) I +2——M R2 3 7a, +a2 J,
R

+2(l+y) 1—
'2

J„
J —2

Jy

J
2

MJ (3.33)

7k&+52 J J J,
+4(1+y) Jp (3.34)

The term proportional to R /r is on the order of
e —10 '

by virtue of the fact that
100 times smaller for Jupiter than it is for the Sun
and since

—=5X10-R
r

(3.35) —&1X10R
r

(3.36)

for observations of solar light deflection. For Jovi-
an deflection it will be much smaller since M/R is

for observations of Jovian deflection. (It is equal to
10 when the observer is between the Sun and Ju-
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piter so as to eliminate solar effects. )

These results agree with those of Epstein and
Shapiro and those of Fischbach and Freeman al-
though in each of these previous papers on the sub-

ject the authors have neglected those second-order
terms which are zero in general relativity (the r;
terms) and have calculated the deflection only for
observers at infinity.

IV. CONCLUSIONS

For photon orbits that are restricted to the Sun's equatorial plane (8 =sr/2) we have J,=+I; J„=J~ =0
which gives

y„' „=2(l+y) ——(1+y)—,+ I [2(l+y) —P+ —,A]~ —2(l+y)']M 1 M R

A 7~i+~2 J M+2—+
R —

2
+2( 1+y)J2

R
(4.1)

z'=0 .

(4 4)

These were the results presented in paper II. Table
I lists the magnitude of each term in Eq. (4.1). In
the general case, the value of the angular momen-
tum term in y„' . z varies by a factor of

J,—1«—1 (4.3)J
from its maximum value in the equatorial plane and
the quadrupole moment contribution to y„'

varies by a factor of
'2 2

Jz Jy—1 « —— — 1J J
from its value in the equatorial plane.

The z' deflection is nonzero only when the orbit
is outside of the equatorial plane, and both of the z'

terms have factors which vary with the orientation

(4 2)
I

of the initial photon trajectory with respect to the
angular momentum vector of the deflecting object.
However, as mentioned in Sec. III, the total deAec-
tion 6a is independent of z' to order e . Since the
best observations of light deflection involve moni-
toring the angular separations of two discrete radio
sources, only 5a is determined. It is thus unlikely
that 5az would be of interest observationally.
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TABLE I. Magnitudes of light-deflecting terms as predicted by general relativity.

Term in expression
(4.1)

2(1+y)—M
R

M R(1+/)2 R r2
A2—
R

7h)+62
R

2(1+@)J2-M
R

I [2(1+y) —P+ —,A ]~
M—2(1+y)'I

Value in general
relativity for

solar deflection
(parcsec)

1.75 X 10

—9.5

+(0.7—13)'

0.2 —40'

3.5

Value in general
relativity for

Jovian deflection
(parcsec)

1.67 X 10

—5X10 s

+0.2

300

3 X10-4

'Here the first term listed is for a uniformly rotating sun; the second is for Dicke's model of
the Sun.
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