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A method for the determination of the density matrix of a resonant state using incomplete measurements
pertaining to its decay is developed. In order to define the bounds on the density-matrix elements, the positivity and
rank conditions are used. The method proceeds in two steps. First one obtains a particular density matrix which
satisfies the positivity and rank conditions and reproduces the experimental data. This matrix is calculated by
maximizing the information entropy. Then using this matrix as a starting point and the tolerance of the data
presented by the experimental errors, the actual bounds on the density-matrix elements are found by means of a
parametrization which assures both positivity and the rank condition. The method was successfully tested on data
for f production in the reaction 7~ + p—f + n at 12 GeV/c and the subsequent decay f—7* + 7.

I. INTRODUCTION

The density-matrix formalism is widely used
in data analysis for extracting spin and helicity
information. In order to determine the density
matrix, one has to measure the polarization and
the angular distribution of all the particles in-
volved in the reaction. Unfortunately experimental
technique today does not allow a full measurement
of the polarization, leaving a model-independent
evaluation of the density matrix as an undercon-
strained problem. Furthermore, most of the
available experimental data consists of angular-
distribution information, which is related only to
the real part of the density matrix and not to its
imaginary part.

Although the problem is generally undercon-
strained there are two additional conditions, which
the density matrix is bound to satisfy: positivity
and rank. The positivity condition arises from the
fact that the density matrix is a positive-semi-
definite matrix. However positivity is a nonlinear
constraint and its implementation. is complicated,
so that in many cases positivity is totally or par-
tially ignored. The rank condition is imposed by
the physics of the reaction involved, namely, the
rank of the density matrix is limited to be at most
equal to a given bound. It is obvious that this con-
dition is meaningful only if the dimension of the
density matrix is higher than the upper bound of
the rank and therefore can be useful for high-spin
states. Strictly speaking, one should have sharply
defined values for the mass and momentum of the
resonances in order that the rank condition be
valid. Therefore the application of the rank con-
dition to experimental data should be done with
care.

In a recent analysis® of p° and f production, using
only angular-distribution data, it was shown that
the application of positivity yields reasonably
bounded values of the real part of the density-

matrix elements. The method used there consists
of a thorough exploration in a multidimensional
space, defined by the density-matrix elements,
limited by positivity and consistency with the ex-
perimental data. The efficiency of this method
depends largely on the matrix which is used as a
starting point. If this matrix is inconsistent with
the experimental data, as expressed by a high
value of ¥?, a considerable amount of the effort
is spent on a search for a matrix with low . In
addition, the method does not include a provision
for rank limitation, which could be useful, espec-
ially for density matrices of high-spin states.
The present study presents a solution of these two
difficulties in the method.

Generally speaking, calculations involving large
matrices are complicated and highly time consum-
ing, even with the powerful modern computers.

- The above-mentioned analysis® deals with a system

with mixed spins J=0, 1, and 2, which results in
a 9x 9 matrix. By including spin J =3, the matrix
becomes 16 X16, which already makes the evalua-
tion of the density-matrix elements a difficult, if
not practically unfeasible, task. We are proposing
a method which not only meaningfully simplifies
the procedure, but also reduces the computation
time, especially for high-spin states.

In the present study we use the information-
entropy functional and a suitable parametrization
of the density matrix. The use of this functional
for strictly positive-definite matrices in the case
of incomplete measurements was studied by
Wychmann.? We generalize the method for posi-
tive-semidefinite matrices, allowing in that way
a rank limitation. We show that the maximization
of the information-entropy functional (expressed
in terms of the density matrix) constrained by the
experimental data yields a unique solution of the
density matrix. This solution is by definition
positive semidefinite and reproduces the experi-
mental data. The maximization can be done with
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or without imposing a constraint on the rank of
the matrix. The matrix obtained that way can be
used as a starting point for the exploration of the
range of the density matrix. For this purpose we
use a parametrization of the matrix® which as-
sures both the positivity condition and the rank
condition (if applied).

The information-entropy functional in terms of
the density matrix and the constraints imposed by
the data are described in Sec. II. Section III deals
with the actual technique of maximization of the
entropy and the reconstruction of the density ma-
trix, which corresponds to the solution. In order
to clarify the problem a simple example with its
solution is given in Sec. IV. Section V describes
the parametrization of the density matrix, which
ensures the positivity and rank conditions. Finally
the results of the application of the method to
actual data is discussed in Sec. VI. Technical
details and mathematical proofs are given in Ap-
pendices A through D.

II. THE INFORMATION ENTROPY

Consider a spin density matrix p which is a
Hermitian, v Xv positive matrix with unit trace.
The rank of p may also be given and it satisfies

rank(p) =7 <v. (1)

For any such matrix one defines the information-
entropy functional® E[p],

E[p]==Tr(plnp) . @

From the Hermiticity and positivity of p and from
the trace condition it follows that its eigenvalues
P> @=1,...,v, are real and obey

O<p,<1. (3)

It is convenient to arrange the eigenvalues p, in a
descending order as follows:

PLZ Pz Zp,. (4)

Expressed in terms of the eigenvalues, the defini-
tion of the information entropy reads

E[p]=- Z;pa Inp, . (5)

When the rank of p is strictly smaller than v we
have

p,>0, pr=-"=p,=0. (6)

But the function x Inx tends to zero when x tends

to zero from above, so that the sum defining E[p]
is altered to contain contributions only from strict-
ly positive eigenvalues and can finally be written as

E[p]=- 21 Py Inp, . 7

From the fact that the positive p, are not greater
than 1 it follows that

E[p]>0, (8)

while from the trace condition and the concavity*
of the function —x Inx it can be shown that

E[p]<lnr. (9)

Having defined the information entropy E[p]of a
spin density matrix p we now consider the mathe-
matical problem of maximizing E[p] subject to the
constraints imposed by the experimental data. To
understand the nature of the problem we start by
noting that the number #, of independent real num-
bers necessary to specify a Hermitian v Xy matrix
p of rank 7 and unit trace is given by

f=ri-(v=72-1. (10

The known experimental information we shall con-
sider is given in the form of mean values and the
error matrix of certain linear combinations of ma-
trix elements of p. For example, one may deter-
mine experimentally the moments of the angular
distribution of a two-body decay of a resonant
state. Now, any real linear combination of the
elements of a Hermitian matrix p can be written

in the form Tr(pM) with M a vxv Hermitian matrix.
Therefore the experimental data are given in the
form of average values (usually moments) m ; and
a corresponding error matrix E,, where

Tr(pMj)=mj, j=1, ... k. (11)

The £ matrices M, are Hermitian numerical ma-
trices

M;=MY, j=1,...,k, (12)

and the 2 +1 matrices I, M,,...,M, are assumed
to be linearly independent. The number % is typi-
cally smaller than the number f of the independent
real numbers necessary to specify the density
matrix. If that is indeed the case, it is impossible
to reconstruct p uniquely.

Among all possible spin density matrices which
are consistent with experimental data we show in
the next section how to reconstruct the spin density
matrix corresponding to maximum entropy. We do
not intend to give any special meaning to this par-
ticular matrix, but merely to use it as a starting
point for our subsequent search procedure. The
maximization of entropy applied here should be
considered just as a tool for constraining an other-
wise underconstrained problem and finding a solu-
tion. However, it is still true that the density
matrix constructed this way has the property of
being statistically least biased. Moreover, if we
adopt the attitude of Doncel, Michel, and Minnaert®
the maximum-entropy density matrix corresponds
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to the measured point in the observed polarization
domain.

III. MAXIMIZATION OF THE INFORMATION
ENTROPY

We maximize the information entropy E[p] sub-
ject to the subsidiary conditions

Tr(p)=1, (13)
Tr(pM,) =m;, j=1,...,k. ' (14)

To take the subsidiary conditions into account we
introduce the Lagrange multipliers X%, A%, ... A%
and consider the functional?

I(p; Xy, 2) ==Tr(plnp) — 2°[Tr(p) - 1]

—iA’[Tr(pMj)—mj]. (15)
=1

A vanishing first variation of the functional I(p; A)
with respect to its independent variables yields
the conditions for a local extremum. As shown in
Appendices A and C this leads to the following re-
sults. One constructs the matrix M(2) given by

R
M) =) MM, (16)
1

This is a Hermitian matrix and thus can be dia-
gonalized and represented in the form®

MO =2 1 (NP0, (17)

where i (}) are the eigenvalues of M()\) and

P () are Hermitian orthonormal projectors with
unit trace. For almost every point A the eigen-
values of M()) are nondegenerate and we arrange
them in increasing order:

U< Hp<t <,

We now choose the first » eigenvalues and con-
struct the function I' (}),
r k
(M) =In E exp[—p.a()\)]+2 Mm, (18)
a=1 J=1
and a corresponding density matrix

p,(N) = [azr:, exp[— o) ]]'1

X D exp[= N PN . (19)
B=1

We show in Appendix C that

ar (A .
—8§=-Tr[pr(x)M‘.]+m,., i=1,...,k, (20
which suggests defining the function %) as
R
o, (A i 00, (N)
%200 = 3 2o (s 2D (21)

i,4=1

where (E-')%/ are the elements of the inverse of
the error matrix corresponding to the measured
m;. We show in Appendix C that I'(}) is a convex
function® and therefore if it has a local minimum
at a point X where it is differentiable, its gradient
vanishes at A and from Eq. (20) we get

Tr[p,(NM,]=m,, i=1,...,k. (22)

Furthermore, by construction p () is Hermitian,
positive, and has unit trace and rank ». Thus the
matrix pT(X) is the spin density with maximum in-
formation entropy given by

E[pMN]=T,N . (23)

It is also clear from the definition Eq. (21) that
x,%(X) vanishes.

When the rank of p is equal to its dimension we
have

v k
r,(\)=In Z exp[- [J.a(K)]-i-z M,
a=1 4=1

R

=In Tr[exp (— Z )\‘Mi)] +Fil)\fmj . (29)

i=1

Let X be a2 minimum of I,(2); then

pv(X) = {Tr[exp (- iZ:: X‘MJ] }-1 exp (— ngMj) .
(25)

We show in Appendix C that " (}) is in general
a convex function while IT',(}) is a strictly convex
function.* The analysis of I' () is thus fairly
simple. If the function I',(A) is bounded from be-
low it has a unique local minimum which is also
its global minimum.* If this is the case then Eq.
(23) implies that I',()) = 0 for any A. Thus a point
A where I“V(A) is negative is a clear signal that
T ,(}) is unbounded from below. But if I'(}) is
unbounded from below then it has no local mini-
mum.
The boundedness of I' (}) is determined by its
behavior on a large enough sphere around the ori-
gin in the k-dimensional A space. If we check the
behavior of I' (}) on a radial ray emanating from
the origin we see thatArv(A) is bounded from below
if for any unit vector A

k
pa(R) <D0 R, < (V) . (26)
§=1

But for a positive density matrix this condition is
always true. Thus if I‘V(A) is unbounded from below
the measured average values m; violate the posi-
tivity of p.

The situation is more complicated if the rank of
p is strictly smaller than its dimension. In that
case there are several possibilities.

If T () is unbounded from below then there is
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no density matrix of rank » which maximizes the
entropy and reproduces the experimental average
values. If that is the case one should construct
r,.).

If T (A) is bounded below and attains a local
minimum at a point in which it is differentiable,
one can construct the density matrix according to
Eq. (19).

If ' (*) is bounded below and attains a local mini-
mum at a point in which it is not differentiable, we
must have at that point Xa degeneracy of the eigen-
values

(N = ey (N (27)

We assume that this is the only degeneracy at .
In this case the projection operator Pr(X) is not
unique but is a member of a one-parameter family
of projectors PT(X, 6). We then construct y*(2, 6)
and minimize it with respect to 6 for fixed A, thus
determining 6 and the corresponding projector.
The density matrix is once again reconstructed
according to Eq. (19).

IV. A SIMPLE EXAMPLE

In order to illustrate the procedure of maximiza-
tion of the information entropy let us consider the
following simple example. Let v=%=2 so that
f=3 and let k=1. As k=1 we drop the correspond-
ing summation indices and write simply m, M, A.
Suppose further that 2p,, =m so that

)

The spectral representation of AM is unique for
A#0 and given by

>_7\<% "%). (28)

T',(A) =1n[exp(}) + exp(-)\)] +Am

3

1l

>
N
I M
o= D=

Thus

=1n2 +1n coshA + A . (29)

For any finite s this is a strictly convex function.
Therefore, if it is bounded from below it has a
unique local minimum which is its global mini-
mum. If it is unbounded from below then it has no
local minimum. Which of these two possibilities
obtains may be determined by examining the be-
havior of I'y(}) for large values of |X|. Indeed we
have

T, ~ A1+m),
e (30)
TN ~ =A1=m).

A =0

Therefore if —1<m <1, T(}) is bounded from

below in both directions of increasing |A|, while
if 1<m or m< -1 it is unbounded in one direction.
Since the eigenvalues of M are +1 and -1 any
density matrix p must satisfy

-1<Tr(pM)<1. (31)

Thus an experimental value for m outside the
closed interval [~1,1] is unphysical. Such a value
necessarily violates the positivity of p. Given a
value of » in the physical range we determine the
critical value of A by equating the first derivative
of I'y(A) to zero,

EJI =tanh>\+m| =0, (32)
oA 1 i
A=—tanh™m . (33)

Furthermore we have

2
°T,

rvel e 1 —tanh®x

=1-m?, (34)
b

A
so that for —1<m <1 we indeed have a minimum.
For m =%1 the critical point A wanders away to
+o and loses the character of a simple minimum.
Constructing the density matrix we get

pJX):ﬁ-i coshA 10 - sinhx 01
01 10
1/1
=" ")- (35)
m 1

E[p, N ]=Ty()

Finally

1
=1n2+1n A= m tanh™m

5

=-—1_mln 1-m 1+m1n<1+m
2 2 2 2 :

(36)

We note that E[p] attains its maximum on the dens-
ity matrix p,(A) corresponding to a minimum of
r,n.

Let us now discuss the case »=1 so that f=2.
The function I')(2) is well defined everywhere ex-
cept at A=0 and is given by

(N = || +m. (37

We extend its definition to A=0 by continuity so
that I',(0)=0. For m in the open interval (-1, 1)
the function I')(A) has a global minimum at A=0;
however, it is not differentiable at A=0. The rea-
son for this is that at A=0 the two eigenvalues of
AM are degenerate and the spectral representation
ceases to be unique. Instead we have a one-pa-
rameter family of projectors
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cos?0  sinf cosf
P1(9) = > )
sinf cosd  sinZ@ (38)

sin%g —sind cosé
P2(9) = .
—sinf cosf cos? 6

Let us arbitrarily choose P, as the projection
operator to be used in Eq. (19) for p,. We then
have

p =P, (39)
and
Tr(pM) =2 sinf cosd =m . (40)
Therefore
cos?9 =3[1x(1-m??], (41)
which yields two solutions for p,:
m 1-(1-m?r/2
and
b=y <1_(1—m2)”2 m > . (43)
m 1+(1 = m?)/2

We get the same solutions for p with the choice
p=P, because

P, (o +%)=P2(9) ) (44)

Both solutions are matrices of rank 1 and we
therefore get

E[pys]=T4(0) =0. (45)

All the details of this simple example have a
clear geometric interpretation. The 2X 2 spin
density matrices can be parametrized by three
real numbers x, y, z as follows:

1 l+z x—iy
P=3 x+iy 1-2z /° (46)
The positivity of p implies
x2+y*+22<1, (47)

We thus get a correspondence between the points
of the unit ball in three dimensions and the 2x2
density matrices. The result of the measurement
of Tr(pM), namely m + o, places the unknown den-
sity matrix in the slice of the ball bounded by the
two planes x=m - o and x =m +0.

The maximum-entropy procedure places the un-
known density matrix on the intersection of the
slice with the plane y =0. In particular, if we look
for a rank-2 maximum-entropy matrix we get the
segment denoted in Fig. 1 by p,, while if we look

~N

Pr*

P2

Prr

FIG. 1. A geometric interpretation of the evaluation of
a 2x 2 spin density matrix. The figure shows the inter-
section of the unit ball in three dimensions with the
plane y = 0.

for a rank-1 matrix we get the two arcs denoted
by p,+ and p,-.

An alternative way to describe this is to say
that the measurements should be interpreted as
giving rise to a probability distribution on the
three-dimensional unit ball. The maximum-en-
tropy procedure of doing this is to assume that
the desired distribution is uniform in the variables
corresponding to the missing measurements. In
our example this probability distribution is thus
uniform in y and z for given x, while its dependence
on x is peaked at m with a width o.

V. PARAMETRIZATION OF THE DENSITY MATRIX

In our study we adopt a parity-eigenstate basis
for the density matrix. Inthis basisthe density ma-
trix takes the form of a block diagonal matrix with
two block submatrices on the diagonal.” This basis
gets rid of the redundancy in the matrix elements
due to parity invariance and simplifies the para-
metrization which we use. To be more specific,
in the case which we study as a test of the method,
namely, the 7~7* system in the f-mass region, the
density matrix can be represented by Hermitian
submatrices *)p and “)p (using the notation of
Ref. 7) with dimensions six and three, respective-
ly, which obey the trace condition:

trace(‘p) +trace(‘”p)=1. (48)

A full description of the matrix can be found in
Ref. 1. Since only the real part of the density
matrix is related to the angular distribution, which
we use as a test of our method, “’p and “p are
restricted to be real symmetric matrices. It is
easy to see that the whole density matrix in this
case can be described by 26 real parameters.
Each one of the submatrices is by definition
positive semidefinite. We are using a parametri-
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zation which takes care of this feature and was
suggested by Daboul.® For the sake of complete-
ness we outline briefly the parametrization of a
real symmetric positive-semidefinite matrix with
unit trace. Further details and mathematical
proofs can be found elsewhere.?:"?

Consider a real nXn symmetric positive-semi-
definite matrix A. All its elements can be ex-
pressed by means of the scalar products of »
vectors ), i=1,...,n, in n-dimensional space:

n

A, = Zlygﬂyg” . (49)
&=

One can always choose a basis such that the ma-
trix y{") is superdiagonal:

y§¥'=0 forj>i. (50)
The other m elements of y{*), where
+1
-etl), (51)

can be regarded as parameters which fully de-
scribe the matrix A. The redundancy, which is
caused by the fact that the parameters appear in
products only, is eliminated by the requirement
that » properly chosen parameters are non-nega-
tive, e.g.,

yD=0 k=1,...,n. (52)

The ordered m parameters of y can be regarded
as an m-dimensional vector V:

(V1V2V3V4 e Vm) =(y§1)y§2)y§2)y§3) e yin)) .

(53)

The condition trace(A4) =1 requires V to be a unit
vector. The elements of this vector, expressed
in hyperspherical coordinates in m~dimensional
space, can be written as

V,=cosa,,
V,=cosu, sina, ,

’ (54)

k=1

Ve=cosa, Hsinaj ,
=1

m=1

Vm=Hsmal.
=1

The m — 1 angles « ; can finally be regarded as
parameters, some of which take values in the in-
terval [0, 7] and some in the interval [0, 7/2] so
that Eq. (52) is satisfied. If the rank of the ma-
trix A is bounded to be equal at most to » (v <n),
then all elements y{* (where j>#) vanish and ap-
propriate changes are to be made in the param-

eters a,.

Following this prescription we parametrized
the six-dimensional matrix (*)p by a 21-dimen-
sional unit vector V with 20 angle parameters,
and the three-dimensional matrix “p by a six-
dimensional unit vector W with five angle param-
eters. The trace condition was fulfilled by multi-
plying the unit vectors V and W by cosy and siny,
respectively, where y is an additional angle pa-
rameter in the interval [0, 7/2].

The rank of the decay-density matrix for
f—m"n" produced in the reaction

T+N—~f+N (55)

which we use later, is limited to 4 if the initial
nucleon N is unpolarized and the polarization of
the final nucleon is not measured. It has been
shown” that in general the rank of each of the
submatrices is limited to half of the above limit;
hence the rank 7 of either “)p or )p cannot ex-
ceed »=2. On the other hand, since we are using
only the real part of the density matrix, this limit
has to be doubled. The )p matrix, being three-
dimensional, is not affected by this limitation.
The *)p matrix, being six-dimensional, is af-
fected so that the rank of its real part cannot ex-
ceed 4 and the number of parameters can be re-
duced by 3.

VL. APPLICATION TO EXPERIMENTAL DATA

The test of the method on experimental data was
done by using the moments of the 7~7* angular dis-
tribution in the f-meson mass region from the
reaction

THh-T1"T"N (56)

at 12 GeV/c incident momentum,® by restricting
the mixture of spin states of the 7"7* system to
J=0, 1, and 2.

First the three low- || bins of the data were
analyzed without applying any restrictions on the
rank of the density matrix. The maximization of
the entropy was achieved by minimizing the func-
tion I'(A), Eq. (18), by means of the minimization
routines MINUIT.® The minimum turns out to be
extremely shallow. The density matrices obtained
from this procedure, which reproduce exactly
the moments used (i.e., give ¥*=0), were para-
metrized by the hyperspherical coordinates de-
scribed in Sec. V. Starting from these matrices
a step-by-step exploration was made in the space
defined by the hyperspherical coordinates in which
the consistency with the experimental data was
achieved by constraining the x? to be at most equal
to unity. During the exploration, the density-ma-
trix elements were reconstructed from the values
of the coordinates and the minimal and maximal
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TABLE I. Example of s-channel density-matrix elements of the m*r~ system in the f-mass region from reaction
T p—7 m'n at 12 GeV/c, obtained by maximization of the information entropy. The notation and the bounds on the ele-

ments are taken from Ref, 8.

0.02 <-£<0.05 GeV?
Maximum-entropy
matrix elements

0.10 < —£<0.20 GeV?
Maximum-entropy
matrix elements

Bounds Unlimited Bounds Unlimited
Density-matrix elements Low  High rank Rank *)p<4 Low High rank Rank ®)p<4
U@,00+U@,1)+U(2,2)  0.64 0.75 0.678 0.679 0.61  0.70 0.615 0.616
N(2,1)+N(2,2) 0.00  0.07 0.016 0.017 0.02  0.08 0.043 0.042
U(@2,0)=p% 0.57  0.65 0.609 0.609 0.31  0.38 0.337 0.337
U@,1) 0.03  0.12 0.055 0.054 024 0.30 0.238 0.239
U@,2) 0.00  0.04 0.015 0.015 0.03  0.07 0.040 0.041
N@,1) 0.00  0.07 0.013 0.014 0.00  0.06 0.032 0.031
N(@2,2) 0.00  0.03 0.003 0.004 0.00  0.04 0.010 0.011
p§% 0.09  0.13 0.109 0.109 0.16 0.19 0.190 0.190
ol 0.29  0.39 0.326 0.323 021 028 0.221 0.218

values of each one of the matrix elements was re-
corded. The ranges of the density-matrix ele-
ments obtained that way are identical to those
obtained by using a different method.®

We repeated the procedure on the same data
by additionally restricting the rank of the sub-
matrix (*)p to 4, as explained in the previous sec-
tion. The maximum-entropy density matrix obey-
ing this rank condition is nearly the same as the
one that is not restricted by the rank condition
(see Table I). Also the ranges of the density-ma-
trix elements obtained that way are indistinguish-
able from those of the matrix with restricted rank.
This result shows that the experimental moments
are consistent with the rank condition. It is in-
teresting to note that among the eigenvalues ob-
tained by maximization of the entropy there are
very small ones (see Table II), which suggests
that the actual rank of the matrices could be smal-
ler.

The maximization of the entropy was unsuccess-
ful for the last (fourth) ¢ bin of the data, indicating
that the experimental moments there are inconsis-
tent with positivity of the density matrix. A non-
positive-semidefinite density matrix may give rise
to the negative values in the angular distribution.
It is interesting to note that by reconstructing the

angular distribution from the experimental mo-
ments, we found regions with negative values,
which were missing in the lower- |¢| bins.

We found that the calculation of the maximum-
entropy density matrix takes up only about one
percent of the computer time used. Practically
all of the computer time is taken up by the multi-
dimensional exploration which determines the
ranges of the density-matrix elements.

By comparing the time of computation using a
different method,® we found that our method is
faster by a factor of about 1.5. The use of rank
limitation in our case reduces the number of pa-
rameters from 26 to 23. Since these numbers do
not differ much among them, the gain in computer
time due to the rank limitation only was not sub-
stantial.

For higher-spin states, however, the situation
should change drastically. For instance, if spin
J =3 is added in a 77 system the number of param-
eters is reduced from 75 to 51. Since the time
of the multidimensional exploration is proportional
to the square of the number of parameters (which
is equivalent to the square of the dimension), the
application of the rank limitation is expected to
contribute an additional factor of 2 in the speed
of computation. Combined with the factor of 1.5

TABLE II. Example of the eigenvalues of the density-matrix submatrices for the 7'r* sys-
tem in the f-mass region from the reaction 7 p—m 7*» at 12 GeV/c obtained by maximation of
the information entropy. Results denoted by (a) are obtained without rank restrictions, while
those denoted by (b) are obtained with a restriction of the rank of the submatrix ¢ p to 4.

—t bin (GeV?) p “
0.02-0.05 @ 0.019 0.005 0.001 |0.833 0.102 0.026 0.009 0.004 0.001
: : () 0.019 0.005 0.002 | 0.830 0.107 0.027 0.010 0.000 0.000
0.10—0.20 (@ 0.042 0,025 0.003 |0.73¢ 0.132 0.041 0.020 0.002 0.001
: : (b) 0.041 0.025 0.003 | 0.731 0.137 0.040 0.023 0.000 0.000
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due to the use of maximum-entropy procedure, one

obtains a factor of 3 in computer time gain. This
factor should increase even faster for higher-spin
states.
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APPENDIX A: THE MAXIMIZATION CONDITIONS

In this appendix we fill in the mathematical de-
tails that were left out of the main text.

We defined a v-dimensional spin density matrix
p as any v Xv matrix which fulfills the following
conditions:

(a) Hermiticity,

p=p'; (A1)
(b) Positivity,

xtpx=20 vxecY; (A2)
(c¢) Normalization,

Tr(p)=1. (A3)

The Hermiticity implies a spectral representation®
for p

P=2 PoPo> (A4)
a=1

where the eigenvalues p, are real numbers which
we arrange in a descending order as follows:

PLZ Pz 2p,. (A5)

The positivity and trace conditions restrict the
eigenvalues further to the unit interval

kR

Ospasli a=1,...,v. (A6)

The number of eigenvalues which are strictly
positive gives then the rank of p denoted by 7.
Thus when 7 is strictly smaller than v we have

£,>0, ppy="r=p,=0 (A7)
and
7
p=; PP, . (A8)

The projection operators P, are Hermitian, ortho-
normal, and have unit trace

pP,=Pt, a=1,...,v, (A9)
PaPA‘i:GaBPB’ a9B=11"';V, (AIO)
Tr(P,)=1, a=1,...,v. (A11)

The information entropy is defined on all spin
density matrices as follows:

E[p]=-Tr(plnp) == p,Inp, . (A12)
a=1

The restriction (A6) on the p, gives
E[p]=0, (A13)
while the concavity® of the function —x Inx gives
r r
_<_11; :,_‘1 pa) ln(% aZ; pa) > - ;%pa Inp,. (Al4)
From the normalization condition we now get
E[p]<lnr. (A15)

Let us now maximize E[p] subject to the subsidiary
conditions

Tr(p)=1, (A16)
Tr(pMI)=mj, i=1,...,k. (A17)

Introduce the corresponding Lagrange multipliers
A% At ..., A" and consider the functional

I[p; \]==Tx(pInp) = X°[Tr(p) - 1]= 2 M[Tr(pM,) - m,]
=1

=_ g pq Inp,, — x°<; Po— 1) - ;‘;M{[Zrl Pe Tr(PaM,)] - m,}. (A18)

a=

To find a local extremum of the functional I we vary p,, P,, 2° X\ and equate the resulting first variation
of I to zero. However, care should be exercised in the variation in two respects. First, if , the rank of
p, is given and is strictly less than v (the dimension of p) then the v - # vanishing eigenvalues of p should
stay fixed at the value zero during the variation. Second, in order not to spoil the Hermiticity and ortho-
normality of the projectors P, their infinitesimal variations should be of the form

6P, =i[6H,P,],
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where 6H is an arbitrary infinitesimal Hermitian matrix. From this relation we see that

Tr(6P,)=0.

Computing the variation of I we get

r

T (4
ol=- 21 Opy(1+1Inp,) — 5>\°(E Py — 1) -0 . 0
& =

a=1
r

& r &
- ,‘;M 2 60, Tr(P, M) PN > ha Tr(dHi[P ,, M,]) .

a=1 =1 a=1

To get the last term in the expression we used
the equality

Tr(i[6H, P, M,) = Tr(SHi[P,, M,)

which follows from the cyclic property of the trace.

At a local extremum 6/ vanishes, and since the
variations 6p,, 6H, 6A° oM are all independent
we get the following conditions:

R
Inp, +1+ A°+Z MTr(P,M,) =0, (A20)
. . =1
2N p [P, M,]=0, (A21)
j=1 a=1
.,
py-1=0, (A22)
a=1
T
D P Tr(P M) =m,=0, j=1,...,k. (A23)

a=1

To derive Eq. (A21) one notes that if a Hermi-
tian matrix B satisfies the relation Tr(4 B)=0
for an arbitrary Hermitian matrix A, then B
must vanish. Now from the Hermiticity of P,
and M, it follows that i [ P, ,M]| is Hermitian,
while from the Hermiticity and arbitrariness of
0H the desired Eq. (A21) follows.

We now want to solve these conditions and de-
termine the critical values of p,, P,, A% M. To
this end we write the second condition Eq. (A21)
in the form

[P,M(A)]= 0 ’

where p is given in Eq. (A8) and M(}) is the Hermi-
tian matrix

(A24)

R
M) =) MM, . (A25)
j=1
Note that although a matrix M(A) can be defined
over the whole 2-dimensional A space, at the cri-
tical value of A it commutes with the critical dens-
ity matrix p. Therefore at the critical point M(X)
and p can be diagonalized simultaneously or in
other words they have common projectors P,,.
Thus at the critical point we have the following
spectral representation for M

v
M= 1ePra) (A26)
a=1

i N [Zr: py Tr(P M) ~ m,]

J=1 a=1

(A19)

I
where the eigenvalues u, are arranged in ascend-

ing order
(A27)

IS Hp St S,

while n(1),...,n(v) is an as yet unspecific per-
mutation of 1,...,v. From Eq. (A26) we get

R
Ho=TI[P,(oyM(N)] =; MTr(P,,M,). (A28)
Substituting in the first condition, Eq. (A20), we
get
Py =exXp[—(1+2%)]exp[—L1(oy], @=1,...,7.
(A29)
The third condition Eq. (A22) now determines A°

and we have

L4 -1
pu=(2 expl=ba(e) " expl=bica)

B=1

(A30)

and

7

p= (BZ; exp(—u,-x(ﬂ)'))- Z;'eXp(— Boi(o)Pq- (A31)

a=.

Now by definition the p, are arranged in a descend-
ing order. Therefore, WU i(;),-- -, Hs1(,) are ar-
ranged in an ascending order, and by the defini-
tion of the u, we must have

1<s7¥()<m™2)< <7 9) sv. (A32)
To determine the critical point A we must solve
the fourth condition, Eq. (A23). Substituting Eq.
(A30) we get

7 -1 r
(E exp(~ #rl(s))> Z exXp(=r1(4))
B=1 a=1
xTr(Pan) -my; =0. (A33)

In these equations the p_.(,, and the P, are depen-
dent on A in a nonlinear way. In order to make any
progress we must now digress and investigate this
dependence. This is done in Appendix B. The
reader who is interested in the solution of Eq.
(A33) may turn directly to Appendix C.
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APPENDIX B: THE PARAMETRIC DEPENDENCE OF p,,
AND P,: THE FEYNMAN-HELLMANN THEOREM

Define the Hermitian matrix M(A) over the k-
dimensional A space as

R
MQ)=Y_AM,. (B1)

J=l

For almost every point A its eigenvalues are non-
degenerate and the spectral representation of
M()\) is given as

MO)= Y (WP, (), (B2)

o =1

where the eigenvalues u, are real and the pro-
jectors P_,,(A) are Hermitian, orthonormal, one-
dimensional projection operators. From the or-
thonormality of the P, ,(A) we have

(o0)P 0= 1y 0P, 0 ®)
J=1

and

r(B) ZAMJ “a()‘)P,(B)( ). (B4)

Calculating a partial derivative of Eq. (B3) with
respect to 1! we get

R
9
MaP,m)(’\H(; MMJ)WPM)(?\)
=2 )
St e+ Hs(M) 537 Pee ) - (BS)

Tont

Multiplying on the left by P, () gives

P gyMM P q(N)= 8:{5) P, 0. (B6)

So taking the trace of both sides yields

2L (P, (W) (®7)

This is the Feynman-Hellmann theorem.!® From
it we get the matrices of second derivatives

8 7\

Our aim now is to express the right-hand side in a
way that does not involve derivatives. Since we
have

I1=) " P, (B9)

we may write

Prw 9P, ) . 8Py
2—87\', —O‘Zﬂ<Pt(a) and + an’ Pr(a) . (B10)

But being a projector P, satisfies
(Pr(B))z=Pr(8)’ (Bll)

and differentiating with respect to A7 gives

8Py(8) _ 9P, 9P, *@)
a;\! —Pr(B) a;\? + and Pr(B) (B12)

Subtracting this line from Eq. (B10) we get

8P, ) _ 8P, 9Py
a;\ Z; Pr(Ol) 87\’ B'Kj Pr(a) . (B13)

a#B

Multiplying Eq. (B5) on the left by P, ,, for a#8
we get

o’ ‘J'B _“a r(OlMJ LAC (B14)

We assumed that for a# 8 the eigenvalues W, and
Mg are nondegenerate. Substituting Eq. (B14) and
its Hermitian conjugate in Eq. (B13) we get

=1
a#g

an(B) 1
axt Z g — “a<Pr(a)MfPf(B)

+P g M,;P, ). (B15)

When substituted in Eq. (B8) this formula yields
the desired result

92, =
a)\ia‘s)\f—z “'B - b [TI‘(P (N)M Pf(B)JW )
a%a

+Tr(Pt(BM!Pf(a)Mi)] . (B16)

APPENDIX C: THE FUNCTION I'(A)
AND ITS HESSIAN

The Feynman-Hellmann theorem Eq. (B7) gives
a slightly different form of Eq. (A33), namely,

T -1 7
[BZ exp(—li,,-x(s) )] Z eXp(_“‘ -1(01))
=1
au

x—gFe=m; =0.  (C1)
This equation is just the statement that the criti-
cal values of A for the function I are also critical
for the function I'; (1) defined by

, k
I‘I()\):lnz exp(= -1y + Z Nm;. (c2)
a=1 i=1

The function I'7()) is actually the result of sub-
stituting in I(p; A% 1) the expression (A31) for p,
now interpreted as defined through Eq. (B2) over
the k-dimensional A space, apart from the set of
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points of measure zero where M(X) has degenerate
eigenvalues.

Since the function I'J(\) involves in its definition
only the values 77'(1),..., 7 !(r) it has (}) branches
differing from each other by the ordered list
77 Y(1),...,7 7). In particular there is one
branch for which

mHa)=a, a=1,...,7. (C3)

We shall refer to this branch as the principal
branch and denote it simply by I',(). For r=v

S. DAGAN AND Y. DOTHAN

I’ [+ 1Y Bk y-1p) O r-ip)
Snon =[Z: exp(=H ;- 1) Zexp(—u,-l(e)) Y oY,
a=1

z Bp. 1
—[Z eXP("IJ,,-l(a))] ZGXP( K- 1(5)) 37\' ZGXP( Un,r-l(-y)) gAj

a=1

r a [T
‘[EGXP('“W'I(M)] leex!)(_“n'l(ﬂ))_a{i-s(f}—'

oa=1

For an arbitrary real k-dimensional vector with components a’ i=1,...

A y-1 Rl ()}
al

Ar-yp)™ Za

and

r r -1_r
a= lepﬁaw'1(8)=[z:lexP(_"Lfr"(a))] BZ exXp(= 4 p-1))% 1 -1p)-
= & =

With these definitions we can write

Z aa 3)\'3)\’ ZPB(a ‘l(a) a) —EPBZ aa’

i,j=1 i,J=1

Equation (B16) allows us to rewrite the last term in the form

2£Ps :

Sps 3 e Shpin.

1 i,j=1

where
3

M(a) =Z a‘M,

i=1

a 1 Kr™Yp) = Hr™ i)

26
there is only one branch which is of course the
principal branch and T',(A) is given by

v k
T,(\)=1In 2 exp(~jq) + 2 Xm,
a=1 i=1
R R
=1nTrexp(—Z)\iMj)+Z7\’mj. (C4)
ji=1 i=1
To establish the existence and nature of the ex-
tremal points of I'(\) we consider the Hessian*
(the matrix of the second derivatives) of I'J()):
(C5)
, k define
(C6)
(cm
Hw'l
Tr[Py(MM(a)Pg(M)M(a)], (C9)
(C10)

and the projectors P,(}), P(2) are projectors on eigenvectors of M(}). The expression Tr [P (A)M(a)P M) M(a)]
is symmetric in o and B. It is therefore convenient to separate the right-hand side of Eq. (C9) into two

eXp(" M1 a))

Tr[B,(NM(a)P{N)M(a) ]

[P, M(a)P N M(a)]

parts:
R
ip ata’ =2 P
&° a; ”37" a,zﬂl “rl(e) Bgm1(q)
Y —
+2 p Tr
B=1 a=r+l 8 Hg-1(g) = Me=1(q)
r 1 T
-[2 empt- s [
[; i a%l Bge1(g) =
o

* [ZT: exp(= Kp-1(y)) ]

y=1 B=1 a=r+l

22 Z exp(= K -1(g) —-——-—1—-——Tr
Ko

exp(~ u.-lmi]rrr[p (NM(a)P N M(a)]

Ho1(a) “rl(a) Ha-1(p)

s Py, TEPNMa PN Ma)] -

(C11)
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But

expl=porm) | €XP(=kr1(y)

Hei(p) = Foi(a) M)~ Heiis)

so that finally we have the desired result
o~ s 0TE < 2
2 dla m=; (@1 (g, = @)

iy §=1

=exp[ —3(H1(g) * Bpi(a)]

. -L -
Smt}[Z( Mo-1(g) url(a))] , (C12)
2(lp1(p) = Ke(a))

+[Z expl(— “f‘l(y))] -1 Z exp[—%(u'-lm)+ I.L'-l(a))] Sil’lh[%(u-r'l(ﬂ) - p-t-l(ot))]Tr[PaM(a)PBM(a)]

¥=1 @,8=1

a#g

r v 1
+22 Z Ps

81 denr Hem1a) T Hemlqa)

The first two terms in this expression are non-
negative. This follows from the equality

Tr(PeMPM)=Tr[(PoMP,)(P,MP,)'] (C14)

and the positivity of the function sinhx/x. The
sign of the contribution of the last term depends
on the branch of the function I'f(A) we are analyz-
ing. In particular if it is true that

Hpe1qay = Me14)> 0, a=r+1,...,v B=1,...,7
(C15)

then this last term is also non-negative. This
happens if j -1, for B=1,...,7 are the rl:smallest
eigenvalues and this in turn is the definition of

the principal branch I',(A). Thus the principal
branch I',(A) is a convex function. Restricting
ourselves now to the principal branch we see that
the right-hand side of Eq. (C13) vanishes if the
following conditions hold simultaneously:

a,=d, B=1,...,r, (C16)
Tr[P,AM(a)P;(A\M(a)]=0, a,B=1,...,r, a#B,
(C17)

Tr[P,(\)M(a)Py(\)M(a)]=0,
,v,B=1,...,7v. (C18)

The first equation (C16) can be rewritten with the
help of Eqs. (C86), (C7), and (B7) as

a=r+1,...

Tr{P,(M)[M(a) —aPM)]}=0, B=1,...,r, (C19)
where
PN)=) P,(N). (C20)

B=1

Together with the other two equations (C17) and
(C18) this gives

[M(a) -aIlP(2)=0 (c21)

or

1
3 (Mem108) = Kem1ay)

Tr [P, (M )M @)P (A )M(a)] . (C13)

R
> atM,P(\) -aP(\)=0. (C22)

i=1

This then implies that the 2+ 1 matrices P (),
MP(A),...,M,P()) are linearly dependent. Let
us apply this result to the case »=v. In this case
P=1I, but then the £+ 1 matrices I, M,,... ,M,
were assumed to be linearly independent so Eq.
(C22) cannot be fulfilled with nonvanishing a,
a',...,a*. Thus the function I (A) is strictly con-
vex. It is interesting that although we started
from maximizing a concave functional E[p] we
ended up with a convex function I'(A). In Appendix
D we show that this is not an accident.

APPENDIX D: THE ORIGIN OF THE CONVEXITY
OF I',(\)

To understand the origin of the convexity of
T',(2) we discuss now the general set up in which
it happens. Consider then a real function
g(x,,...,xs) of f variables. The function g(x) is
supposed to be strictly concave so that the Hessian
matrix 9°g(x)/dx,8x 4 is supposed to be negative
definite. We now maximize g(x) subject to the &
linear constraints

hi(xu---’xf), i=1y'-°’ky k<f- (Dl)

To find the maximum we introduce 2 Lagrange
multipliers A!,...,A* and form the function G(x;\)
given by

13
Glr; 1) =g(x) = 2 Xy (x). (D2)

To find the constrained maximum of g(x) we look
for the extremum of G(x; ) in the f+ k-dimensional
space. The conditions for an extremum are

k

8G_dg i Ok _ -
3xa~3xa_i=1}\ ax&—o, a=1,...,f, (D3)
G

5—)\-;=h,-(x)=0, i=1,...,k. (D4)
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The concavity of g(x) and the linearity of the %;(x)
imply that the determinant of the matrix 9°G/dx,0x
is nonvanishing. This results in our ability

to solve locally the f equations (D3) for the f un-

knowns x,,...,%; and express them as functions
of the £ Lagrange multipliers A',...,A". We thus
define %k functions

xa=xa()\)y C!=1,.. . ;f,
that fulfill

G

o K =0 (D5)

identically in the A. Substituting x,() in the func-
tion G we now get a new function F()) of & vari-
ables

F(\)= Gx(\); 0. (D6)
Let us calculate its gradient
5
oF
B
= h,'(x()\)) . (D7)

Critical points of F(\) are points X where the
gradient 8F/ax! vanishes. Therefore the functions
X,(A) map a critical point of F(X) on a critical
point of the function G(x;2),

A= (x(x); %), (D8)

(x(r); )57‘,"-+5—X;(x(h), A)

with the useful relation
F(X)= Gx(X); M) = g(x(X)). (D9)
The Hessian of F()) is given by

a—i,a%=2 N (D10)

Since Eqgs. (D5) are f identities in X, we get by
differentiating them with respect to A,
L 9x
2 e O e

ax Py (x(2); 2)=0.

(D11)

The definition of G(x; ) and the linearity of the
constraints k;(x) allow us to rewrite this as

o

9xgy Oh;
Bxg Ok -
= ax () 3+ 5 (KON =0. (D12)
Substituting in Eq. (D10) we get
£
9% F 9% g 0%y
D "a,EBH " ( (X))#a)\, . (D13)

This shows that if g is strictly concave so that the
matrix 8%g/8x,0x, is negative definite, then the
matrix 8°F/ax'o) is positive semidefinite. In
other words the functions x(A) map the minimum
of F(x), if it exists, on the constrained maximum
of g(x).

The result we get is directly applicable to the
analysis of the function rr(x) because the con-
straints (A17) on the density matrix p are linear.
Indeed we started from the information entropy
which is strictly concave and formed I[p,A]. We
formed the functions I'J(2) in Eq. (C2) by sub-
stituting p in terms of A, Our analysis in the
present Appendix shows that the function formed
this way should be convex. The analysis in Ap-
pendix C then shows that the branch of I'J(r) that
fulfills this condition is the principal branch.
This finally completes our proof of the results in
Sec. IIL
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