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Flavor-changing electromagnetic transitions
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(Received 29 June 1981)

We compute the q;qjy transition amplitude for off-shell and on-shell quarks with Aa-

vors i', in the standard weak-interaction model. The results we present are valid for all

quark and photon momenta and for all external and internal quark masses. We discuss
the Feynman rules and Ward-Takahashi identities in the 't Hooft —Feynman gauge. Our
results can be applied to a variety of phenomena such as the electric dipole moment of
the neutron, the process e+e ~tc, and flavor-changing transitions with either gluon or
photon emission.

I. INTRODUCTION

The unified theory of weak and electromagnetic
interactions' has been so far extremely successful.
Apart from the direct observation of the intermedi-
ate gauge bosons, an unequivocal experimental ve-

rification is still missing for the predicted triple-
vector couplings such as y8'8', and for higher-
order corrections which are all so essential for the
theory.

A systematic investigation of the effects of the
full structure of the theory in the leptonic sector as
applied to e+e collisions was recently carried
out. Only small deviations from quantum-
electrodynamic predictions were found up to the
production of Z bosons, with similar conclusions
for the weak corrections to the anomalous magnet-
ic moment of the muon.

In this paper we set the ground for a systematic
investigation of weak corrections in the quark sec-
tor for processes in which one of the quarks under-

goes a flavor change accompanied with the emis-
sion of a real or a virtual photon or gluon. The
transition considered here is q;qj y, where the
corresponding transition tI;kg, where g stands for a
gluon, will be trivially obtained from part of the
previous one. Our calculation is the first complete
one since we (1) do not neglect internal or external
quark masses with respect to M~, the charged-
vector-boson mass, (2) do not neglect external mo-
menta with respect to Mtt, (3) present out results
for off-shell as well as for on-shell external quarks,
and (4) perform our calculations in the 't
Hooft —Feynman gauge, thus avoiding divergence
problems which are typical to the calculation of
high-order corrections in the unitary gauge. The

on-shell results are of course gauge independent.
The reader may at this point wonder why one

should embark on such a general calculation. The
relevance of the general flavor-changing vertex be-
comes clear from a discussion of some possible ap-
plications. Consider D„, the electric dipole mo-
ment of the neutron in the Kobayashi-Maskawa
(KM) model. " Let us view the neutron as built
from three constituent quarks and neglect strong-
interaction corrections. It is obvious that the elec-
tric dipole moment of a single quark d~, vanishes
in the lowest order, i.e., at the one-loop level. Al-
though estimates were made for the order-GF con-
tributions to dz, it was subsequently shown that

dq ——0 at the two-loop level. It was then suggested
that CP violation in the ud~du + y "weak scat-
tering" (a W is exchanged in the crossed channel)
with the third quark acting as a spectator, gives
the dominant contribution to D„. ' Therefore the
calculation of D„requires as an intermediate step
the knowledge of the one-loop q;~qz + y vertex
with one external quark off-shell. The t quark, for
which the assumption m, « M~ clearly breaks
down, can appear either inside the loop or as an
external quark in the q;qj y vertex. Small external
quark and photon momenta can be assumed
throughout the calculation of D„.

Another example is the process e+e ~tc,
where an assumption of small photon momentum
in the tcy vertex is clearly unjustified, while the
quarks in the loop do satisfy m «M~ .

Similarly the sdy' and sdg" vertices, respon-
sible for the CP violation in K—+me+e and
A~ny, and for the LU= —, rule and CP violation
in nonleptonic E decays, respectively, involve an
intermediate t quark, whose mass is not negligible
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in comparison with M~.
It is therefore important to have a complete cal-

culation of the electromagnetic flavor-changing
vertex which will involve no approximations. The
final result will be expressed in terms of a double
integral the value of which will depend on the phy-
sical application at hand.

Our presentation will be as pedagogical as possi-

ble and will include the Feynman rules, ' the re-

normalization procedure, and the Ward-Takahashi
identities in the 't Hooft —Feynman gauge for the

quark sector of the theory. We adopt the dimen-

sional regularization procedure' and present, in a
compact new form, the general n-dimensional loop
integral. Applications of the vertex function calcu-
lated here will be discussed elsewhere. '

In Sec. II we summarize the relevant Feynman
rules in the 't Hooft —Feynman gauge. In Sec. III
we compute the off-diagonal self-energy of a quark
and renormalize it. The unrenormalized off-
diagonal proper vertex is calculated in Sec. IV and
in Sec. V it is ren'orrnalized; Sec. VI contains the
main result of our paper: the renormalized off-
diagonal vertex function, which is given in Table I.
In Sec. VII we summarize our results. In Appen-
dix A we present some useful identities including a
compact form for the general n-dimensional in-

tegral. In Appendix 8 all the integrals which ap-
pear in the self-energy diagrams are explicitly
evaluated. In Appendix C we discuss the absence
of counterterms for the part of the vertex which
does not obey a Ward-Takahashi identity. In Ap-
pendix 0 we present the consequences of the

Ward-Takahashi identity and emphasize the differ-
ence between the identity in the 't Hooft —Feyn-
man gauge and in the unitary gauge. In Appendix
E we place one quark on-shell, and then put two
quarks on-shell and present the form of the vertex
functions for these cases.

le u;you; (ity)

ies(2q —k)„(SSy),

ieii [—g p(2q k)q gq
—(q+k—)p

—g~p(q —2k)~] ( WWy),

i ~eu—~Mug „(WSy),
ig (1—ys)

u; (ij W),

(lc)

(ld)

(le)

igV 2 J (1—ys) (1+y5)
I's m;u) u, —m;u. u,. (t)S)

II. FEYNMAN RULES IN
THE 't HOOFT —FEYNMAN GAUGE

The relevant elementary vertices are given in

Fig. 1. A, 8', and S denote photon, charged 8'bo-
son, and charged unphysical scalar, respectively,
while i, j stand for quarks with flavors i and j, and
the photon momentum is k. Although the 't
Hooft —Feynman gauge discussed here contains the
unphysical scalars S+-, the 8'-boson propagator is
simple. This has to be contrasted with the unitary

gauge for which no unphysical scalars are neces-

sary but the q&q„/Mu term in the W'propagator
induces severe divergences.

The Feynman rules for the elementary vertices are'

iii iiiiiios Aitr.

ÃNOHOOO Ap,

(c)

~S
q-k

&qeyruee~o

S~~

(b)

S

Ap.

(1
where IJ3 is the third component of the weak iso-

1 1

spin for quark j (—, for u and ——, for d and simi-

larly for other weak doublets) and g /SMs, ~

=Gp/'(/2. Note that while the first vertex changes
sign when the sign of ee is reversed, and the
second and third vertices change sign as eii, {=es)
is flipped, the sign of the WSy vertex is invariant
under a sign change of eu, .

If the photon is replaced by a gluon, the vertices

X:'
P p pIq p

(a)

i / ] x j

(e) (f)
FIG. 1. Feynman vertices relevant to our calculation.

i,j are quark flavors, curly, wavy, dashed, and solid lines

stand for photon, charged 8', charged 5, and quarks,

respectively. The rules are in Eq. (l).

X„:„'-gP' P

] I ]

P P P P

(b)
FIG. 2. (a) The unrenormalized off-diagonal self-

energy; it is given in Eqs. (7) and (10). (b) Renorma1iza-
tion of the off-diagonal self-energy [see Eq. (13)].
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(2a)

(lb), (lc), and (ld) do not exist, and the vertex (»)
is multiplied with the appropriate SU(3) generator.

The relevant propagators are

(S),p' —~w'

renormalize them as shown graphically in Fig.
2(b). Denoting by X,X the contributions of a
virtual 8, 5, respectively, the

&(p)=& (p)+& (p) . (3)

( 8'),
p' —Mw'

(2b)

Define the left and right projection operators

(quark) .—m
(2c)

III. X: THE OFF-DIAGONAL
SELF-ENERGY AND

ITS RENORMALIZATION

In this section we calculate the off-diagonal
self-energy diagrams depicted in Fig. 2(a) and then

&+X5I. = R=
2

'
2

(4)

%e perform our calculations in n dimensions and
use a=4—n. A scale parameter p is introduced;
the physical results are of course independent of
p, . Then from Fig. 2(a)

gw ig
( p) /Q d g I i ( i)g-

(2ir)" P+g —m ' —M '

-(p )'g g /p d q (&—2)(p'+g)1
2m" p+q —m q —M (5)

where m is the mass of the internal quark with flavor I and the last step follows from n-dimensional Dirac
algebra (see Appendix A). The final result in the KM model requires a summation over intermediate quark,

g UgUij,
I

where U;I are elements of the KM mixing matrix. %e will omit this summation but assume it implicitly in
all our calculations. From Eq. (5) we find —using Feynman parametrization and n-dimensional integration
(see Appendix A)—that

2

(p)=
z I daaP ——+ln —I"+1 1. ,

l 6~' 0 & 4'�'
where I '=I"(1),and

5=Ms a+m (1—a) —p a(1 —a) .

s. r'

From the right-hand-side of Fig. 2(a) we can write
2 dn

Ms 2 (2ir)" P+ ™q —Ms

m'(p+g m)1. +m [m (p—+)I)—m' ]R
(2~)" [(p+q) —m ](q —M~ )

Therefore

y (p)= I d~[m (pea m)1. +m;(—m Pa m)R] ———ln
~
+I"s Eg ~

& z 2

32ir Mii 4 p

Thus by adding Eqs. (7) and (10) we obtain the unrenormalized off-diagonal self-energy.

(10)
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C. Renormalization of X

The renormalized X„„[Fig.2(b)] is obtained by adding a counterterm to X subject to the on-shell condi-
tions

2 — .2 —. — 2— .2
~renvoi 0~ I ~i and ~j~ren 0~ I ~j

The I/e divergence in X will of course disappear once the counterterm is added.
To this end we define four functions of p [f(p ), h (p ), P(p ), and P(p )] such that

X=fPL +hPR +gL +PR .

We have to find the four constants (i.e., independent of p ) A, 8, C, D in

X„„=(f+C)PL +(h +D)pR +(/+A)L +(P+B)R

from the on-shell conditions in Eq. (11). The four coefficients in X„„arethen finite and given by

mji(f fj )—m—; (f f; )+m—(mj(h; —hj )+m&(f; Q/)+m—;(P; )J)—+
Pl . —Pl.J

mji(h —hj ) —m;i(h h;)+m;—m, (f; f, )+—m;(P; P, )+—m, (P; PJ)—
2 2m —mJ I

J ( J ( 1 & J ( 1m (1( —g;)—m (itj —it ) —m;m (p; —p ) —m m (f f ) m—m (—h —h )

2 2
PE - —R.J l

m (p p;) —m; (—p p) —m;mj—(p; g/) m;—mj (f—i f~) m; m—j(hi ——hj)2

2 2m —m.J

(12)

(13)

(14a)

(14b)

(14c)

(14d)

m 2+ ——ln +I"
~W2 ~ 4~p2

2

32 Ms o e 4irp~

(15a)

where f; =f (p =m; ), etc. From Eqs. (7) and
(10),

f= daa ——21n +2I"—2
ig2 ' 4

32m 0 & 4'

etc. in Eq. (14) are of course finite. The explicit
forms of all the terms in the numerators of Eq.
(14) for any external momenta and internal masses
are given in Appendix B.

We have thus completed the calculation of the
renormalized off-diagonal self-energy X„„,and we
can move on to the off-diagonal ij y vertex itself.
First we calculate those terms in the vertex which
do not involve X (the proper vertex; see Fig. 3).

IV. I ": THE UNRENORMALIZED
OFF-DIAGONAL PROPER VERTEX

lg Nl) Pl I da ——ln +I"
32&Ms 0 & 4irp

ig m;m
da ——ln

2
+I"

32ir M 0 & 4'

(15b)

(15c)

All the contributions to I "(p), the off-diagonal
proper vertex, are shown in Fig. 3. We first calcu-
late the unrenormalized I & and then find the coun-
terterm needed to renormalize the proper vertex.

Let us define 8& as the set of diagrams in Figs.
3(a) —3(d}, and A& as the diagrams 3(e) and 3(f).
Then

(16)

with b, given in Eq. (8}. The combinations f fj, —
Note that for the ij gluon vertex R"=0 while A&

survives.
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p-k p+q

q+k

p-k

q»
/

l
I

P p+q

j

p-k p-k

(d) (e)

l+
p & p+q p+q-k~ p-k

/

q

A. Renormalization of vertices in the
't Hooft —Feynman gauge

Unlike a physical gauge like the unitary gauge

which has only observed particles, the 't Hooft-
Feynman gauge involves unphysical degrees of
freedom. A consequence is that the proper vertex

I
&

does not obey the %ard-Takahashi identity
k"I'&~ e;[X,J(p———k) —X;J(p)].

' A quick glance at
the photon vertices in Eq. (1) reveals that only the

diagrams arising from Eqs. (la) and (lb) obey the

2

Rg, = ( iew)(p )'—
2

FIG. 3. The unrenormalized proper vertex (see Sec.
III).

Before calculating R" and A", we discuss the
separation of the vertices in Eq. (1) into parts that
obey %ard-Takahashi identities and those that do
not. We also define the renormalization scheme
that we adopt.

Ward-Takahashi (WT) identity, while diagrams
from Eqs. (lc) and (ld) do not. Actually the ver-
tex 1(c) can be divided for convenience into two
parts, ie—w[g~lr(2q+k)& g&—~klr + g&Irk~] which
satisfies the identity, and i—ew [ g—„~(q +k)&
—g&pq~] which does not. Thus, in one-loop ap-
proximation, A& and part of Rz obey the WT iden-

tity, and those parts arising from Eq. (ld) and the
second part of the Eq. (lc), which we call R&, do
not obey the identity. Thus 1 &=1

&
—R& satisfies

the WT identity. The renormalized vertex is de-
fined by I'"„„=I "„„+Rg, where I "„„satisfies the
WT identity for the renormalized quantities. '

Thus k&I'"„„=e;[X'J,„(p —k) —X'~,„(p)]. From the
relationship of X,'J„ to X'1 defined in Eq. (11), it is
obvious that I "„„=I"+Tr. y&L + T~y&R, where

TL and T~ are constants related to constants C
and D in Eq. (13). (See Appendix D for the exact
relation. ) We call Tz and T~ the counterterms for
the vertex. From the definition of X'„„,it follows
that k&I "„„~,„,h«i ——0. This is the quickest way to
determine the constants TI and Tz and the one we

adopt. R„does not obey the WT identity and no
counterterms are possible for this quantity. We
verify that k"R„i,„,h«i

——0, thus the renormalized
proper vertex I &'" satisfies current conservation.
The power of this renormalization scheme is that it
is not necessary to calculate anything more for the
on-shell flavor-changing electromagnetic vertex.
For generality we shall present the off-shell vertex
also. %e shall discuss in the Appendix how this
renormalization scheme is equivalent to the usual
scheme where many unrenormalized diagrams are
added.

B. Rg i. The part of Fig. 3(a) obeying
a Ward- Takahashi identity

The on-shell current-conserving part of the
WR'y vertex in Eq. (lc) is

Mw[g~p(2q +k)p gp~kp+gppk(g]

and therefore

X f „yA, , [g (2q+k)" —g" k +g" k ], , yg
(2n. )" (q +k) —Mw q —Mw P+)f —m

2' ' ()")"'f "
[(e—2)(2q+k)"(p'+g) y"(P+g)k+g(f+—gy "]I.

(2~)"

1

(q
2 —Mw 2)[(q +k) —Mwz] [(P +q) —m ]



2472 NILENDRA G. DESHPANDE AND GAD EILAM 26

where the last step follows from n-dimensional Dirac algebra (Appendix A}. After Feynman parametriza-
tion and n-dimensional integration (Appendix A), we obtain

if—ew & i' ap —2[ 2p—"a&+k"(1—2ak }][j}(1—az) —kak]

X+ +27 ——ln 2+r' —1 L,X p 4~p2

where

X =Ms, (1 az—)+m az —p az(1 —az)+k ak(ak —1)+2p.kaza~, (19)

m is the mass of the internal quark with flavor I, and a summation gi U;~ U~J is assumed here and in all the

subsequent expressions for R and &.
The result in Eq. (1&) is typical to all the diagrams in Fig. 3. The ak integration is simple, however the

integration for any external momenta and internal and external masses involves Spence' functions and

although straightfo~ard, it is ve~ lengthy and will not b given here. At vanous limits relevant for specif-

ic physical applications as discussed in the Introduction, the az integrals become simple too.

C. Rg 2. The part of Fig. 3(a) violating the Ward-Takahashi identity

The part of the W$Vy vertex in Eq. (lc) violating on-shell current conservation is iez —[ f„(—q +k)~
—f~pq~]. Thus

2

Rg z —— ( ien )(p—)',
2

1

(q' —~w'}[(q+k)' ~s '][(p+q)' —m'] (20}

and following the by-now familiar steps

if ew i— i —y"g(1—a~) —ltak][ —}})a&+k(1—ak)]
Rg2= de dak'

32 X

(Pa~+&ak)[P (1 a~) ka„]y~- —
+ g

+2y" ——2 ln +2I"—1 I. ,
4 X

4' (21)
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where X is defined by Eq. (19).

D. Rg: Fig. 3(b)

Rg obeys a Ward-Takahashi identity and is given by
2

l dn e

Rg= ~ i'(p )'~ f (mJL mR—) I (2q+kP'
z ( mL—+m;R)

Mw 2 (2m )" (q +k) —Mw q —Mw P+q —m

& ~W 2&/2 d
2

(p~)'~~ f q [—m (2q+kp'(mJL+m;R)
W

+(2q+kP(y'+g)(m L +m;m&R)]

Therefore

1

(q' —Mw')[(q+k)' —Mw'][(p +q)' —m'] (22)

ig ew &
&
—~~ —m [2p"az+k"(1—2ak)](m L+m;R)

Rg= de dak '

32m Mg

[—2p&a +k&(1—2ak)[p(1 —a&) —ttak](m L+m;m R)
X

—y„—ln —+I" (m L+m;mJR)
2 X

4' (23)

E. Rgw: Figs. 3(c) and 3(d)

We now calculate the contribution of diagrams 3(c) and (d) which include the O'Sy vertex. This contribu-
tion, denoted by Rfw, will be later combined with Rg ~ to yield the comPlete Part Rg of I"which does not
obey a Ward-Takahashi identity.

By adding the diagrams in Figs. 3(c) and 3(d) we obtain

lg

Mwv 2

dn
iew( ~)'/2 q (m L —mR) gi'I'Mw

( —i)
(q+k)' —Mw'

l I
X g~"Mw

q ~ ( mL+mIR)—
q —Mw g +)f m—

2 g/2
2

(p~)'~~ f [ml(y'+g)y&L+y&m;(p'+g)R 2m y"L]—
2 (2n.)"

1

(q' —Mw')[(q+k)' —Mw'][(p+q)' —m']

which reduces to

2m y~L

X
ig ew &

' —&~ m [P(1—a ) kal, ]y"L y—"m;[P(1—az) kak]R-
R g ——

32n
dcK dAk '

X

(24)

(25)
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We first note that unlike all the other contributors to I'", Rps is finite. Like all the other parts in R&,

Rga changes sign when eu changes sign. While for all other parts of R" the sign change results froin re-
versing the sign of ea (=es} in the photon coupling, Rf~ flips its sign since the WSy coupling is invariant
but the single coupling of S with the quarks reverses its sign.

We now turn to calculate the diagrams in Figs. 3(e) and 3(f) denoted by A~a and A~s, respectively. It is
easy to see that each of the A" diagrams obeys a Ward-Takahashi identity.

%'e have
2

F. A~y . Fig. 3(e)

—ig .
( 2)~(2 d q i ~ i ( —l)

~2 (2n)" p+f —& —m p+g —m q —Ma

(p )'~ I [—2(P+))y"(P +g k) 2—y"m—+@ay"g]L
(2m.)"

Therefore

(q —Ma )[(p+q) —m ][(p+q —k) —m ]
(26)

ig ei —i i —
&~ (Pap+k—ak)y"gap+k(ak —1)]—y„m

A~ii —— de dak '

16

where

Y=Ma az+m (1 az)+p az(—az —1)+k ak(ak —1)+2p ka ak .

(27)

(28)

G A"s: Fig. 3{f)

The last diagram in Fig. 3 is
'2

A, = iei(p),p ig 2 /2 (mJL —mR) y" ( mL +m;R)—
l l l

Ma V2 (2n )" P+f —k —m i)1+/ —m q~ M&~—
2 e/2

2

(p2}'~2 f q
{—m2[y&(p+g)+(p+p' k)yl']'(mJL—+m;R)

+[(p+q JC)y&(p+g)+m—y&](m L +m;m R) I',

which becomes

(q' —Mg ')[(p +q)' —m '][(p+q —k)' —m '] (29)

[ [P'az+JC(ak —1)]y"(P'az+jLak)+m yl' J(m L+m;mJR)
322M Y

m [2p"a&+2k"al, ity&](mJL +m—;R )

Y
—

y~
——+1—I '+ln

2
(m L+m;mJR) . .2, Y

4mp
(30)
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Ren' rg
p p-k

j
p-k

FIG. 4. The unrenormalized proper vertex [see Eq.
(35)]

We note that R"o- e~, A" o- eI =e~ + e; and
therefore the expressions for R" and A" are valid
for the flavor-changin~ electromagnetic vertices of

2
both charge —, and ——, quarks.

V. I ", : RENORMALIZING
THE PROPER VERTEX

I & as calculated in Sec. IV contains 1/e and has

to be renormalized. The counterterm added ta I "
(sm Fig. 4) will also ensure that for the renormal-

ized proper vertex current conservation holds for
on-shell transitions, i.e., k&I "„„=0when both

obey the Ward-Takahashi identity —is zero in the
KM model.

The technique we employ to determine counter-
terms is rather straightforward because of current
conservation in the ijy vertex. Alternately, TL and
TR can be obtained from the off-diagonal self-
energy by employing the Ward-Takahashi identity.
We explain this in Appendix D.

For the total KM current which involves the
summation g& U&~ U~z, some of the 1/e terms in I'&

will drop out since their coefficient is independent
of the intermediate mass m. Nevertheless a coun-
terterm will be needed (except for RG—:Rg 2

+RE ) to ensure on-shell current conservation.
The counterterms are computed by multiplying

each term in I & by the photon momentum k&, and
by imposing the on-shell condition in Eq. (31) at
k =0 (Tl and T~ are momentum independent}

We denote by TI ', Tz ' the constants in

Pu; =m;u; and ujmj =uj(P fc) .— (31) Rg i „„Rg,i+——Tl. 'y"L+TR 'y"R, (33)

For each term in I & one should find two can-
stants (i.e., independent of external momenta} TL
and T~ such that

r~,„=r~+T;@~I.+T,y~R, (32)

subject to the on-shell condition in Eq. (31). We
will compute TL and TR for each term of the

proper vertex separately and find that the counter-
term for Rg—i.e., that part of I" which does not

etc. We define the on-shell, k 2=0 values of X and
Y from Eqs. (19) and (28) as

&p ——Ma'(I —aR)+m2aR —m aR(1 —a )

+(m —m )aRak, (34a)

&p™waR+m (1—aR) —m;2a (1—a )

+(m; —mj2)a ak, (34b)

and obtain

R~, ig es i i —
&~ m&mj(1 —a )

TR 2 de dAk
16m 0

(35a)

RG
Tz ——0,

ig eg
~ 2

TL, = f da—
R f dak

32rr

2m (1 —ap)(1 —ap —ak)+2mJ'(I —ap)ak —2m2

Xp

(35c)

(m; —mj )aRak —m; aR(1 —a ) ——+ ln
2

—I"+1, (35b)
Xo & 4mp2

—2 ——21n
2

+2I"—1
4 Xp

4' (35d)

s
~ 2

T„'= , f da,—f da,
32ir Mg

m;mj[(m; —mj )a~ak+m aR(1+a~) —m; aR(1 —aR)]
Xp

Xp—ng;m) ——ln +I"
4mp2

(35e)
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i e 1 —a

m (m; —mj )a&ak+m az(a&mf +mj )2 .2 .2 2 .2 .2

Xp

mj2m; a~(l a~—) 2 Xp—m ——ln
2
+I"

4TP
(35f}

(35g)

lg eI
Tg

16m

~p ~2 2 Yp
a& ak +——2+I"—ln

p .P p Yp & 4Tp
(3511)

ig ei i —~~ m (1—a~) 2, I'0
da dakm; m +——1+I"—ln

32ir M 0 ~0 e 4trP
(35i)

32 Mg2 p
T

+m ——1+I"—ln
Yp

4np
(35j)

We now turn to the counterterm of Rg. From
RG

Eq. (35c},Ttt ——0 even before summation over in-
RG

termediate quarks. The counterterm Tz multi-

plying yl'I. in Rg vanishes too, but only after sum-

mation over intermediate quarks. The proof is
rather lengthy; in Apperidix C we present a proof
that

g Ug Uttj Tt ——0

I

5(c), respectively. In the next section we compute

Vren

VI. V", : THE COMPLETE
FLAVOR-CHANGING VERTEX

The complete fiavor-changing electromagnetic
vertex is given in Eq. (38) (see Fig. 5) with Xi «„,
X~2,„„still to be computed.

for m; =mj. Therefore A. Xii', and Xf,

~a, ren =~6 (37b)

k„RG=0 when';=m;u; and ujmj =uj(p —4}
(37a)

X~i, and X~2, are the parts of the vertex which
include self-energy diagrams [see Figs. 5(b) and

5(c}]. When quarks i and j are off-shell, both
X~~„n and X~2„„contribute to V"„„. When both i
and j are on-shell (e.g., e+e ~tc), there is no
contribution from X~~ «„and X~q „„since each term
vanishes when one quark is on shell,

The infinite part of Rg [coming from the I/e term

in Rg q', see Eq. (21)] vanishes once we sum over

all intermediate states.
We have now completed the computation of

I "„„,the renormalized proper vertex which is

shown in Fig. 4. The complete off-shell flavor-

changing electromagnetic vertex V"„„is given as a

sum (see Fig. S)

uj X", „„[(p—k)2 =mj~] =0,
2— .2X2,«n(p =mi )u;=o

From Figs. 5(b) and 5(c)

X~i,, (p) =—e;X„„(p—k)(P —X+

X 2 2
(p —k) —m;

(39a)

(39b)

(40a)

Vren ~ren+ ~l, ren+ ~2, ren ~
aP (38)

where X~~ «„and X~& „„areshown in Figs. S(b) and
X~2„,(p) = e; yi'(P +m, )X„—„(p), .

p —mj (40b)



FLAVOR-CHANGING ELECTROMAGNETIC TRANSITIONS 2477

]

p-k
-*- Fz-'
p pk ++pk

p+&+mj(h +D}=mj(h h—j )+p

(43b)

+ -'Pi '- ' - '

p

(c)

FIG. 5. The complete renormalized vertex function
[see Eq. (39)].

f=—f{(p—k) ), h:—h{(p —k) ),

P{(p—k—)'}, P=P{(p—k)')
(41)

substituted for f(p), h (p), g(p), p(p) &t is con-
venient to rewrite Eq. (13) for the renormalized
self-energy as follows:

X„,„(p)=(p —mj )(f+C)L + (P —m )(h + D)R

+[/+A +mj(f +C)]L

+[p+B+mj(h +D)]R (42)

with f+C, h +D as given in Eqs. (14a) and (14b)
and [again from Eq. (14)]

where X«„(p}is given in Eq. (13). For X«„(p —k)
we have the same expression as in Eq. (13) but
with

0+~ +m((h+D) =mg(h —h;)+p

P+&+m;(f+C) =m, (f f,.)+y—
(46a)

f fj,—p p~—, h —hz, and p QJ.—were calculated in
Appendix B. Similarly

X„„(p k)=—(f+C)R(P —I —m;)

+(h+D)L (P —Ijt —m;)

+ [t7+A +m;(h+D)]L

+[/+&+mg(f+C)]R, (44)

where f+C, h+D are given in Eqs. (14a) and
(14b)»th f—fj, f f;, etc su—b.stituted for f f, —
f f;, etc—. respectively. f fj, f —f;, etc., a—re
given in Eq. (B4}and the integrals I and J are cal-
culated with

~=Mw'a+m'(1 —a) —(p —k)'a(1 —a)

(45)

instead of 5 defined in Eq. (8). The net effect of
calculating X„„(p—k) with the help of the formu-
las in Appendix B is then to substitute b=(p—k} /Mw instead of b=p~lMw defined in Eq.
(B7). The equations analogous to Eq. (43), but
now for X„„(p—k) are

/+A +mj(f +C)=m)(f fJ)+p—
(43a)

(46b)

The vertex functions which involve the self-
energy diagrams are then, from Eqs. (40a) and (44)

[g+&+m;(h+D) JL(P —4+m;)X~&„„e; (——f+—C)R +(h+D)L +
(p —k)2 —m;~

I

[/+8+m;(f+C)]R (P —k +m;)+
2 2

.yP
(p —k) —m;

(47)

and from Eqs. (40b) and (42)

[g+2 +mj(f+C}]L(p+mj)X~2„„= ejy" (f+—C)L+(h+D)R+
p —m-1

[/+8+m;(h +D)]R (P+m, )+
2 2

p —m.

from which one can readily verify the on-shell conditions in Eq. (39).

(48)
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At this point we have the complete renormalized off-shell vertex V"„„which will be now written in a com-

pact form.

B. Collecting all the parts of V",

V"„„is given by

Vren ~ren+ Xl, ren+ ~2, ren R t1'1,ren+RG, ren+Rf ren+A Wren+ASren+~1, ren+ ~2, ren

It is of course finite and obeys

k& V„„=Owhen both Pu; =m;u; and ujmj ——uj(P —k) .

(49)

(50)

Each of its seven parts [Eq. (49)] obeys the same on-shell current conservation condition as in Eq. (50). To
unify the notation and to put all the parts of V"„„in a form useful for future applications, we decompose
each part of V"„„asfollows:

(A 1'&+Amok&+A3kp&+A4kk" +Ashy&ff1 +A6y&+A7y"k

+Asy&k p+A y9"p +A 10y&p+A11y"k+A12p&+A13k")L

+(B 1'p&+B2Jfk&+B3kpl'+B4kk&+Bsky&p +B6y&+B7y&k2

+Bshe"k'p +B9r"p'+B1ol'"P+B11r "& +B12p"+»3k")R (51)

cancels out after the summation over intermediate
quarks

All A; and B; in the proper vertex part of V~«„

are given in terms of a double integral. The ak in-
tegration is simple but the final integral will re-
quire a lengthy presentation. For any specific phy-
sical process a limiting procedure turns the integra-
tion into a simple matter. ' Our results can be
then applied to all problems which require the elec-
tromagnetic or strong transition i ~j.

In many applications one or both the external
quarks are on-shell, and we will present in Appen-
dix E the general form of V"„„for these cases.
When one quark is on-shell the number of coeffi-
cients in V"„„is reduced from 26 to 16, and further
to 6 when both quarks are on-shell (see Appendix
E)

VII. SUMMARY

We have calculated the off-diagonal electromag-
netic vertex V"„„for quarks. The results are sum-
marized in Table I, where V", is the sum of all the
terms as given in Eqs. (49) and (51). This is the
first such calculation which does not assume on-
shell external quarks masses and is valid for all
external momenta; it is therefore applicable to a
wide range of phenomena.

A similar calculation can be carried out for the

etc. Note that m which appears for example in X
in the above term is an intermediate quark mass
and it therefore depends on I. Note also that for
the A terms ei ——e~ + e;. In RG „„we leave in the
table the 1n(4np, ) term for A&, which of course

where A; and B; are functions of the incoming
momentum p, the photon momentum k, and the
external (m;,mj) and intermediate (m) quark
masses.

We make a few comments about A; and B; be-
fore presenting them.

(1) For all terms in I'"„„,only A6 and B6 are dif-
ferent from their unrenormalized value [see Eq.
(32)].

(2) There are some relations among different

A;P; as a result of the Ward-Takahashi identities
and the on-shell current-conservation conditions.
We used these relations to check our computation.
In Appendix D we investigate the relations for
those parts in I "„„which obey the Ward-Takahashi
identities; an obvious observation is that A ~0 ——0
and B1o——0 for all Parts in I'~«n excePt for Rg.

In Table I we summarize A; and B; as defined in

Eq. (51) for all the seven renor1nalized parts of
V~«„. To avoid lengthy entries in the tables we pull
out a common factor, separately for each term in
V"„„. Thus A1 for RN 1 is equal to

lg ew t 1 1 +p 4r2p(1 re�)—
gU;2U1J J~ de J dak
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flavor-changing ijZ vertex, where Z is the neutral

gauge boson. ' For the fiavor-changing strong ver-
tex ij-gluon, the results are identical to the ijy ver-

tex presented here except that R"=0, and a com-
mon group-theoretic factor appears in the elemen-

tary quark-quark-gluon vertex.
It is sometimes stated that the contribution of

unphysical scalars in the 't Hooft —Feynman gauge
is negligible when quark masses are small as com-
pared to M~. This is incorrect, as is evident from
inspection of our results for Rga [Figs. 3(c) and

3(d)] in Eq. (25). Furthermore, while the calcula-
tion is easier than in the unitary gauge, where the
W-boson propagator is ( —g&„+q&q„/Ma )/(q
—M~ ), the Ward-Takahashi identities are obeyed

by only a part of the proper vertex. It is a piece of
a diagram with a 8'boson which causes violation
of the identity for the proper vertex.

Our calculation comes at a time when the mass

of the top quark —if it exists —is clearly not negli-
gible with respect to M~, and one can investigate
processes which are sensitive to it. ' Furthermore,
tests of loop corrections to the unified theory of
weak and electromagnetic interactions of quarks
are becoming feasible; these corrections as tested
through an electromagnetic (or a strong) probe,
where the subject of our investigation. Applica-

tions of our general result to physical processes

will be published elsewhere. '
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APPENDIX A: n-DIMENSIONAL
ALGEBRA AND INTEGRALS

The Dirac algebra in n dimensions (@=4 n} is a—s follows:

=Pl 1

rI r.r"=« 2)r.—

X~X Xa'a'"= —2r~r r +&X Xa'~

I rq, r& J
=0 (p=0, 1, . . . , n —1);

for discussion of the last identity see Ref. 20.
We also use

(Al)

r —=—+r (I)+O(e),2
2 E

A '~ =1——inA+O(e },
2

and the Feynman parametrization

(A2)

~i~2 ' ' Ar
=r(N) f da, f da, f daN,

X
1

(A3)
[aia~ i+a2(az z—az i)+ ax(1 —ai)]

We will now calculate the general n-dimensional loop integral,

(A4)0 "g
I(N, a) =

(2n)" (q +2q P —M )

In fact we use it here only for a=2,3 and N=0, 1,2. The integrals for these values appear in numerous

places in the literature. Nevertheless, we present the general result for readers who would like to verify our
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calculation in the unitary gauge where integrals up to I (6,a) are needed. The results for up to N=4 can be
found in Passarino and Veltman (Ref. 2), and it agrees with our general compact form in which the pole
structure is transparent [see Eq. (A9)].

We first use the identity

f

dic
(2n.)" (q +2q.P —M )

where

6=M'+P'

and

N
a-i-.n

(2m )"f'(a) o (2p)" gP
(A5)

(A6)

8 8

BPq, de,
8

BPp
(A7)

Then, generalizing the derivative relation

d
dx

we finally obtain

N(N —1) . (N 2j + 1)—
e = 2ax e

j=0 j!(4ax )J
(AS)

1)ai~~i( —1)Nf (a n/2—) (N~2lI N, a =
(2~)nl (a)~a —a/2

'J
( —1) b,

(a—n l2 —1) (a —n l2 —j) 2

where [N/2] =0 for N=0, 1 and 1 for N=2, 3 etc. and

I gJP 1
J& . . .

&
——all permutations of g gP P, (A10)

where there are j g's and (N —2j) Ps. For a fixed N and j there are (2J)(2j —1)!!term in t gJPN
I &, . . . &„.

APPENDIX 8: EVALUATION OF INTEGRALS IN X,

The renormalized off-diagonal self-energy is given in Eq. (13), with the coefficients given in Eq. (14). Us-
ing the functions f,h,f,P as written in Eq. (15) we can now calculate all the terms in the numerators of Eq.
(14).

We first define the integrals

I;= f daaln, IJ ——f daaln, I;~= f daaln (Bla)

1 Q 1 Q 1

J;= f dain, Z.= f dain, J,
&

——f dain
J J

where b, is given in Eq. (S) and

6;=6(p =m; )=Ms a+m (1—a)—m; a(1—a),
b.=b(p =m )=My a+m .(1—a)—mj a(1 —a) .

Then we define

(Blb)

E=
32m Mn

(B3)
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and obtain

f f—= . 2K—M~2I m—2KI, f f;—= 2—KM+ I; m—KI;, f; fj =— 2K—~w I;& m—KI;z,

h —h = Km—;m I, h —.h; = Km—;mJI~, h; —hj — K—m;mJI, &,

p —QI ——Kmjm Jg,2

)—J Km—;m JJ,2

QJ
—=Kmjm JJ, ting; Qq

———Kmjm J(g,

P;=—Km;m J;, P; P,—=Km;m J;, .

(B4)

The integrals I and J are easily obtained in the p,m;,m), m «M~ limit. We now present the com-
plete expressions (i.e., no small momenta or masses assumed) for I and J

r

1+x1 2 1+x2 1+x1; 1+x2 i—x12ln —x2 ln +X1+X2+X1;ln +X2 ~ ln —X1;—X2 .
2 X1 X2 x1i X2i

1+X1 2 1+X2 1+x1 1+x2I.=——x1 ln —x2 ln +x1+x2+x1 ln
' +x2 . ln

' —x1.—x2 .
J X 1 x 2 x ' x .

1,) 2,j
1 2 1+x1; 2 1+x2 iI"=——x1 ln

' —x2 lnlJ , I2 X1,r' 2

1 + 1,) , 1 + 2,J+x»+X2;+x1J ln
' +x2J ln

' —x1 —x2J
X1J 2,J

X1 X2 X1i

1+X1 1+X2 1+X1 iJ;=x1ln +x2ln —x1 ln
1+X2 i—x2;ln

X2i

(B5)

1+x1 1
J)——x, ln +x,ln

X1

+X2 1+X1) 1+x2)—x1 ln ' —x2 ln)J ~JX2 X1) X2)

with

1+x1 iJj=x, iln
X1i X2) X1J

1+x2; 1+x1)
+x2;ln —x; ln —x ln

x2)

1 —a b +[(1—a —b) 4ab]'— — 1 —a b —[(1——a b)2 4ab]—'—X1= X2=
2b 2b

x l,i
1 —a b;+ [(1——a b; ) 4ab—; ]'~ — 1 —a b; —[(1—a ——b, )2 —4ab. )'

2bi 2b;
(B6)

and

1 —a bj + [(1——a bj ) 4abj ]
'—~—

X1 j=
2b)

1 —a b —[(1—a —b) 4ab —]'~—
J J J

X2)=
2b)

7 (B6)

.2m2 p2 mib= 2, b;=
~8 ~W

m
b) ——

Mg
(B7)

From Eqs. (B4) and (B5) the coefficients in Eq. (14) are determined and X„„is obtained without approxima-
tions.

APPENDIX C: R8 HAS
NO COUNTERTERMS

In this appendix we prove that in the KM model

Ra, the part of the proper flavor-changing elec-
tromagnetic vertex which does not obey the Ward-
Takahashi identity in the 't Hooft —Feynman

I

R~
gauge, has no counterterms. In Eq. (35c) Ta ——0
and there is no right-handed counterterm. To
prove that there is no left-handed counterterm we

RG
have to show that TL [Eq. (35d)] is independent
of the intermediate mass m and therefore vanishes
when summing over intermediate quarks:

gl U;I U~J. ~e prove it here for m; =m~ (but
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with i' for the flavor of the external quarks).
The proof for general masses follows similar steps
but is longer and will not be presented here.

We have to show that [integrate Eq. (35d) over

ak for m; =mz and drop m -independent terms]

m;2(1 —a~)3—m (1 a~)—

Mw (1—az)+m a —m; a (1—a )

+2(1—aq)ln[Mw (1 —ap)+m aq

—m; az (1—az)] .

is independent of m . Define

there are no unphysical scalars and there is one R"
diagram [Fig. 3(a)] and one A& diagram [Fig. 3(e)].
Furthermore, the Ward-Takahashi identity is
obeyed, i.e., k&I" is proportional to X(p —k)
—X(p), where I" is the unrenormalized proper
vertex.

In the 't Hooft —Feynman gauge only part of
the unrenormalized vertex obeys the Ward-Taka-
hashi identity. There is a part of I & denoted by
Rg in the text, which comes from adding a part of
the diagram in Fig. 3(a) (Rg 2 in the text) to Figs.
3(c}and 3(d) (denoted by Rgw), that causes I " to
violate the identity. We will now consider the con-
straints imposed on

ma= 2'
Mw

m;
b;=

hf w2 which satisfies

(Dl)

and change variable to x=1—u&. Then we have

to show that
k„I "=e;[X(p—k) —X(p)] . (D2)

i b;x 3 —ax
dX '

x +a (1 x} bx—(1——x)

+2x ln [x +a (1 x) b;x—(1——x)] (C3)

This equation is actually equivalent to two equa-
tions since both R g 1 + A~w and Rg + A~s satisfy
an equation similar to Eq. (D2), but with an index
W, S on X(p —k) and X(p), respix:tively. Let us
write

is independent of m =aMw, where the m -in-

dependent term 2x lnlw, was dropped from the

integrand. By defining xi and x2 as the roots of
the polynomial x+ a (1 x) bx (1——x), t—he in-

tegral in Eq. (C3) can be rewritten as

where

R"=R"—Rg

(D3)

(D4)

1 1 1

X —Xi X —X2 X) —X2
j

+Zx lnb;+2x ln(x —x 1 ) +2x ln (x —x3 )

f dx x ——x

APPENDIX D: CONSTRAINTS
FROM %'ARD- TAKAHASHI IDENTITIES

En the unitary gauge the 8'-boson propagator is

( g„+q„q„lMw —) l(q2 Mw2), —

which is equal to ——,, thus completing the proof.

(C4)

and decompose R" and A" as specified in Eq. (51)
with coefficients Ai Pi" for R" and A; P; for A"
(i = 1,2, . . . , 13). Remember that these are un-

renormalized coefficients, but that all—except
those with i =6 (i.e., the coefficients of y"L and

y&R)—are equal to the renormalized coefficients.
Now since R"~ ew and A" ~ e~

——e;+ew, it is con-
venient to define the reduced coefficients

a; =ew A;, p; =ew B;
(D5)

a' =(e +ew} ~i~ 13(~=(e;+ew) 'B;

Then using Eq. (51) we obtain

P I ( + w ai + wal ]k pf+ [(e1+ew)(a2 +ay )+ew(a2 +a5 ) jpfk

+[( '+ w}(a3 +as }+ew(a3 +as )]~p.k +[(e;+ew)(aii+a13)+ew(aii+a13)]k

+ [(e;+ew)as +ewa6 ]0+[(e;+ew }(a&+a7 )+ew(a& + a& )]gk

+[ '+ w a9+ wa9&& +[(e +ew)aio+ewaio]&l(}

+[(e +ew)a12+ewa12]k'p jL+ I a; ~13,", a; ~p; jR . (D6)
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(D7)

From Eqs. (D2) and (12) we have

k&I "=el[(f f)—PL +(h —h)PR fg—L —hkR+(g itl—)L +(P P—)R],
where f(p ), h(p ), f(p ), P(p ) are given in Eq. (15), and f=f [(p —k) ], h=h[(p —k) ], P=g[(p —k) ],
4 =A[(p —k)']

Therefore, (1) 2 10 and Bio are zero for all the parts of I ", except for Rg, since there is no gp term in Eq.
(D7). (2) Only A6 and B6 require renormalization, since only the coefficients of kL and kR are infinite in

Eq. (D7). (3) By comparing Eqs. (D6) and (D7) and by equating the coefficients of e; and el', we find that
the reduced coefficients obey the following constraints:

aik.p+(a2+as)k = —aik p —(a2+as)k =f—f
I 1 k P+(P2 +165 )k Pl k P (P2 +Ps )k

(as+as )k p+a6+(a4+a7)k +a9p = (a3—+as)k p —a6 —(a4+a7)k —a9p = f, —A A . A A h 2 h 2 R R . R R R 2 R 2

(P3 +P8 )k P +136 +(P4 +P7 )k +P9P (P3 +PS )k P P6 (P4 +P7 )k P9P

(aii+ 13)k + 12k'P= —(aii+ai3)k —a1k2'p=g

(Pll+P13)k +P12k p = —(Pji+Pj&)k' —p»k p =p —p .

These equations hold for the reduced coefficients
of R" and A"ii, and of Rg and A~s. In these cases
we have in Eq. (D8) for the W contribution

f= I daa ——ln
2

—I"+1ig2 ~ 2

16m 0 & 4mp

tively.
We now relate the counterterms in the proper

vertex function to the self-energy:

~„,. =~„+TI.y„L +TRy„~ .

We define
h=0

~ 2

f f= J da—a ln —,
167r

Ii —h =g —1)'r=P —/=0,

(D9)
G

~p, , ren =~p, ren ~ p. (D12)

This part of the proper vertex satisfies the Ward-
Takahashi identity for the renormalized quantities,
i.e.,

and for the S contribution

32 Mg 0 & 4np.
k"I

q „„e;[X„——„(p —k) —X„„(p)].

From (D13) and Eq. (13), we find

Tl. ———e;C

(D13)

(D14)

ig m;mjh= ' f daa ——ln +I"
32 Mg o 6' 4np. and

TR ———e;D, (D15)

32 Mg. 0 b,

ig m;mj
h —h =

2
daaln=,

327r Mii o

(D10)
where C and D are defined in Eqs. (14a) and (14b).

If we separate the contributions to self-energy
from W and S so that

Cw+Cs (D16)

ig mjm 1

da ln
32m M 0

ig m;m
da ln —,

327r M 0
Yr

where 5, b, are defined in Eqs. (8) and (45), respec-

D D W+DS

we then obtain

Rw& W W
yeW = —T'L

Rs As S
TL ~e 14' Tl. ~el

(D17)

(D18)
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wleg = T—Il le) =D

T~ /ew ———T~ /ei ——D

These relations have been verified as a check on
our calculation.

We now show the equivalence of results of our
renormalization scheme to those computed by add-

ing only unrenormalized diagrams. A flavor-
changing electromagnetic transition q; —+qJ + y is
given by the unrenormalized vertex:

yJ I l+yJ
where

X'~, = e; X'j(p——k)(p —It —m; ) 'y„,

(D19)

(D20)

Xpj 2 e) y———p(p —mj ) 'X'J(p), (D21)

Rather lengthy but straightforward algebra shows

that

EJ lj ren ren
~p, ren I on-shell =[~p, ren+ Xp, 1 +Xp, 2]on shell

=~p, ren I on-shell = I p ~
on-sheU

I

Thus I
& „„on-shell is equivalent to the sum of a

rather large set of diagrams involving proper ver-
tex diagrams of Fig. 3 as well as self-energy di-

agrams with photon emission on the external legs.
Computation of I pj „„is rather simple because of
the constraint k"I&'"——0 on-shell. Note that both

Vp and Vp„..Off-shell are gauge-dependent quanti-
ties, but on-shell they are gauge independent.

APPENDIX E: THE ON-SHELL
DECOMPOSITION OF

THE VERTEX FUNCTIONS

In Eq. (51) we defined a general decomposition
valid for each term [see Eq. (49)] in V"„„. It is

easy to show that when the quark i (the incoming

quark) is on-shell, then the decomposition into 26
functions turns into a 16-functions decomposition

as follows:

[A3kpp+A4kkp+(As+8, om;+A, m; )y"+A7y k +A, ypk p

+( —B,m;+A„)y It+(8, ;+Al2)p +( 82m, +28, m, +Al)3k]p I
+[83fpp+84)kp+(86+Alom;+Bgm; )y"+87y"k +B&y"k p

+( —A&m;+Bll)ypk+(A, m;+8, 2)pp+(A2m;+2A, m;+8»)kp]R . (El)

When the outgoing quark j is on-shell we obtain

[(Al+A3+2A5)Itpp+(A2+A4)kkp+(A6+Agm, Alomj—)y"

+(A5+A7 —Ag)y"k +(— 2A5+As+2 A)gypk p+( —mJA3+Alo+All)ypg
+(A lmj +2A la+A l2)p" +(mJA2+2mJA5 —2A la+A l3)k"]L

+[(Bl+8,+28, )kp p+ (8,+84)kk p+ (86+Bgm, ' 8

lorn,

)y"—
+(85+87 Bg)y"k +(——285+Bs+28g)y"k p+( —m 85+Blo+Bll)ypg
+(Blm +28,0+8,2)p" +(mJB2+2m 85 —28lo+Bl3}k"]R . (E2)

When both I'. and j are on-shell, we find a decomposition into six functions multiplying p&,k&, and y& for
the left and the right part of the vertex,

[(8l +83+285 )m; —A 3m' +A l2
—2A l l ]p"+ [(82+84)m; —A4mj +A l3+2A l l

]k"'

+ ( 85mj+Blo—+B»)m;+( —A&+Ag)m; +A6+A»mj+A7k + (m; —mi +k ) y" I.2 2 8 2 2 2

+ [(A l +A 3 + 2A 3 )m; —83m +8l2 —28ll ]pp+ [(A 2 +A4 }m; 84m +8l3—+28ll ]k"

i ( A5mj+A»+A—»)m +( 83+Bg}m; +8—6

+Bllmi+87k2+ '(m;2 —mi2+k2) yp R. (E3)
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We can reexpress the last equation in terms of y", trt'"k„, k" instead of y", k", p" by using

iW k„y"m; y"m)
pI'L = L+ L+ R+ L,

2 2 2 2

kI iW'k y I'm; y "m

2 2 2 2

In the limit of small external masses and momenta one recovers the results of Ref. 10.
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