
PHYSICAL REVIE% 0 VOLUME 26, NUMBER 9 1 NOVEMBER 1982

Mass scales in grand unified theories

R. W. Robinett
Department of Physics, Uniuersity of Wisconsin M—adison, Madison, Wisconsin 53706

Jonathan L. Rosner*
School of Physics and Astronomy, Uniuersity of Minnesota, Minneapolis, Minnesota 55455

(Received 6 May 1982)

Explicit expressions for the upper and lower bounds for all unification mass scales in
allowed breakdowns of SU(5) and SO(10) are reviewed. All breakdown patterns of E6
through maximal subgroups are catalogued and bounds on the mass scales in such chains
are derived. In all cases but one, the mass scale characterizing proton decay is at least as
large as in SU(5). The dependence of the bounds on sin 8& is examined and all bounds
are found to be members of a single-parameter family whose significance is discussed. A
weak-SUL, (2) scale parameter A. is introduced in analogy with the strong scale A3 and
the unification masses are found to depend simply on A2 and A3 in a certain approxima-
tion.

I. INTRODUCTION

Grand unified theories (GUT's) (Ref. 1) of the
strong, weak, and electromagnetic interactions
make predictions of new physics at mass scales
larger than that of the massive electroweak bosons.
The group theory involved in the determination of
the spontaneous-symmetry-breakdown patterns,
fermion mass relations, etc., however, only deter-
mines the relative order of any new mass scales.
Georgi, Quinn, and Weinberg showed how to ap-

ply the renormalization group to the running cou-
pling constants of the constituent subgroups to
derive expressions for the mass scales of GUT's in
terms of the breakdown chain, the fermion content,
and the low-energy values of the couplings. Appli-
cation of their method to the SU(5) GUT of Geor-
gi and Glashow not only determines the single un-

ification scale M„but also yields a prediction for
sin 8n as a consistency condition. Because of the
restrictive nature of this minimal model, no new
parameters (apart from Higgs-boson masses and
the t-quark mass) are needed and (reasonably) pre-
cise predictions for all new processes, e.g., proton
decay, are calculable in principle. Thus, the mass
scale relevant to any new physics (M„) and the
electroweak unification (sin 8tt. ) are inextricably
related.

Application of the renormalization techniques,
using the currently accepted low-energy inputs
(especially sin 8+ ), to the basic subgroup coupling
constants without regard for the actual pattern of

symmetry breakdown, however, allows for the ex-
istence of two disparate mass scales. The SU, (3)
and SUL (2) couplings become equal at a different
scale than do the SUL (2) and U(1) couplings. The
unique SU(5) superheavy mass is recovered only by
using the SU(5) prediction for sin 8tt. .

Larger unification groups such as SO(10) and E6
naturally exhibit two or more mass scales as the re-
sult of partial unifications and may allow a less
restrictive relation between parameters; how rigidly
are unification masses and sin 0~ connected in
these theories? More than one mass scale may also
allow us to confirm grand unification structure at
energy scales below superheavy values; how are
these mass scales constrained? As we will see, pre-
cise predictions for mass scales (and thus process
rates) cannot in principle be made, but allowed
ranges for such quantities are calculable.

If we restrict ourselves to a one-loop approxima-
tion to the P functions of the running couplings,
explicit formulas for the upper and lower bounds
of the partial-unification scales can often be ob-
tained. If we also neglect the contributions of
Higgs scalars to the P function (in general different
for different groups and breakdown patterns), we
can more easily compare the natural mass scales in
models based on different groups. We will use
these approximations throughout this paper.

In Sec. II we review the familiar SU(5) grand
unification model and how the coupling-constant-
renormalization analysis gives information on the
unification mass scale. In Secs. III and IV we re-
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Considering the minimal rank-4 simple or
powers of simple groups containing

SU, (3)XSU(2) XU(1), Georgi and Glashow
showed that only SU(5) is consistent with grand
unification. It has the simple spontaneous-
symmetry-breakdown pattern

SU(5) SU, (3)X SU(2) XU(1)
2M„

SU, (3)X UFM(1)
p=2Mw

(2.1)

view the structure of unified models based on
SO(10) and E6 and use the renormalization argu-
ments to derive explicit bounds on many of the
new mass scales present in the allowed breakdown
patterns of these groups. We also comment on the
approximate values for new process rates, especial-

ly proton decay, in these schemes. We then collect
in Sec. V the mass bounds found previously and
find that they are all members of a one-parameter
family. We discuss the significance of this fact in
relation to the possible existence of partial-
unification mass scales different from M„.

In Sec. VI we investigate the relationship be-

tween the unification masses and the natural di-
mensional parameters of non-Abelian gauge
theories, the scale parameters A. Defining a
weak-SU(2) scale parameter A2 in analogy with the
strong scale A3, we find simple relations between

A2, A3, and the various unification scales in an ap-
proximation where fermions can be ignored.

II. SU(5) MODEL

=a; '(p')+
4m

(2.2)

with a;:g; l4—tr, 5,sC2(G;)=f,',gfb, d,
5,b T(R; ) =Tr(t,'tb ) (where t' are the matrices
which represent the generators in the relevant fer-
mion representations), Po =

3 [11Cp(G ) —4T(R')],
and t =ln(Q I)tt ).

The fermions of the theory are contained in N
5*+10representations of SU(5), i.e., N copies of
the lowest (u, d, e,v, ) generation. Calculation then
glveS

N xM
a1 ——a GUM + ln

3m'
(2.3)

—1 —1a2 a GUM
22 —4X

12'
M„

Mg
(2.4)

the coupling constants of the constituent sub-

groups, all equal at unification, are different at
momentum transfers corresponding to current lab-
oratory energies because they are renormalized dif-
ferently. As pointed out in the Introduction, we
will explicitly consider only a one-loop approxima-
tion to the )33 function, take all thresholds to be 8
functions, and will neglect the contributions of
Higgs scalars. The running coupling constants in
this approximation can be written

a; '(Q') =a; '(p')

11C2(G;)—4T(R;) Q2
ln

12'7T p,

(see Fig. 1) and only one new mass scale M„.
As Georgi, Quinn, and Weinberg pointed out, —1 —1a GUM

33—4% Mx
ln

12m

(2.5)

where p =2M~ is the renormalizatiori point, unifi-
cation occurs at Q =4M„, and aoUM

' is the

coupling at unification. We introduce the notation

a; '=a; '(4M~ ), (2.6)

that is, any inverse coupling is to be understood as
being evaluated at @=2M~ unless stated other-
wise.

The Weinberg-Salam (hereafter WS) model s

an'd SU(5) normalization give

2Mw )~ (g2lp2) 2M „
FIG. 1. Running couplings a; '(Q2) =(g;~/4')

versus t=ln(Q lp ) in one-loop approximation for
SU(5)~SU (3)X SUI. (2) XU(1) breakdown.

and

a2 =aEM s1n L9gr =a x—1 —1 2 —1

a:—a EM
——a2 + —,a1

(2.7)

(2 g)
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where we have defined

=aEM aEM (4M%
—I —I —I 2 (2.9)

(2.10)

(2.11)

2

a (3—8x) = ln
55

6m
(2.12)

x—:sin Ogr =sill 0~(4M@ )

as above.
Using the running couplings, Eqs. (2.3)—(2.5)

and Eqs. (2.7) and (2.8), there are seen to be two
useful combinations of the low-energy input data

28, 11
CX —3Q3 = ln

2~ ~w2

where we have taken a value of A =0.2 GeV (de-
fined with four quark flavors ' ). Ellis et a/. re-
viewed the deep-inelastic-scattering data and use a
value of A =400 MeV (with a possible factor-of-2
uncertainty) in their analysis of the proton lifetime.
Recent analyses of the gluonic width of the Y in-
cluding radiative corrections by MacKenzie and
Lepage" give a value of

A =100+25 MeV . (2.17)

We choose to straddle the fence and use a nominal
value of A =200 MeV for numerical estimates but
we intend to keep track of the A dependence in all
mass scales we find.

Using these values we find
100/99

M„=M~ exp (a ' ——,a 3 ')
11

(2.13)

These two combinations are seen not to depend on
N or a|-UM ' and provide constraints on the
relevant new mass scale. These two combinations
will always have these properties whenever T(R; )

is the same for all constituent subgroups. A fer-
mion assignment for which all particles in a single
representation remain massless down to the WS
breakdown will always satisfy this requirement.
[Suitably generalized to larger groups, Eqs. (2.11)
and (2.12) will be used to set upper and lower
bounds on the unification scales that appear in the
SO(10) and E6 models we will consider in Secs. III
and IV.]

Combining (2.11) and (2.12), we find the well-

known SU(5) one-loop predictions

M =8.6&&1014
200 MeV

X5 ——Sin OW

=0.204 —0.0057 ln
A

200 MeV

—I+GUM
33—4N

66

16N —33
99

and with N =3 generations

+GUM
——42. 1 .—I

The coupling at unification is then

GeV,

(2.18)

(2.19)

(2.20)

1 5
X =X5= +

6 9

—I
CX3

(2.14)

The total rate for proton decay has been estimat-
ed by many authors and a mean of some results'
gives

=128.3 . (2.15)

Similarly, we estimate the strong coupling to be
'2

12m 200 MeV
(2.16)

Using one-loop /3 functions and 8-function
thresholds for the three generations of observed
fermions, we can estimate the strong and elec-
tromagnetic couplings at the renormalization point.
Using m„=md ——300 MeV, m, =500 MeV,
m, = 1.5 GeV, mb ——5 GeV, m, =25 GeV, and a
nominal value of Mw ——80 GeV, we find that

M
a '=a '(0) ——g Qf ln

3'7T f mf

4

=4.5g 10sv(s) 30+|.3 M. (GeV)
146y10"

2~ 1031+1.3 A

200 MeV,

4.04

yr (2.21)

sin 8~(exp) =xo ——0.23+0.01

in fair agreement with the one-loop SU(5) predic-
tion. Higher-order effects ' ' [one-loop effects
in the extraction of sin Ow from experiment and
two-loop effects and the contributions of Higgs
scalars in the SU(5) renormalization-group analy-

in our one-loop approximation.
Kim et al. ,

'
by analyzing neutral-current data,

found that
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ses] serve to enhance agreement further. Marciano
and Sirlin find, for example,

sin28~(exp) =0.215+0.012,
(2.23)

sin Og (SU( 5) )=0.212

for A =0.2 GeV, remarkably successful agreement.
Such effects also reduce the value of M and the

same authors find a reduction by a factor of 3.2 in
the superheavy mass scale, leading to a proton life-
time some (3.2) =100 times shorter. As mentioned

I

previously, we ignore such effects in order to better
compare the patterns of mass scales in theories
based on different groups. These more refined re-
sults then give some estimate of the numerical ef-
fects of such an approximation.

If we simplemindedly ask, however, where the
renormalized coupling constants become equal
(pairwise) independent of any definite
spontaneous-symmetry-breakdown pattern, we ob-
tain

al (4M12 )=a2 (4M]2 ) ~M12=Mw exp a (3 8x)
—1 2 —1 2 37K

55
(2.24)

a2 '(4M23')=a3 '(4M23') ~M23=Mwexp (a 'X —a3 ')
11

(2.25)

We find two different scales, both explicitly depen-
dent on x =sin 8~, reducing to the unique SU(5)
M„only when the SU(5) prediction for sin 9~,
x5 ———,+ (Sa3 ')/(9a '), is used. If the experi-

mental value of xp=0.23 is used instead, we find

~12 9.5 g 10' GeV and Mpg ——2.4)& 10' GeV
and a large range of unification mass scales are
present when the restrictiveness of the SU(5) GUT
is relaxed. Equivalently, we see how sensitively the
unification scale depends on x.

In groups larger than SU(5) where various par-
tial unifications can occur before the ultimate

grand unification such different scales, depending

explicitly on the value of x, arise naturally. Using
our one-loop renormalization approximation, we
can find explicit expressions for these natural mass
scales and analyze their dependence on the inputs,
especially x.

I

group admits complex representations. Each ob-
served generation of fermions can be placed in a
single irreducible representation, a 16-dimensional
spinor with the SU(5) decomposition

16=10+5*+1 (3.1)

with the additional field, a neutral lepton 1VL, na-

turally allowing for the possibility of a finite (and
naturally small) neutrino mass. ' The gauge bo-

sons, as always, are assigned to the adjoint repre-
sentation, in this case a 45.

Since SO(10) contains SU(5) as a maximal sub-

group, it is natural to think of it as an extension of
the minimal GUT model, but SO(10) also has a
completely different breakdown scheme through
maximal subgroups not containing an SU(5) sub-

group but still leading to an acceptable low-energy
phenomenology, i.e.,

III. SO{10)MODELS
SO(10)~SUL(2) x SUg (2) X SU(4) . (3.2)

In searching for GUT's based on groups larger
than SU(5), one can analyze all (or many) simple
groups (or powers of simple groups) for various
desired properties (e.g., the correct low-energy sym-
metry and representations, ' cancellation of
anomalies, '5 etc )and inv.estigate those (presumably
of low rank) with any combination of the relevant
features.

Of the next higher rank 5 candidates for grand
unification, SU(6), Sp(10), SO(10), SO(11), and

[SU(2)], only SO(10) seems to be a viable candi-
date while satisfying many of the desirable criteria
mentioned above. ' Any SO(n) group (n+6) is
automatically anomaly-free while any SO(2n)

The eventual restoration of parity invariance

[SU+ (2)] and enlargement of the color group
[SU(4)] imply the existence of two separate mass
scales below the ultimate grand unification. The
determination of the magnitude of these scales is
important to the discussion of predictions of new
allowed processes (right-handed weak interactions,
EL ~p+e, neutron oscillations, ' etc.).

The question of which breakdown is favored in a
minimal Higgs scheme (which direction in group
space gives an absolute minimum in the Higgs po-
tential) has been examined. ' Both patterns are al-
lowed for a wide range of the undetermined
Higgs-boson couplings. We will examine the mass
scales in both.
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A. Breakdown through SU{S)

The symmetry-breakdown pattern for this case is

SO(10) SU(5) XU»(1)
2M„

SU, (3)XSU&(2) XU(1)XU,(1)
2)If

To apply the renormalization analysis of Georgi,
Quinn, and Weinberg, we need to be able to ex-
press a ' in terms of the coupling constants of the
constituent subgroups. Georgi and steinberg
have shown that the generalized Gell-
Mann —Nishijima relation

SU, (3)XUFM(1) .
p =2M w

(3.3) Q=QPD; (3.9)

Under the restriction to SU(5), the adjoint 45
reduces to

[where D; are the diagonal operators combining to
form the UEM(1)] implies that

45 =24+ 1O+10*+1 (3 4) ~ —1 gp2 —1 (3.10)
and the 10+10*contain new superheavy ( -M„)
proton-decay-inducing bosons XD, Y' (with charges
2 1

—,, ——,), heavier (since M„&M„) than the X, Y of
the SU(5) 24. The SO(10) symmetry can be broken
down at 2M„ to SU(5) directly via a 16 or 126 of
Higgs scalars giving masses to the members of the
10+10*while also giving mass to the neutral bo-
son in the additional U»(1). If broken down to
SU(5) XU»(l) via an adjoint 45 of Higgs scalars,
the U»(1) symmetry can remain unbroken down to
near the %S scale with its associated boson gaining
its mass via an SO(10) 16' which has nonzero Q»
quantum numbers. [For a discussion of the low-

energy electroweak phenomenology including the
extra U»(1), see Masiero and Robinett and Ros-
ner. 2']

If the fields of the 16 are represented by
1

I ~i~z~3~4e5 ) (3.5)

with e; =+1, g, , e; =—1, then the unnormal-

ized 7-charge operator is given by

(3.6)

Q»(1)= ~ Q» 10)

(3.8)

so that
1 1 1 1 11=

I

--, --, --, --, --, ), Q. - -5
10=

I

——, ——,——,+ —,+ —, ) +perm utations,

Q» cc —1 (3.7)
=

I

——, + —, + —, + —,+ —, ) +permutations,

Q»cc+3.
Normalizing the Q» in the same way as the other
constituent subgroups of SU(5), T(R») =Tr(T»T»)
=1 per SO(10) generation, gives

Thus, charge assignments suffice to determine
(3.10) in each case. Note also that at unification

S1I1 ()W g pi (3.11)

Application of (3.9) to members of the 16 shows
that p» ——0 so that

a =+2 + 3+i (3.12)

the same coupling-constant relation as in the SU(5)
case. Thus, the U»(1) (even if unbroken down to
near the WS scale) effectively decouples from the
renormalization-group analysis and since the renor-
malized couplings (2.3)—(2.5) are unchanged, the
predictions for M„and sin Hii. obtained previously
still hold. Only the natural ordering M„&M„ then
constrains M„and no new intrinsic mass scale ap-
pears in this breakdown.

Since the gauge bosons whose mass is generated
at 2M„can also contribute to proton decay, the
lifetime in this scheme, ~z

" ', may be somewhat
smaller than v~

' ' if M„=M„(Ref. 24) while if
M„&&M„,we obviously have ~z

" '
Because of the perhaps inevitable uncertainties in
any total rate calculation (due to the present intrac-
tability of the strong-interaction processes inside
the proton), possibly the only way to distinguish
between these tmo cases will be to measure ratios
of partial decay rates or final lepton polariza-
tions which are sensitive to the operator structure
of the interaction Hamiltonians, different for the
SU(5) and SO(10) models. In fact, Weinberg has
compared the present situation to the experimental
determination of the operator structure of the weak
interactions in the 19SO's. Accurate measurements
of such quantities, however, would have to wait for
a third- or fourth-generation detection experiment.
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B. Breakdown through SUI. (2)&(SU&(2)XSU(4)

The other spontaneous-symmetry-breakdown
chain of SO(10) that leads to an acceptable low-

energy flavor and color group is

SO(10)~ SUL, (2)X SUa (2)X SU(4)
2M„

~ SUL (2) X SUa (2)XSU, (3)XU4i(1)2' 4)

~ SU, (3)X SUI (2)X Ug (1)XU4, (1)
2m21

SU, (3) XUEM(1)
p =2Mw

(3.13)

(illustrated in Fig. 2).
Various Higgs structures' allow either the SU(4)

or SU&(2) to be broken first and the results of a
one-loop renormalization analysis are identical in
either case so the only a priori constraint on the
mass scales is M„)m21, m41 )M~.

The decomposition of the fermion representation

16=(2;1;4)+(1;2;4*) (3.14)

illustrates the I.-R symmetry with the assignment
r

tli di

(2;1;4)=
Qz dp

Q3 d3

v e I,

(3.15)

for the first generation. The decomposition of the
adjoint representation is

45= (2;2;6)+(3;1;1)

(1;3;1)are a triplet of right-handed IV+-0 fields
which mediate weak ( V+A) interactions and ac-
quire their mass at 2m&i-2Mii . The (1;1;15)
contains the gluons and a gauged 8 L—(Ref. 28)
symmetry, while its off-diagonal, fractionally
charged, leptoquark bosons, 8-+, acquire mass at
2m 41

—2M'.
Many authors ' have considered models with

parity restoration (not necessarily in the context of
grand unification) and derived limits on the masses
of the right-handed analogs of the Wl-+, Zl by con-
sideration of such electroweak processes as neutri-
no neutral currents, parity nonconservation in
atoms, polarized ed scattering, forward-backward
asymmetry in e+e —+p+p, p decay, and the
El -Ez mass difference. Most of these analy-
ses ' find that the right-handed bosons need
only be 3—4 times heavier than their left-handed
counterparts. Considering the last process men-

tioned, however, Beall et al. claim that
M~ & 1.6 TeV. The 8 leptoquarks can mediate

unobserved lepton-number-violating processes such
as El.~p+e . Lower bounds on the order of 100
TeV have been set on m41-M~ by considering
that process. The corresponding limits on the
partial-unification mass scales obtained through re-

normalization arguments will be seen to be much

larger than these.
We can write expressions for the low-energy

values of the coupling constants (again using one-

loop P functions, 8-function thresholds, and ignor-

ing Higgs scalars) renormalized from their com-

mon value at unification:
r

(3.16)

with the bosons in SO(10)/SUL(2)XSU&(2)
X SU(4), i.e., in the (2;2;6) mediating proton decay
and having —.M„masses. The bosons in the

—1 —1+I. 0 GUM

—1 —1+R +GUM

22 —4X ~u
ln

12n

22 —4X
ln

12K m 21

(3.17)

2
m21

1n
3m'

(3.18)

—1 —1+3 +GUM
44—4X

ln
212m m41

g I{Q2)

L

33 4X m41
ln

12m'
(3.19)

—1 —1
&41 &GUM

44 —4N
ln

12m

2M~ 2N2i ) {gR~~2) 2~~|
FIG. 2. Running couplings for SO(10)

~SUL, (2)XSUg(2) XSU(4) breakdown.

2M„ 2

ln
3m'

(3.20)
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where N is the number of 16's used to accommo-
date the fermions. As before, the contributions of
fermions to all Po are equal, ensuring no N depen-
dence in the mass constraint relations.

The diagonal operators that combine to generate
the UEM(1) are TI, Tz, and

—1 —1 —1 2 —1
CX AL +CXR + p Q41 (3.22)

[giving sin Os ———, at unification, by Eq. (3.11), as
it must].

The useful combinations of low-energy inputs
are then given by

8 1 11
3 Q 3 1n

3m

2M„m 21

Mw
(3.23)

1
T41

—3

21 m41
3 4

a '(3 —8x) = ln
M„Mw

(3.24)

Q=TI. +Ts+( —, ) T4)

so that by Eq. (3.10) we have

(3.21)

[with T4~ in an SU(4) basis] where a (1;1;15)&45
must develop a nonzero vacuum expectation value
(VEV) in the T4~ direction in order to break SU(4)
down to SU, (3) and generate the U&&(1). Fermion
charge assigments then give

or combining (3.23) and (3.24)

2
Mg

n x —(x3 —— ln
6n. Mwm41

(3.25)

The constraints are not sufficient to specify exact
predictions for the three masses, but the relations
(3.23) and (3.25) along with the ordering con-
straints, M„)m4~, m2&, do yield definite upper and
lower bounds on all three mass scales,

8
Ms exp (a 'x —as ') &M„&Ms exp (a ' ——,as ') (3.26)

—1
6m 2& 3

M~ exp (a x —as ) )m4~ &M~ exp a (1—3x)+
11 11 3

(3.27)

M~ exp (a ——,as ) )m2~ &Mg exp [a (1—4X)+ —,as ]
77 1 8 3K 1 4

(3.28)

(Similar results have been obtained by other authors. ") One must remember that these upper and lower
bounds are not independent, e.g., M„and m41 attain their maximum values when m21 is a minimum. We
find that three new scales appear in this breakdown, all depending explicitly on x =sin Ow. Because there
are four outputs to be determined, M„, mq~, m4~, and aoUM ', a value of sin 8+ must be used as input
along with our estimates for a ' and as '. It is important to note that if the one-loop SU(5) prediction for
sin Ow is used,

1 5&3
X —X5 — +

6 9 ~ —'

then all of the bounds in (3.26) —(3.28) converge to the SU(5) M„. It is only if we choose a value of x & x&

that we have any chance of having a partial unification in the "desert" between M~ and M„. If we use the
lowest-order, experimentally determined value, x =xo ——0.23, then we obtain the numerical estimates

2.4&10' A ' 10+ GeV&M„&8.6)&10' A' GeV,

2.4x10' A "10+ GeV & m41 & 3.1)(10' A 10 ' GeV,

8.6x10' A' GeV&m21) 1.1)&10' A 10 ' ' GeV,

(3.29)

(3.30)

(3.31)

where we explicitly display the A and x dependence of each scale with A =A/200 MeV and M =x —xo.
The overall grand unification scale M„ is then restricted to lie between the usual SU(5) value and a mass

at most some three orders of magnitude larger. The partial-unification mass scales are both far above the
best empirical limits and direct evidence for their existence will be difficult to obtain. In fact, using these
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bounds, we can estimate the right-handed contributions to charged-current weak processes to be
'2

a~- iV~—1 2

( 10—33' 200/33 10+76/~
&R W~

'M
I

and the rate for KJ ~p+e due to B-boson exchange at

I (Ez ~p+e ) (4 + 10—40' 100/9910+382M
I (KL ~all)

The value of BEGUM ', the coupling relevant for proton decay, can also be bounded so that from Eqs.
(3.26) and (3.17) we find

(3.32)

(3.33)

33—4X
11

22 —4E
11

e3 & O'm
33—4E 1 16N —33

66 99
—1

Q3 (3.34)

and with E =3 generations

48.4 & Q~UM & 42. 1 (3.35)

dimensional representation while the lowest-
dimensional E6 representation, the 27, contains the
fermions. The restriction to SO(10),

%hile an exact calculation of the proton-decay
rate has not been performed in this case, the main

dependence comes from the coupling and propaga-
tor factors as always, I &x (aoUM/M„), so that
using SU(5) matrix elements we can estimate that

SO(10),B

1 ( p (8 )( 109' 500/9910+382duc
sU(si

Tp

(3.36)

IV. E6 MODELS

Of the 12 (up to isomorphism) rank-6 simple or
power of simple groups, E6, SU(7), Sp(12), SO(12),
SO(13), [SU(4)]', [SO(7)]', [Sp(6)]', [Gp]', [SU(3)]',
[SO(5)], and [SU(2)], the groups SU(7) (Ref. 35),
SO(12) (Ref. 36), and E6 (Ref. 37) have been con-
sidered as candidates for grand unification. If we

associate SU(5) with "E&"and SO(10) with "E5"
(as suggested by Dynkin-diagram language), then

E6 is a natural extension of the sequence and we
will consider only it and its allowed breakdown
schemes.

E6 is the only exceptional group that is
anomaly-free in all representations and that allows
complex representations. The extra rank of E6 can
lead to up to four symmetry breakdowns and we
might expect a wider range of allowed values for
the associated mass scales.

The gauge bosons are placed in the adjoint 78-

Both here and in all but one of the E6 models we

will examine, the SU(5) prediction sets a lower

bound on the proton-decay lifetime, with lifetimes

allowed to be much longer.

+ + (4.1)

shows that the usual SO(10) generation is accom-
modated, while a further restriction [to SU, (3)
X SUI (2) X SUR (2)] gives

10=(3;1;1)+(3*;1;1)+(1;2;2). (4.2)

The fermions in the 10 are assigned the quantum
numbers of a Q = ——, quark, h (and h), a charged

lepton, E (and E+), and two corresponding neu-

tral leptons, v~ and E~. The SO(10) singlet con-
sists of one component of a neutral lepton n .

If the fermions in the 10+1 somehow acquire
superheavy (-M„) masses, the relevant fermion
spectrum is the usual one, E SO(10) generations.
If, however, the full E6 27 remains massless down
to the WS breakdown, then two such 27's suffice
to give a six-quark model. The extra quarks in
each 27 are then associated with the b quark and
an as yet undiscovered b', giving a model with no
top quark. Such models, with the b quark in an
SUI (2) singlet, make clear predictions for 8 de-

cays; fewer nonleptonic decays and more
B~Xl+ l than the usual assignment. Experimen-
tal determination of' the branching ratios for
B~Xl v and B~Xl+l, however, almost com-
pletely rule out such an assignment. Thus we need
three complete E6 27's to accommodate the known
fermions.

Since the spontaneous-symmetry-breakdown pat-
terns of E6 (Refs. 40 and 41) have not been as ex-
tensively discussed as either those of SU(5) or
SO(10), we will tabulate all breakdown chains
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through maximal subgroups that lead to an ac-
ceptable low-energy color and flavor group
[SU,(3)X SU& (2) plus U(1) factors] and acceptable
fermion content. We will then analyze the con-
straints placed on the resulting mass scales by the
familiar coupling-constant renormalization argu-
ments.

In these larger groups, the Higgs scalars are as-

signed, in general, to representations of larger di-
mension than in SU(5). Their numerical effects on
the renormalization-group analysis can then, in
principle, be much more important than those
mentioned in Sec. II. Similarly, the additional fer-
mions beyond those in the SO(10) 16 can also in-

crease the importance of two-loop effects. Ellis
et al. have discussed the effect of additional
5+5* fermions (such as those in the E6 27) in
SU(5) and find that each such additional set (three
of which are needed in E6) introduces an uncertain-

ty of -3 in M~.

A. Breakdowns through SG(10)

There are two acceptable schemes beginning
with

E, ~ SO(10)XUg(1),
2M„

(4.3)

where the SO(10) symmetry is subsequently broken
down as in Secs. III A and III B. In both cases it
can be shown that the fermions not in the 16 of
SO(10) can acquire superheavy masses and effec-
tively decouple from any one-loop renormalization
analysis. In this case N E6 27's give the usual N
SO(10) generations and the renormalization-group
equations for constituent subgroups are the same
as in Secs. II and III B. If it is chosen not to give
the 10+1 fermions superheavy masses, calculation
shows that T(R; ) =3%6/2 (N6 the number of E6
27's) for all subgroups appearing in these break-
downs, so that this assignment is also natural, i.e.,
it leads to no E dependence in the mass constraint
equations.

Slansky42 has given the relative value of the f
quantum numbers for many E6 representations.
Normalizing Q~ in the same way as all other U(1)
charges in E6 then gives

1 —2
Qy (L6)= ~, Qg(10) = ~

(4 4)
Qy(I)= ~

for members of the 27. The l( operator is not in

the linear combination of neutral generators which
make up the electric charge operator. Thus the
coupling-constant relations (2.8) and (3.22) for the
two SO(10) breakdown schemes are unchanged by
the presence of the U~(1). It therefore decouples
from the renotmalization analysis and all the mass
bounds of Secs. III A and III8 still apply. No new
mass bounds beyond those discussed already ap-
pear.

B. Breakdown through [SU{3)]'

The next acceptable breakdown is

E6 ~ SU, (3)X SUL, (3)X SUg (3)
2M„

SU, (3)X SU, (2) XSU„(3)X U& (1)
2m] 1

~ SU, (3)XSUL, (2)XSUg(2)
2m2

x U, ,
(1)x U&, (1)

SU, (3)XSU&(2) XU, (1)
2m 3

XUL, (1)XUR, (1)

SU, (3)X UFM(1) .
@=2M~

(4.5)

a'(Q )

2M~ 2 ~ p ~ 2 2M„

FIG. 3. Couplings for E6~[SU(3)] breakdown.

(See Fig. 3 for a coupling-constant diagram. )

The order in which the SUI ~(3) break into
SUL ~ (2) XUL, ~ (1) is irrelevant in a one-loop

calculation, so the only a priori constraints
on the masses are M„&m ~ & M~ and
M„&m2 &m3 &M~. Economy in the use of
Higgs scalars would suggest that both break to-
gether, i.e., m&

——m2, which might be accomplished
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(4.6)

by giving the (1;1L,'Sa) and (1;8L,'la) of an E6
78 the same VEV. We consider the more general
case described above.

The decomposition of the adjoint in this case

78= (~8;1L,'1]])+(~1;~8;1g )+(~1;1L,,'81] )

+ (~C ~ 3L « 3R )+ (~~ l 3L i 3R )

shows that the gauge bosons in E6/[SU(3)], the
(3;3~z;3~) and (3';3~;3a), which are responsible
for nucleon decay have their masses generated at
2M„. The fermions can be assigned [using the
decomposition to SU, (3)X SUL, (2) X SU]](2)] to
the 27 as follows:

27=(~3;31., 1a )+(~1~3',3~ )+(~3~1L,,3]])

(3;2;1)+ (3;1;1)+

L

(~1;2;2)

VE E+

NE
L

(N, e+)L, 0
nL (u, d)L hL

+ (1;2;1)+ (1;1;2) + (1;1;1)~ (3;1;2)+ (3;1;1) . (4.7)

In contrast to the two cases in Sec. IV @, only
full E6 27's give equal contributions to all sub-

group P functions in this chain, in which case
T(R; ) =3N6l2 for all subgroups. The coupling-
constant diagram (Fig. 3) shows that M„will only

be bounded from below by m] and that

aoUM &a; (4m] ).
The renormalized coupling constants [with

N =N6 and aoUM
' ——a; '(4m] )] are then given

by

Q =QL +kg + 3 CZL + 3 Clg

and the usual procedure gives the constraints

(4.9)

g 11 m impm3a ——,a3 —— ln
3m'

(4.10)

ical.
Charge assignments give the coupling relation

m1

~w'

m133—6N
1n

12m

—1 —1= &GUM
m

mp
ln

2m'

=&OUM +
1 2'

3 3

a (3—8x) = ln
mp m3

m1Mg

Rewriting (4.10) and (4.11) gives

6n.
m] ——Ma exp (a x —a3 )

11

and

(4.11)

(4.12)

—1 —1
&L =&GUM

22 —6N
ln

w
(4.8)

mmmm 3 —Mgr exp (a ( 1 —2x) ——a3 )
37' 2

11 3

—1 = &GUM
33—6N

ln
12m

m1

m We then have the constraints

(4.13)

22 —6N
ln

12m

m~

m 2'3 J
r

M„&m] ——M~exp (a x —a3 )
6m

11
(4.14)

—1 —1+3 GUM
33—6N

ln
12m' M„&m~ &M@exp [a (1—2x) ——,a3 ]

3]g 1 2

We have assumed that m1 ~ mz for definiteness
in deriving these couplings. If mq & m1, we have
different expressions for the couplings, but the re-

sulting constraints on the various masses are ident-

&m3 . (4.15)
We find one new bound in this chain, the lower

bound for mq and upper bound for m3, which
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reduces to the canonical SU(5) M„ if x =x5 is used
as an input. Using our estimates for the inputs
(including x =xo ——0.23), we find the numerical es-

timate

0 h3 hp h)

0 h) hp

0 h3

Q~

Qp

Q3

Ma exp [a (1—2x) ——a3 ]
3' 2 }
22 3

=5.1X10' A ' 10 GeV . (4. 16)

(11', l5) =
0 e+

0 n'
0

(4.22)

We note that if the special case with m i
——mq is

chosen, we find

M„&mi ——mq ——Mii exp (a x —a3 )
6m.

11

The four allowed breakdown patterns in this class
are

1. E6 ~ SUL(2)XSU(6)
2M„

m3 cVw——exp [a (1—4x)+ 3 cÃ3 1
37T

&
4

11

(4.17)

(4.18)

~ SUI. (2)XSU(5) X U5i ( I )
pm&

~ SU, (2) XSU, (2) X SU, (3)
pm 2

X U3p( I ) XU5i(1)

~SUI.(2)XUg(1) XSU, (3)
pm 3

Approximating the proton lifetime as before, we
find that

E6,8
'T

&8/109/ 103
SU(5)

Vp

(4.19)

The only remaining maximal subgroup of E6
which leads to an acceptable low-energy color and
flavor group is SU(2) X SU(6). We find ten al-
lowed breakdown chains in three classes depending
on the embedding of the SU(2) X SU(6).

In class I, we identify the SU(2) factor with the
weak gauge group SUL (2). The corresponding
reduction of the fermion 27 is

with

27=(2L,6)+(11,15*) (4.20)

Q&

Qp dp

This is the first case we fin( where the proton life-
time is not, at least in principle, bounded from
above.

C. Breakdown through SU(2) XSU(6)

XU3$(1)XUqi(1)
SU, (3)XUFM(1),

p=pMw

2. E, ~ SUL (2)XSU(6)
2M„

~ SUI (2)XSU(5) XU5i(1)
pm )

~ SUL (2) XSU(4) XU4i(1) XU5i(1)
pm 2

~ SUL, (2)XSU, (3)XU3i(1)
pm 3

XU4i(1) XU5i(1)

SU, (3)XUEM(1),
p =2M~

SUI. (2)X SU(6)
2M„

~ SUI (2)XSUg(2)XSU(4) XU4p(1)
pm )

~ SUI. (2) X SU@(2)X SU, (3)
pm 2

XU3i(1) XU4g(1)

SUL, (2) XUs(1)X SU, (3)
pm 3

(4.23)

(4.24)

and

(2r, 6)=
Q3

v e

vE E
F. + XE

(4.21) XU3, (1)XU4q(1)

SU, (3)XUEM(1),
p =2M~

4. E6 —+ SUL(2)XSU(6)
2M„

(4.25)
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~ SU~(2) XSU(3) XSU, (3)XU33(1)
2m)

~ SUL, (2)XSUg(2)XSU, (3)
2m 2

XUp)(1) XU33(1)
~ SUI (2) X Ug (1)XSU, (3)
2m 3

XU2((1)X U33(1)

SU, (3)XUEM(1) .
P =2MW

(4.26)

~ SU@(2) XSUI (2) X SU, (3)
2m2

XUp)(1) XU33(1)

Ug(1) XSUL, (2) XSU, (3)
2m3

XU2)(1)XU3 (1)

In class II the initial SU(2) is identified with

SU+(2) and the reduction of the 27 is

27=(2a', 6~)+(1g', 15) . (4.27)

The left-handed fermion assignments are obtained
from (4.21) and (4.22) by interchanging particle
and antiparticle. We find three allowed break-
downs in this class:

SU, (3)XUEM(1) .
P=2MW

(4.30)

In the class III embedding the SU(2) factor has
no definite handedness and we will see that its ef-
fect on the renormalization analysis of mass scales
is minimal; we therefore call it SU&(2) because of
its inert character. The fermion assignments in
this embedding are

5. E6 ~ SUg(2) XSU(6)
2M„

27=(2t'6*)+ ( It'15»

where

(4.31)

~ SUg (2) X SU(5) X U5i(1)
2m

1

~ SUR (2) XSUL, (2) XSU, (3)
2m 2

XU32(1) XU5)(1)

~ Ug(1) XSUL (2) XSU, (3)
2m 3

XU32( 1 ) XU» ( 1 )

SU, (3)XUFM(1),
P =2MW

6. E6 ~ SUg(2) X SU(6)
2M„

~ SU~(2) X SUL, (2)XSU(4) XU42(1)
2m)

(4.28)

(2t', 6*)=

( lq,
' l5) =

h) d(

h2 d2

h3 d3

VE V

E e

n
r

0 u3 u2 dj u~ h~

0 u( d2 u2 h2

0 d3 u3 h3

0 e+ NE

0

(4.32)

(4.33)

—+ SUg (2) XSUI (2) XSU, (3)
2m 2

X U3)( 1 ) X U4p( 1 )

~ U, (1)x SU, (2)x SU, (3)
2m3

XU3)( 1)XU4p( 1)

SU, (3)xUEM(1),
P, =2MW

7. E6 ~ SU~(2}XSU(6)
2M„

~ SUa(2) XSU(3) XSU, (3)XU33(1)
2m)

(4.29)

(4.34}

The three allowed breakdown chains in this class
are as follows:

SU (2) XSU(6)
2M„

SUt(2) X SU(5) XU„(1 )
2m (~ SUy(2) X SU, (3)XSU~ (2)
2M

XU32(1) XU5)(1)

Ut( 1 ) X SU, (3)X SU (2)
2m3

XU32(1) XU5)(1)
SU.(3)XU, (1).

P =2MW

[In this chain, the intermediate SU(5) symmetry is
the Georgi-Glashow SU(5}. The scale at which it
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breaks is therefore denoted by M„.]

9. E6 ~ SU)(2) XSU(6)
2M„

~ SU)(2) X SU, (3)X SU(3) XU33(1)
2m]

~ SU((2) X SU, (3)X SUI (2)

are then given by T(R; ) =3E6I2.
We begin by deriving the mass constraints for

the four cases in class I.
For case 1 we have the usual renormalized cou-

plings and charge assignments give the coupling-
constant relation

X U2i(1) XU33(1)

~ Ug(1) XSU, ( 3)XSUI (2)
2m3

a =aL +ay +—„a32 + —,a51

(4.37)

XU»(1) XU33(1)
—+ SU, (3)XUEM(1),

@=2M~,

10. E6 ~ SU)(2) XSU(6)
2M„

(4.35)
2

8 1 11 ~u ~1~3
a ——,a3 —— ln

m2Mg
(4.38)

The familiar combinations of low-energy inputs
then give the constraints

—+ SU)(2) X SU(4) XSUL (2)XU43(1)
2m'~ SU)(2)XSU, (3)XSUI (2)
2m2

XU3|(1)XU43(1)

~ U3( 1 ) XSUI (3)X SUL, (2)
2m 3

X U3$( 1 ) X U42( 1 )

or

m1 Pl2 m3
7 5 3

a '{3—gx) = ln
u ~W

3 2
'

Itl1 Ptl 3a '(1 —x) ——,a3 —— ln
6m'

(4.39)

(4.40)

SU, (3)XUEM(l) .
@=2M~

(4.36)
11a x —a3 —— ln

—1 —1

6n.

m„4

m]m2 M~2
(4.41)

In these ten cases, just as in the [SU(3)] case,
only the assignment where full E6 27's remain
massless down to low energies is natural in leading
to no N dependence in the mass constraints. The
fermion contributions to the various P functions

and, of course, the ordering constraint

M„)m1&m2 &m3)Mgf . (4.42)

These constraints lead to upper and lower bounds
for all mass scales. We find

6
Ma exp (a x —a3 ) &M„&M~exp (a ——a3 )

lT —1 8

11 11

Mg exp (u x —a3 ) )mi &M@ exp [a (1—x)——a3 ]11 SS

M~exp (a x —a3 ) & m2 )M~exp [a (1—2x) ——a3 ]
6m. 3F 2

11 22 3

(4.43)

Ma exP [a (1—x)——a, ] &m»Ma exP [a (1—4x)+ —a3 ]
6m 5 377 4

SS 3 11

One new mass bound m1, not previously seen,
appears in this chain. As expected, it has the
property that it reduces to the SU(5) M„ if x =x3.
Using our inputs we estimate its magnitude at

M~exp [a {1 —x)——a 3 ]
6m 5

SS 3

2.8X10' A 10 ' ' GeV. (4.44)
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We find an estimated nucleon lifetime as in Sec.
III B,

m1 m2 m3
a '(3 —8x) = ln

M„' Mp
E~,C1

8 X 109+SM/9910382
SU(5)

Tp

For case 2 we have

—1 —1 2 1 2 1 3
L + 3 +31 + g 41 + 5 51

and the constraints

2M„m1
u ——,a3 —— ln

3m'

(4.45)

(4.46)

(4.47)

or
3

m1 m2m3a (1—x)——,a3 —— ln6'
6

—1 ,4, 11 M„
a (1+2x) ——,a 3

—— ln
Mgf m2m 3

and the ordering

M„)m1)m2&m3)Mg .

These give the bounds

Mwexp [a (3+2x) —10a 3 ] &M„&Mwexp (a ——,a 3 )
3' —1 7T 1 8

110 Q—

Mwexp (a ——a3 ) )I i )Mwexp [a (1—x}——a3 1
8 &T 5

11 55 3

Mwexp (a ——a3 ) ) rnid )Mwexp [a (1—2x) ——a3 ]
8 3K 2

11 22 3

Mwexp [a (1—x)——a3 ] & rn3 &Mwexp [a (1—3x)+—a3 ]
6m 5 F 1 1

55 3 11 3

%'e again find one new scale M„+, which as usual reduces to M„when x =x5. We estimate that
r

Mwexp [a '(3+2x) —10a3 '] =1.5X10' A 10 GeV

with an estimated proton-decay lifetime

E~,C2

P ~ 9A 50/991038M
SU(5)

Vp

a much narrower range than the other non-SU(5) cases we have examined.
For case 3 we have

—1 —1 —1 ~ —1
CK =QL +CRT + 3 CX31

and the constraints

2
8 1 11 Mg m3

a ——,a3 —— ln
3m'

11 m1 m2 m3
8 4 3

a '(3 —8x)= ln
Mg M„'

or

2 2
—1

m3 m1m2a (1—x)——,a3 —— ln
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11a x —a3 ———-ln—1 —1

6m

along with

Mwm1 m2
2 (4.59)

Mg Q m1 Q m2, m3 QMw ~

These give the bounds

(4.60)

M~exp (a x —a3 ) &M„&Ma exp (a ——,a3 )
7T 77 1 8

11 11

Mwexp (a x a3 ) &m~ &Mq exp [a (1—x) ——a3 ]
6~ 6m. 5

11 55 3

M~exp (a x —a3 ) & m2 )M@exp [a (1—3x)+—a3 ]
77 277 1

11 11 3

(4.61)

M~exp (a ——a3 ) )m3 &M+ exp [a (1—4x)+ —a3 ]
1 8 3' 1

11 11

with no new bound appearing. The proton-decay
rate is bounded by Mg )Mg exp [a '(3+2x) —10a3 ')

110
E6,C3

P & 8 ~ 109' SOO/9910382k+
SU(5)

7p

For case 4 we have

a =aL +aR + 3a21 + 3a33

(4.62)

(4.63)

m2 )Mwexp [a (1—2x) ——a3 ]
3' 1 2

22 3

m3 (Mgrexp [a ( 1 —x)——a3 ]
6m 5

55 3

(4.69)

and the constraints while the limits on the nucleon-decay lifetime are

or

1 s 1 11 Mu m2m32

a ' ——,a3 ' —— ln
m1Mw

m1m2 m3
9 3 3

a '(3 —8x) = ln
M„' Mw

(4.64)

(4.65)

m1m2 m3
2 2

'

a '(1 —x)——,a3 ' —— ln
6m

E6,C4

9A 50/991038hz & P
SU(5)

Tp

&8X10 A OO 9910382M (4.70)

Thus, in all four cases in class I, we find definite
upper and lower bounds on all unification mass
scales. This is not the case in the three breakdown
chains in class II which we now examine,

In case 5 we have

4
Mu

x —a3 —— ln
6n

(4.66)

(4.67)

—1 —1 —1 —1=aL +aR + )ga32 + 5a51

and the constraints are
(4.71)

and

Mg Om1)m2+m3 +Mw ' (4.68)

These give the same bounds as for case 3 except
that

a (3—8x) = ln
11
3'

2
11 M„m1m3a ——,a3 —— ln

m2Mw

M m1 m3

m2 Mw7 5

(4.72)

(4.73)
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along with the orderings

M„&m1&mz, M„&m3 . (4.74)

2
s 1 11 Mg mzm——,a3 —— ln

w
(4.86)

These lead to the bounds

—1 —1M„&ml &mz &Mwexp (a x —a3 )
11

(4.76)

The proton-decay lifetime satisfies

E6,C5

& 8 ~ 109' 5OO/9910382Lhx
SU(5)

Sp

In case 6 we find

—1 —1 1 2 —1a aL +aR + 3a31

and the constraints

M„m2
a ' ——,a3 ' —— ln

33m'

1 — =11 MQ m2 m3
6 4 3

a '(3 —8x) = ln
M~5m, '

(4.77)

(4.78)

(4.79)

(4.80)

(4.75)

1

Mwexp [a- (1—4x)+-'a3 ] &m3.
37T 4

11 3

a (3—8x) = ln
11

3m

M6m 3

m1 mzMw
3 5

(4.87)

E6 C8 SU(5)
Tp Tp (4.88)

and the same mass bounds and proton lifetime hm-
Its as 1n case 5.

The three cases of class II are similar to the
breakdown through [SU(3)] in not having any
upper limits placed on M„or lower limits placed
on m3 by the renorrnalization analysis. If we
demand, however, that M„ lie below the Planck
mass, we find that m3 must be larger than 9)&10
GeV in case 5 and 4)& 10 GeV in cases 6 and 7.
In case 6 no lower bounds on m1 or m2 are im-
posed by the mass constraints, just the relation
(4.81). Since the leptoquarks whose mass is gen-
erated at mz must be heavier than 100 TeV (from
the limits on EI ~p+e discussed in Sec. III), the
scale m

&
is forced to be larger than 1.5 X 10" GeV

The three cases in class III to which we now
turn are special cases. In case 8 the presence of
the Georgi-Glashow SU(5) as an intermediate stage
ensures that the canonical SU(5) scale M„will ap-
pear with M„&m1 &M and

or

2
11a x —a3 —— 1n

wm2
(4.81)

—1 —1 4 —1a =aL + 3a33 + 3a21 (4.89)

The SU(5) prediction for sin Ow is also obtained in
this case. These results can also be obtained in
case 9. In that case we have

These give

M„&Mwexp (a ——,a3 ) & m3,
'IT 1 s

(4.82)

Mwexp (a x —a3 ) &m~ &my
6m

11

(4.83)

(subject to M„&m& &m2) and

and the constraints

2
s 1 11 m1 m2a ——,a3 —— ln

W3

m

5Mwmz )

(4.90)

(4.91)

with the order M„&m1 & m 2 required. Equations
(4.90) and (4.91) yield

m ~
——Mwexp [a (1—2x) ——,a3 ]

3m' -1 2

22
E6,C6

7p
sU(5) &'.

Sp

For case 7 we have

(4.84)

m2=Mwexp —(a x —a3 )
6~
11

(4.92)

(4.93)

—1 i —1a =aL +aR + 3a21 + 3a33

(4.85)

In order for (4.92) and (4.93) to be consistent with
ml &m2, we must have x & 6 +(5a3 ')/(9a ')
=—x5. If we only allow x & x5 (as will be discussed
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in Sec. V), then we must have x =x&. The bounds

m1 and m2 then reduce to M„. Thus, both cases 8
and 9 reproduce the SU(5) predictions for M„and
sin t9~ to one-loop order.

For case 10 we have

scheme so we have

E6,C10

8 7 y 10—6P —2s0/9910 190.8
SU(5)

7p

(4.99)

a =aL + —,a42 + a31

and the constraints

(4.94)

8 1 11a ——,a3 —— ln
LMs m2

(4.95)

m1 m2a '(3 —8x) = ln
3m

(4.96)

These give the results

m, =M~exp [a (1—2x) ——a3 ]
377 —1

22 3

(4.97)

m2 ——Ms exp [a (1—4x)+ —a3 ]
3v 4

11 3

(4.98)

Some of the gauge bosons whose masses are gen-
erated at m1 can mediate proton decay in this

Such a short proton lifetime is already ruled out by
experiment. This is the only case we find where
the mass scale which characterizes proton decay is
not automatically equal to or larger than the SU(5)
scale M„.

We find, then, that in all but one of the break-
down patterns that we consider, the proton lifetime
is at least as long as in the simplest SU(5) model.
There is an 1mportant distinction, however, be-
tween chains in which the proton lifetime is, in
principle, bounded from above and those, such as
in Sec. IV 8 and class II of Sec. IV C, where it is
not. In the former case the upper limit on the life-
time invariably depends on x in such a way that if
x =x& is used as an input, the proton lifetime
reduces to the SU(5) value. In these cases the
SU(5) prediction for sin Hn and an observable pro-
ton lifetime are inextricably related. We have in
fact seen that all the mass bounds which appear in
the breakdown chains of SO(10) and E6 reduce to
the unique SU(5) scale, M„, when x =x5. This
regularity will be examined further in the next sec-
tion.

V. GENERAL UNIFICATION MASS-SCALE FORMULA

We can now collect, in Table I, all of the unification scales that have appeared in the last three sections in
order of decreasing magnitude. The labels n in the table refiect the fact that all of the mass scales encoun-
tered so far can be simply parametrized by the formula

T

—8+3n
3

M„=Ms exp a (1 nx)+-6m

11 6 n— a3 (5.1)

6=Ms exp (a ——,a3 )
7T 1 8

6—n
+—(a —'x —a, -')

11 6—n
(5.2)

6/(6 —n) g~ —n/(6 —n)=crfp 00 (5.3)

Any mass of the form (5.1) can be seen to reduce to the canonical SU(5) M„when the SU(5) one-loop pre-
diction for sin 8~,

x = —,+(5a3 ')/(9a '),
is used as an input. In fact, demanding that all unification mass scales be of the form of an exponential
with argument linear in a, a2 ——a x, and a3, e.g.,

M =Ms exp(aa '+ha 'x+ca3 '),
and which also reduces to M„when x =x5, just gives Eq. (5.1) as the result.

(5 4)
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TABLE I. Collected mass-scale formulas with numerical values using A=200 MeV and
sin2t) s ——0.23 along with corresponding values of general formula [Eq. (5.1)] parameter n

M~exp (a x —a3 )
6m

11

M (GeV)

2.4X10"

Ms exp [a '(3+2x) —10a3 ']
110

1.5X 10" 2

3

M„=M~exp —(a ——a3 )
7T ] 8

11
8 6X10'

Ms exp [a (1—x)——a3 ]
6m 5

55 3
2.8 X 10'

3'
Ms exp [a '(1 —2x) ——a3 ']

22 3
5.1X10"

2' ]Ms exp [a '(I —3x)+—a3 ']
11 3 3 1X10

Mz exp [a '(1 —4x)+ —a3 ']3'
11

1.1 X 10'

With the particular inputs we have chosen, we have MJ. &Mk whenever j&k. We can ask what condi-
tions are imposed on the inputs if this is to hold generally. Thus if j&k, we require that

a '(1 —jx)+
11 6—j

—8+3j
3

3
6n

11(6—k)

—8+3k
3

a3 ' &0, (5.5)

(j —k)
&

10as
(6—j)(6—k)

&0 (5.6)

or (if j, k &6)

(5.7)

a '(1 nx)+——8+3n
3

a3-'&0 (5.8)

1x (x+=—+
n

—8+3n
3n

(5.9)

1 5 o'3
X&x =—+—

9 a-'
Further, demanding that each M„be larger than

the "starting point" scale M~ requires that

for 0 & n & 6. For n & 0 this constraint on x is a
lower bound,

CX3
x& ) & —+

n

—8+3n
—1

n
(5.10)

weaker than that of (5.7). For n=0 we have no
constraint on x, while for n =6 we would demand
that x=xs for Ms to even be defined. In Table II
we tabulate, using our nominal inputs, the con-
straints placed on x by (5.7) and (5.9) for various n

We note that at n=5 we begin to saturate the
upper bound, implying a mass scale at or below
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TABLE II. Constraints on allowed input values of
x=sin 8~ from Eqs. (5.7) and (5.9).

at the one-loop level, where we employ the usual
strong scale parameter A3. Without the contribu-
tions of fermions, the U(l) coupling constant is
just that, constant, so that

n(0
1

2
3
4
5

6

0.887
0.477
0.341
0.273
0.232
0.204

0.204
0.204
0.204
0.204
0.204
0.204
0.204

—1(Q2) —1 (6.2)

2

a '(Q )= ln12-" A, ' ' (6.3)

The running coupling of the weak SU(2) can then
be written as

Mz, when we use the currently accepted experi-
mentally determined value of sin 9~. Whether
this has any connection to the fact that all the
mass scales that we have found have n & 4 and
whether groups larger than E6 might have scales
corresponding to n's of S or 6 is uncertain. We
remind the reader that the SU&(2) breakdown is
often associated with M& and that restoration of
parity is, in some sense, the simplest partial unifi-
cation that could take place before an overall grand
unification. We will present arguments in the next
section which suggest, in fact, that the scale M& is
most naturally associated with the SU(3) scale
parameter A3.

where we have defined an SUI (2) scale parameter
Aq, the energy scale at which the weak SU(2)
would become strong (if it were not broken, of
course, at the Weinberg-Salam scale). Even though
Az seems to have no physical significance in our
world (we certainly do not see a weak confinement
scale), it can be thought of as a remnant; the scale
to which the SUI (2) is "pointing" at the time it is
broken. We can define it through the relation
(valid in this approximation where we neglect fer-
mions)

ln Q =a '(Q')
2

=aq (p )+ InJ Q 22

12'77 p
VI. UNIFICATION MASS SCALES

AND THE A PARAMETERS x+ Ini 22
12m 4M'

(6.4)

In this section we examine a somewhat unortho-
dox way of viewing the coupling-constant renor-
malization arguments presented above in the con-
text of a simplified model of grand unification.
We find simple relations between the grand unifi-
cation mass scale and the natural mass scales of
non-Abelian gauge theories, i.e., the scale parame-
ters A. In this picture we also find that an inter-
mediate mass scale, presumably related to a partial
unification, arises as one step in a simple hierarchy
when we use as input a specific value of x+x5.

We begin by considering a pure unbroken gauge
theory based on the usual product group
SU, (3)XSUI (2) XU(l); that is, we consider the real
world but ignore all fermions and the Weinberg-
Salam breakdown at 2M~. In this approximation
the strong-coupling constant has the energy depen-
dence

giving

A 2M p
7T ]

11

=10 —10 GeV, (6.5)

where the range in Az is due to the uncertainty in
x=sin H~. (Just how seriously we are to take nu-
merical values in this approximation is uncertain. )
Such a A would imply a weak confinement dis-
tance of 0.2 —0.02 pm. That such small energy
scales and large confinement radii might be in-
teresting in the context of gauge theories has been
examined previously in another context.

The behavior of the running couplings in this
approximation is illustrated in Fig. 4. Equating
the SU(3) and SU(2) coupling at unification gives

2
)( P)

33
1

Q
12m

(6.1) a3 '(4M' ) =ap '(4M„)

or the simple relation

(6 6)
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e'(Q )

u(i)

quantities in the pure SU(3) X SU(2) XU(1) gauge
theory and the unification scale 2M„. Using
A3 —0.2 GeV and Eq. (6.5) gives M„=4X 10's
GeV.

Similarly, equating either the SU(3) or SU(2)
coupling with the constant a&

' at unification and
use of Eq. (6.7) gives

A3
=exp a

& (6.8)

In(Q ip. ) U

FIG. 4. Couplings for SU(5)~SU, (3)&(SUL, (2) &U(l)
in the no-fermion, no-%einberg-Salam-breakdown ap-
proximation considered in Sec. VI illustrating the scale
parameters A2, A3.

so that there is a natural hierarchy between the
two scale parameters, sensitively dependent on the
value of the U(1) coupling.

We can relate the expressions (6.7) and (6.8) to
the ones derived in Sec. II for the single unification
scale in the SU(5) case by remembering that we
had in that case

A3
2Mg —— (6.7

a natural combination of the only two dimensional

(6.9)

where p =2M~. Then Eq. (2.13) becomes, in our
no-fermion approximation,

2M» =2M~exp [a '(4M~ ) ——,a3 (4M' )1

=2M~exp
11

Sm=exp a ~

4/3
3

A 1/3
2

4M@
ln a 8 33 4M@

ln
3 12m

L

(6.10)

Similarly, the equation for the renormalized value
of sin Os, x= —, + (Sa3 ')/(9a '), can be written

as

—1

a2 =a x= + 9a3
6 .

(6.11)

or

p (6.12)

which is just Eq. (6.8). We see then that the
specific hierarchy of Eq. (6.8) is equivalent to
specifying the SU(5) sin 8~. Combining this last
relation with Eq. (6.10) then gives the simple com-
bination in Eq. (6.7). We note that the dependence
of the SU(5) predictions on the Weinberg-Salam
scale, 2M~, disappears when viewed in this way.

We see that our assumption of an unbroken
SUL, (2) XU(1) symmetry is not important in deriv-
ing the simple relations (6.7) and (6.8); they can be

—n/(6 —n)
A3

X
A

(6.13)

If we assume the relation (6.8) [equivalent to using

reproduced from the familiar renormalization
equations of Sec. II even if A2 is only defined
through Eqs. (6.3) and (6.4). It is the simplifying
approximation that no fermions are present that
makes the relations between the gauge-group scale
parameters and the unification mass almost obvi-
Ous.

Thus, the two scale parameters A2 and A3 seem
to define a single grand unification mass via (6.7)
with the specific hierarchy obtained from Eq. (6.8).
We can then ask how the formula for the general
mass scale described in Sec. V appears in this sim-
plified language. We find that

A 4/3
M„= exp a

&

'
f/333
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the canonical SU(5) x as an input] we have

A3M„=
A

(6.14)
041 (I)

0(10)

and all the mass scales reduce to the SU(5) M„as
expected.

To reproduce the hierarchy of different masses
iri Table I we must use an x larger than x5, i.e., we
use as an independent input

a'CQ )

8UL(2)

1 5&3
—1

x=—+— +6,
6 9 ~-'

so that in our language

(6.15)

r
r

rr
&r

ha 2Mw 2hl4=2mai 2M =2Mu

A3
=exp

A2

18(a, -'+ —u 'e) (6.16)

FIG. 5. Couplings in a possible SO(10) breakdown
with the evenly spaced scales A2, A3, A3 /A2, and
A 3 /A2 superimposed (see Sec. VI).

or
1 —5

3
=exp Q1

11
(6.17)

If we select A3 ——0.2 GeV and choose extreme
limits for 2M„, 2X10' to 4X10' GeV, we find
that

where

18ma-'
55 ln(A3/A2 )

(6.18)

Then (6.13) becomes

A3 A3
M„=

A,

—105/(6 —n)

(6.19)

The question then is if there are any especially
plausible values of 5+0.

If we examine the ratios of the dimensional
parameters 2M„, A3, and A2 at our disposal, we
find that

A3
2M'.A3.A2 ——

Q :A3.A2

A3

A, '
:1.A3

A2
(6.20)

It seems that another scale would naturally fit in
the "desert" between A3 and 2M„at a value of
A 3/A 3 times

A 3. If we identify this scale with a
partial unification, we can define

A
2MpU ——

A2
(6.21)

We can compare these four scales quantitatively
with the ones derived in previous sections (keeping
in mind that our assumption of no fermions possi-
bly makes for a bad numerical approximation).

2M„=(2X10")—(4X10")GeV,

2MpU=(2X10 )—(3X10 ) GeV,

A3 ——0.2—0.2 GeV,

A, =(2X 10-')—(1X10-")GeV .

(6.22)

Furthermore, the scale corresponding to n =5,
logically the next member of the sequence of mass
scales (but not seen in any breakdown), is given by

We see that in order to have A3 /Az be large
enough to be acceptable as a partial-unification
scale, we must choose 2M„ to be at the high end of
its allowed range as in one of the extreme cases in
the left-right-symmetric breakdown of SO(10); we

might then identify the scale 2MpU with the res-
toration of parity scale, 2m2~. We illustrate the
even spacing of these four scales in Fig. 5 superim-
posed on a possible breakdown pattern of SO(10).
The parity breakdown scale is associated with M4,
while the overall grand unification scale is given by
M „ in this case. Thus if we require that

A A A—:MpU =M4 = 2, (6.23)
A, A, A,

we find that 5= —, is dictated. With this 5 the
scale associated with n =0, the SU(5) scale, is now
given by

' 5/3
3

M„=MO ——A3
A2
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Mq ——A3 . (6.25)

=0.030—0.025 (6.26)

Finally, we note that M&6/3 —A2 and list in
Table III the Az, A3 dependence of all masses dis-
cussed so far when 5= —,.

The specific value of 5= —, that yields these re-

sults corresponds to using an x larger than the
SU(5) value by an amount

55 ln(A3/A2)e= —,6
18m+

M„

A3(A3/A2)2
(A /A )17/10

A, (A, /A, )' '
)
8/5

)3/2

A (A /A )'"
A3(A3/A2 )

A3

Ap
3

00
2

3

TABLE III. Co11ected mass scales in terms of A3,
A2, Eq. (6.19), with the choice 5= —, (see Sec. VI).

so that x=0.234—0.229, consistent with the nomi-
nal value used previously.

We conclude that an SU(3) X SU(2) XU(1) gauge
theory (broken or unbroken), in the limit where
fermions can be neglected, exhibits a very simple
relation between the two natural scales Az, A3 of
the non-Abelian product groups and the overall
grand unification mass. Moreover, the presence of
an intermediate mass scale which can be associated
with a partial unification can only arise, as before,
if a value of x+x5 is used as input. A specific
value of x leading to 5= —, allows for the possibili-

ty of an evenly spaced (in logarithm) hierarchy of
scales with A2 —M/6/3 A3 —M5 A3 /A2 ——M4,
and A3 /A2 ——M

VII. CONCLUSIONS AND DISCUSSION

We have reviewed the one-loop coupling-
constant renormalization analysis of Georgi,
Quinn, and Weinberg and its predictions for the
unique SU(5) unification mass scale M„and
sin 8~. Applying the analysis to the allowed
breakdown patterns of SO(10) and E6, we have
found explicit formulas for upper and lower
bounds for many of the new mass scales appearing
in these chains. In a11 cases but one, the mass
scale characterizing nucleon decay is at least as
large as M .

All of the bounds are found to belong to a single
one-parameter family whose members reduce to
M„ if the SU(5) prediction for sin 8~, x&, is used
as input. We have noted the excellent agreement
between the two-loop SU(5) sin 8~ and the one-

loop value extracted from experiment. If this suc-
cess is taken to imply that the one-loop SU(5)
value, Eq. (2.14), should always be used in the
one-loop renormalization analysis of larger groups,

then we lose any hierarchy of partial-unification
scales and the "desert" of the minimal SU(5) GUT
remains. In many, but not a11, cases, setting x=x5
also forces the proton lifetime to be essentially the
same as its SU(5) predictions.

Seemingly, however, there is no compelling
theoretical reason for choosing this specific value

for GUT's larger than SU(5). A value of sin 8~
larger than x5 then forces at least one partial-
unification scale to lie below the canonical M„
while allowing the scale characterizing proton de-

cay to increase beyond the limit that could be
detected with foreseeable technology. It will be
left then to experiment to confirm any expected or
discover any suspected unification mass scales.

Accelerator measurements of electroweak phys-
ics in the O'+-, Z energy range and beyond will al-

low us to verify further one of the fundamental as-

sumptions of the SU(5) GUT, the Weinberg-Salam
model. Sensitive enough measurements can even

test the radiative corrections necessary for a precise
comparison with the predicted SU(5) sin 8+.
More structure than expected (extra Z's, W's, etc.),
however, would be evidence for an extended elec-
troweak symmetry [extra U(1)'s, SU(2)'s, etc.]
which in turn may signal grand unification groups
larger than SU(5).

Experiments to improve limits on rare processes
(e.g., KL —+e+p ) would further constrain any su-

perweak force attributable to massive leptoquarks
and extend the scale of a possible color-group en-

largement, e.g. , SU(4). Limits on neutrino masses
can set bounds on the parity- restoration mass
scale so that precise measurements of neutrino os-
cillations and forthcoming improvements of P- and

muon-decay experiments will be important tests.
Of course, nucleon-decay experiments finding a

lifetime near the predicted SU(5) value would be a
stunning confirmation of something very like the
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simplest model. Measurements of sufficient pre-
cision to differentiate among models with the same
grand unification scale will require accurate parti-
cle identification and high statistics and may only
be possible in a third- or fourth-generation detec-
tor. Nonobservation of proton decay need not rule
out grand unification, however, as we have seen
that M„can often be pushed two orders of magni-
tude beyond M giving a lifetime 10 times longer.
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