
PHYSICAL REVIEW 0 VOLUME 26, NUMBER 9

Neutral currents in E&

1 NOVEMBER 1982

R. W. Robinett
Department of Physics, University of Wisconsin M—adison, Madison, Wisconsin 54706

(Received 5 April 1982)

Electroweak theories based on gauge groups SU(2)L, &U(1)XU(1)XU(1) arising from
the spontaneous breakdown of E6 are examined. The neutral-current interactions at low
Q' in two such three-Z models are derived. One neutral boson with a mass a few percent
lighter than the standard-model Z mass and two additional Z's as light as 300 GeV —1

TeV are allowed.

I. INTRODUCTION

The standard SU(2)L XU(1) model' of the elec-
troweak interactions has been remarkably success-
ful in describing all low-energy weak-interaction
phenomena. Many models based on extended

gauge groups SU(2)L XU(1) X G have been con-
sidered ' which reproduce the low-energy predic-
tions of the standard model but which differ from
it at sufficiently high energies. One class of such
theories finds an effective neutral-current (NC)
interaction at low Q of the form

SU(2)L X SU(2)R X U(1)L iR,
SU(2)L X SU(2), X U(1),

(1.2)

Here the effective NC interaction is often given by

Nc GF 2 G~ 2~ (~3L XL EM ) + ~ (~3R XR JEM )v'2

(1.3)
A naive extension of the Bjorken result with
separate left and right sectors would suggest such a
form along with an additional JEM term whose
coefficient probes the structure of the spectral
functions of both the left- and right-handed quan-
ta. For a two-Z model such as (1.2) such an extra

[(~3L xL~EM ) +C~EMNC R 2 2

2

where the constant C depends on the masses of the
neutral bosons, i.e., measures the spectral functions
of the weak quanta. This form is consistent with a
result of Bjorken which predicts a NC interaction
of the type (1.1) on the basis of quite general argu-
ments not necessarily in the context of gauge
theories.

Another class of extended electroweak models is
based on left-right symmetry, e.g. ,

term would vanish. Models based on left-right
symmetry with groups larger than (1.2) would then
test such speculations. Shafi and Wetterich and
Elias, Pati, and Salam' have considered manifestly
left-right-symmetric models based on

SU(2)L X SU(2)R X U(1)L XU(1)R (1.4)

E6—+SO(10)X U(1)4, ,

SO(10)—+SU(5) XU(1)r,

(1.5)

and Costa, D'Anna, and Marcolungo" have shown
that the additional piece of 4 c beyond (1.3) is
not a J« term in such theories.

Motivated by the success of grand unified
theories based on SU(5), electroweak theories based
on breakdowns of the grand unification group
SO(10) (Refs. 12—18) have also been investigated
both for their effects on current and future elec-
troweak experiments and for the possibility of test-
ing remnant grand unification structure at accessi-
bly low energies. The authors of Ref. 18, for ex-
ample, find that for one breakdown of SO(10) via
SU(2)I. X SU(2)R X SU(4) the NC coupling have the
form (1.3) as expected. They also find that same
form for a very different breakdown scheme
through an SU(5) XU(1) symmetry. They then dis-
cuss under what conditions two different break-
down patterns of a grand unified theory can give
rise to the same effective NC interactions.

In this paper we will examine two different elec-
troweak theories based on SU(2)L XU(1) X U(1)
X U(1) symmetries that can arise in the spontane-
ous symmetry breakdown of the grand unification
group E6. This will allow us to further test the
ideas of Ref. 18 on the similarity in form of the
NC couplings in different breakdown schemes of
the same unification group.

The first succession of breakdowns we will ex-
amine will be
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SU(5)~SU(3)c XSU(2)L, XU( I ) r . (I 7)

This will be compared with the breakdown chain

Es~SU(3)r, XSU(3)s XSU(3)c,

SU(3)L R ~SU(2)L g XU(1)r. ) g ),
SU(2)R ~U(1)g .

(1 8)

(1.10)

This second case will also allow us to test the form
of the NC interaction in left-right-models beyond
(1.3).

In Sec. II we briefly review the structure of Es
and extend the geometric language used for SO(10)
representations and generators in Ref. 18 to E6.
We also discuss the symmetry-breakdown patterns
that lead to SU(3)c X SU(2)L, X U(1) X U(1) XU(1)
theories and discuss the Higgs structure used to
break them to SU(3)c XU(1)FM. In Sec. III we

derive the effective NC interactions at low Q for
the two cases and examine the constraints that
current experiments place on the parameters and
gauge-boson masses in these three-Z models.

We find that the forms of the NC interaction in
the two different breakdown schemes are very
similar. They are in fact identical in the limit
where various gauge couplings are equal in accor-
dance with a theorem proved in Ref. 18.

The ratio of charged-current to neutral-current
effective couplings is naturally the same as in the
standard model as are all neutrino NC interactions.
Constraints imposed on the model by measure-
ments of parity-violating effects in heavy atoms
and e+e —+p+p allow two heavy Z's in addi-
tion to the standard-model Z in the range 300
GeV —1 TeV.

. II. STRUCTURE OF E6

A. Fermion representations

The exceptional group E6 has been considered by
several authors' as a candidate for grand unifica-
tion. In fact, if we associate SU(5) with "E4" and
SO(10) with "E5" (as suggested by Dynkin-diagram
language} we are led to E6 as the next member in
the sequence. It is the only exceptional group that
is automatically anomaly-free in all representations
and also allows for complex representations. The
extra rank of Es beyond SO(10) gives an additional
neutral and colorless gauge boson as the decompo-
sition of the adjoint 78 of E6 under SO(10),

(2.1)

shows. The singlet is the gauge boson which yields

(after mixing) the third Z; we will examine its con-
tribution to the neutral-current interactions and
constraints on its mass.

The fermions are assigned to the fundamental 27
of E6 with the branching to SO(10),

+ + (2.2)

4
V 24

for members of the 27.
Under the restriction of E6 to

SU(3)L, X SU(3)g X SU(3)c we have

(2.3)

27=(3;1;3}+(3';3;1)+(1;3*;3')

=(u, d, h)r +(leptons)L +(u, d, h)L . (2.4)

The quantum numbers Iz & z i associated with the
Abelian group factors in the subsequent breakdown

SU(3)r. z ~SU(2)L„g XU(1)L, z ~ can be similarly
defined and will be discussed in the next section.

B. Generators and charges

A particularly convenient language for dealing
with SO(2n) algebras has been introduced and
was used extensively in Ref. 18 to aid in identify-

The 16 is the usual SO(10) generation while the 10
1

contains a Q = ——, quark h and a charged lepton

E, and their antiparticles along with correspond-

ing neutral leptons vs and NF. .' The SO(10) sing-

let is one component of a neutral lepton n . As is
well known, two 27's give a six-quark model with
the h quark associated with the b, the E with the

~, and no top quark. Such models with the b

quark in an SU(2)L singlet predict fewer nonlep-

tonic decays for B mesons and more B~Xl+l
than the standard-model assignment with the b in

a sequential doublet. The measured values of the
branching ratios for B~Xl v and B~Xl+l
(Ref. 21) almost completely rule out such an as-
signment however. Thus three E6 generations
(27's) must be used giving a nine-quark model.
The additional quarks and leptons, those not in
SO(10) 16's, are assumed to acquire a heavy (possi-
bly superheavy) mass. '

The breakdown E&—+SO(10)XU(l)~ defines a
new charge Q~ and Slansky 2 has given the relative
value of this quantum number for many E6 repre-
sentations. Normalizing Q~ in the same way as all

other U(1) charges in Es then gives

1

~Z4' Q~ —
vZ4 '0 (16)= , 0 (10)=
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TABLE I. Members of the 10-dimensional representation of SO(10) contained in the E6
27. The components in the five-dimensional weight space of SO(10) are shown; the sixth

component is —1/V 3.

SU(5)

representation 2V 10 Particle

Signs in weight

vector

( + 1,0,0,0,0)

(&E }L.

hL

(NE)1.

(—0000)

(0—000)

(00—00)

(0000—)

(000—0)

(+ 0000)

(0+ 000)

(00+ 00)

(0000+ )

(ooo+ o)

1

2
1

2

1

2
1

2

1

3

1

3

ing members of SO(10) fermion representations and
various charge operators. We will use this same
language and extend it to E6.

The members of an SO(2n) spinor can be
represented by vectors in an n-dimensional Carte-
sian vector space by

1~-, +1,+1,+1,+1,+1;
1 1

3

(with an odd number of minus signs),

+1,0,0,0,0;
—1

3

(2.8)

1

2 ~
2 (E&,e2, ~, E~) (2.5) (2.9)

(6,0, . . . , 0)
(O, e, . . . , 0)

~ ~ ~

(0,0, . . . , e).
(2.6)

with @=+1. The members of the vector 10 in the
27 of E6 can be represented this way and the re-
sulting assignments in this language are listed in
Table I of this work.

The SO(10) singlet is of course given by

1~(0,0,0,0,0) .

To embed this structure in E6 we add an addi-
tional Cartesian component whose value essentially
measures the g charge of the SO(10) multiplets.
We have in the resulting six-dimensional space

with e; =+1 and g,".
, e; =—1. The members of

the SO(10) 16 generation were identified in this
way in Table I of Ref. 18.

The vector representation of SO(2n) is given in
this same space by

0,0,0,0, +1;
—1

3

V(I3L ) = —,(0,0,0, 1, —1;0) (2.11)

while the hypercharge (normalized as all other
operators) is

V(Fp ) = ( —2, —2, —2, 3,3;0) .1

15
(2.12)

The normalization is V(A) V(8)= —,5&s. The X
and g charge operators are then

V(g) = (1,1,1,1,1;0),1

10
(2.13)

1~ 0,0,0,0,0;. 2 (2.10)
3

In this language the various diagonal generators
are also given by vectors whose scalar product with
the members of the fermion representations give
the value of the corresponding charge. Extended
trivially to the six-dimensional space the generator
of weak isospin is
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V(f) = (0,0,0,0,0;1) .
1

2
(2.14}

with couplings g, gr, gz, and g& for the elec-
troweak factors. We have the relations

For the left-right breakdown we will need

V(IsR )= —,(0,0,0, 1,1;0) (2.15)

8 2 8 ~ 2
2 2

=sin 0~, ———,cos 8~ .
gr

(2.22)

and

V(II i gi}= ( —1, —1, —1,0,0;+v 3) .
1

2 3
(2.16)

' 1/2
3
5

1/2
3
10

1

vs
' 1/2 I3R

3

10
IR I

(2.17)

The electric-charge operator is given by

V(Q}=(——,, ——,, ——,, 1,0,0) (2.18)

and we have
' 1/2

5
Q =I&L+ — YH,

3
(2.19)

1 1Q=Iir+sg+ , II i+ Ig i .
v'3 v'3 (2.20)

[Note that the electric-charge generator V(Q) is
not (and need not) be normalized in the same way
as the other generators which are embedded in the
grand unified theories. ]

[Equation (2.16) then determines all of the neces-

sary IL, i z i quantum numbers. ]
The set of generators useful in the breakdown

through SU(5) XU(1)r X U(1)~, (Yii g,f), is related
to the set used in the breakdown via SU(3)l.
XSU(3)z XSU(3)c (IM gr, igni). We find

Because the U(1)r and U(1)~ are broken off at
mass scales at least as large as the Mz of SU(5) the
usual renormalization arguments, give

2 2( 2
2

ggP &gy &gr =
3 cos Op

(2.23)

with equality if E6~S(A) all at once.
We imagine a similar series of breakdowns for

the other case we discuss. For example, we can ar-
range for the (8;1;1)and (1;8;1)contained in the
adjoint 78 to develop VEV's (possibly different) in
the appropriate direction in group space in order to
break SU(3)l. ~ down to SU(2)L„g XU(1)L, ii. Thus
we also examine the possibility that the symmetry

S(B)=SU(3)c X SU(2)L X U(1)g

XU(1)„XU(1)„, (2.24)

might be valid at TeV energies and below. The
corresponding couplings for the electroweak factors
are gL, , gq, gl 1, and gq1 and we have the identity
e /gl ——sin Os. Using familiar renormalization-

group arguments we can relate the couplings gz,
gL 1, and g~1 to the mass scales at which the vari-
ous symmetries are broken but we allow these
remaining couplings to be arbitrary in what follows
for generality.

Several breakdowns of E6 through its maximal
subgroup SU(2) X SU(6) can also lead to
SU(2)L, XU(l) XU(1)XU(1) electroweak theories at
low energies. W'e will not consider these cases.

In Ref. 18 the two neutral and colorless fields in

the SO(10} 16 were given nonzero (and different)
vacuum expectation values (VEV's) in order to
break the SU(2)L XU(1)XU(l) symmetries dis-
cussed there, i.e.,

C. Symmetry breakdown and Higgs fields
y, cs*, (y, )=

2
' (2.25)

S(A}=SU(3)cXSU(2)l XU(1)r

XU(1)&XU(1)„ (2.21)

In order to allow the various desired U(1} factors
to remain unbroken down to low energies in our
first scheme we demand that E6 (SO(10), SU(5)) be
broken down via an adjoint 78 (45,24) of Higgs
fields. The resulting symmetry below the SU(5)
mass scale Mz is then

PqC1, (Pq)=
2

(2.26)

with ui ——v 2G~. This ensured that the ratio of
neutral-current to charged-current effective cou-
plings was naturally the same as in the standard
model. The P2 Higgs field was chosen because
under the breakdown of SO(10) to SU(5) XU(1)~ it
is a singlet under everything except the 7 charge.

We follow the same pattern here and choose as
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an additional Higgs field the SO(10) singlet con-
tained in the E6 27 which transforms nontrivially
only under the Q~ generator in the breakdown of
Es to SO(10)XU(1)y.

In the Cartesian language the Higgs fields used
to break both the S(A} and S(B}symmetries are
then

1, 1, 1, 1,—1;
1 1

3

(2.27)

V
(&3&= ~,2

(2.29)

III. NEUTRAL-CURRENT COUPLINGS
AND CONSTRAINTS

with u =3/26R.
The two neutral and colorless fields in the

SO(10) 10 can also be given nonzero VEV's and
still leave an SU(3)c XU(1)EM symmetry intact.
We will not consider this possibility here.

1 1—1 —1 —1 —1 —1

$3~ 0,0,0,0,0;.
2

3

(2.28)

With the Higgs sector specified in (2.27) —(2.29)
it is now straightforward to derive the mass matrix

p for the neutral vector bosons. The photon, cor-
responding to zero eigenvalue, is obtained as al-
ways. Using the method of Georgi and Weinberg
one can invert a submatrix of p and immediately
find the NC couplings at Q =0. For case S(A) we
find

' 1/2

(J3I sin glv JEM ) + — Jr+NC 2 . 2 2
2 V2 5

' 1/2

~x cos ~8'~EM
I

2

3—8 sin I9p
~EM

' 1/2 ' 1/2
1 3 2+ J3L —— Jr —— J» 3/6Jg+-

8V 5 5

2

(3.1)

Using (2.17}we can rewrite this as

NC 2 1 — 2 1 2(J3L xJEM} + (J3R xJEM} + —(J3L J3R ~i/I+~EM}v2 (3.2)

where x—:sin 8II, x =3 cos OII /5, 5= (3—8x )/5 =x —x, R = ( V /u ), and R —= (V /u ).
The first two terms of (3.2) are just those derived in Ref. 18 for the case SO(10)~SU(5)XU(1)» and give

the same NC interactions for neutrinos as the standard model since I3R(vL ) =Q(vI. ) =0. The last term in
(3.2) does not contribute to neutrino NC s either since I3L(vL ) =3/6Q~(vL ). We will briefly discuss the lim-
its imposed on R and R by parity-violating interactions not involving neutrinos in a moment.

For case S(B) we similarly find

NC + 2 1 I(J3L xLJEM} + (J3R xRJEM) + —[J3L J3R ~~(JLI JR I}+5JEMIv2 R 16R
(3.3)

where xL e /gL sin OII.,——xR =e /—g—R, and

xL+xL I xRI with xL I,R I =e /gL IRI,
Since by (2.17), J& =(JL I

—JR I)/~2, the forms
(3.2) and (3.3) are very similar as expected. We
know from the discussions in the Appendix of Ref.
18 that the two interactions will be identical when
the couplings of the neutral generators in the two
schemes that "mix" [as in Eq. (2.17)] are equal.
For this discussion that condition is

2/Ix =sin ger =xL (3.4)

(3.5)
3 2X =
5 COS OP =Xg =XI 1=X@»

and (3.2) and (3.3) are indeed equal in that case.
As mentioned earlier, we have not considered

any cases arising from breakdowns of E6 through
an SU(2) X SU(6) symmetry stage. We would ex-
pect, however, that any SU(2)L XU(l) XU(1)XU(1)
electroweak theory arising from E6 and broken
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with the Higgs sector (2.27) —(2.29) would have its
NC interactions described by the forms (3.2) or
(3.3). The only difference among various break-
down chains would then be in the precise defini-
tions of x (or xz) and 5 (or 5') in terms of coupling
constants.

Costa, O'Anna, and Marcolungo" have obtained
an expression similar to (3.3) for an

SU(2)L, X SU(2)~ XU(1)1 X U(1)z model (not specif-
ically derived from a grand unified theory) with
manifest left-right symmetry (gi =g~, gl ~

—=gg ~) in
which case 5'=0.

In neither S(A) nor S(B) schemes is the addition-
al piece of ~ beyond (1.3) solely a JEM term.
It would be of interest to generalize the arguments
of Bjorken to left-right models to see if the terms
we find can be derived naturally under his general
assumptions.

The couplings relevant for parity violation in eE
and e+e —+p+p experiments can be read from
the interactions (3.2) and (3.3). We consider only
the S(A) case explicitly as an example and find
that

f.5

).0

0.5

2.0

f.5

R to

0.05 0.10 0.15

a=( —1+2x)+—(1—2x }—1 5

2R
(3.6) 0.5

2 2x 5' 3" 3R 6R' (3 7)

1 1
h =— 1+—+=

R

$2
h yv

——( ——,+2x ) +—( ——, +2x ) +
4R

(3.8)

(3.9)

(In manifestly left-right-symmetric models where
5'=0, the additional term in 4 can be tested
only by measurements of hz~. )

Parity-violation experiments on bismuth and
thallium give the constraints

—135+17.5 =Q~(Bi) =43a —627y,

—155+63=Qs (Tl) =42a —612y .

(3.10)

(3.11)

—1.8+0.48=3a+y . (3.12)
I

Measurements of the asymmetry in polarized-
electron —deutron scattering from SLAC (Ref. 28)
give

0.0
2.00.0 0.5 l.0 1.5

R-'

FIG. 1. Constraints on R ' and R from various
measurements of parity-violating effects in eX and
e+e ~p+p experiments. The triangular region be-
tween the axes and each line is allowed in each case.
Parameters for case S(A} are used with sin 0~——0.23.
(a) (i) Novosibirsk bismuth experiment (lo.) (Ref. 26).
(ii) Same as (i) at 2o. level. (iii) Berkeley thallium experi-
ment (lo.) {Ref.27). (b) (iv) SLAC ed experiment (1o.)
{Ref. 28). (v) TASSO measurement of h~~ {1o.) (Ref.
30). (vi) JADE measurement of A,qq (lo.) (Ref. 29).

0.36+0.10 (Ref.29),
0.53+0.10 (Ref. 30) .

L

The constraints (3.10)—(3.14) are all of the
schematic form

(3.13)

(3.14}

Two recent measurements ' of the forward-
backward charge asymmetry in e+e ~p+p find

If we demand that our values lie within 10. of the
quoted results, each measurement restricts us to a

experimental value+error =standard-model value+ cR '+ cR (3.15)

I

region of (R ',R ') space. The resulting con-
straints on R ' and R ' are plotted in this way in
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TABLE II. Masses of the three bosons in selected
cases in S(A). Masses are given relative to the mass of
the standard model Z, Mp. We assume that R =R and
g&2 ——g~ ——5e /(3 cos'0~) for simplicity.

M) M2 M3R=R
Mp Mp Mp

3
5

10
20
50

0.89
0.93
0.98
0.99
0.99S

1.7
2.1

2.8
4.0
6.2

2.0
2.5
3.6
5.1

8.0

Figs. 1(a) and 1(b).
As in Ref. 18 the experiments on parity viola-

tion in heavy atoms, especially the Novosibirsk ex-
periment, prove the most restrictive; they force
R,R ) 10. The other data allow, R, R to be as
small as 2 —3.

While we will not present any explicit forms for
the masses of the three gauge bosons we list in
Table II the masses for some selected cases as an
example of the range allowed as R and R are
varied. We see that deviations of a few percent in
the mass of the lightest Z from its standard-model
value and additional heavy neutral bosons in the
range 300 GeV —1 TeV are certainly allowed
within the accuracy of the current data.

One should note that by letting either R or R
(but not both) tend to infinity drives one Z mass to
infinity leaving an effective two-Z theory; specifi-
cally, if R —+ oo we recover the results of Ref. 18.

IV. CONCLUSIONS

We have extended the analysis of electroweak
theories based on extended gauge groups
SU(2)L XU(1)XU(1) found in SO(10) to groups
based on SU(2)L XU(1)XU(1)XU(1) derived from
two breakdowns of the grand unification group E6.

The ratio of effective charged-current to
neutral-current couplings is naturally the same as
in the standard model and the neutrino neutral-
current interactions are also identical. Constraints
from parity-violating effects in eE and e+e
~JM+LM interactions allow two additional heavy
Z's beyond the standard-model Z in the range 300
GeV —1 TeV. The lightest Z is within a few per-
cent of its standard-model mass.

The same similarity in form of the NC cou-
plings in different breakdown chains which was
noticed in SO(10) models is also observed here.

The simple extension of the general arguments
of Bjorken of left-right models seemingly does not
reproduce the form of the extra term in ~
beyond (1.3) in gauge models based on left-right
symmetries larger then SU(2)L, XSU(2)~
XU(1)L+g
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