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We calculate the electronic stopping power of slow magnetic monopoles in condensed
materials and find that, for P &0.01, dE/dx is proportional to the monopole velocity.
For monopoles with g =+137e it is found that the monopole stopping power is at least as
large as that for a proton with the same velocity. The results presented here are not
directly relevant to the evaluation of the response of excitation- and ionization-sensitive

particle detectors to slow, supermassive monopoles. However, it is hoped that the tech-

niques presented will be a useful guide in thinking about such problems.

INTRODUCTION

The predictions of the primordial production of
supermassive magnetic monopoles (Mc —10's

GeV) by grand unification theories (GUT's), ' and
of the subsequent acceleration of these monopoles
to velocities V=Pc with P-10 —10, have
caused considerable interest in the nature of the in-
teraction of such monopoles with matter. As is
well known from the investigation of the interac-
tion of' energetic electrically charged particles with
matter, it is much simpler to calculate the stopping
power of particles with 13 »a (the fine-structure
constant) than with P «a. There are two basic
reasons for this and both apply to magnetic mono-

poles as well as electric charges.
(1) The first reason is that at large velocities a

projectile is capable of interacting with electrons at
large impact parameters. This is due to the fact
that as long as the impact parameter b is less than
the adiabatic impact parameter b,d

——yV/too (y is
the projectile s Lorentz factor, V is its velocity, and
coo is a characteristic electron frequency) the elec-
tron can receive energy from the projectile. For
larger impact parameters the electron is perturbed
adiabatically and is, therefore, not efficiently excit-
ed. For dielectrics or gases, Scop is a typical atom-
ic energy and b,d -13713yao where ao is the Bohr
radius. For p &0.1, then, a projectile in a con-
densed medium can interact with cylinders of ma-
terial which contain 15 or more atoms across their
diameter. This enables one to apply the dipole ap-
proximation to a large fraction of interacting
atoms or equivalently to apply standard techniques
of classical macroscopic electrodynamics in which
electric fields are defined as averages over micro-
scopic volumes of material which are composed of
many atoms.

(2) The second reason is that for sufficiently
large velocities, i.e., P » tr, the kinematically limit-
ed energy transfer from a heavy projectile to a free
electron initially at rest (2mc P y where m is the
electron mass) is much larger than atomic-electron
energies -ma c . Thus, for very close, and there-
fore very violent, collisions between the projectile
and the atomic electrons, one can neglect the bind-
ing of the electrons to atomic nuclei and regard
them as free particles. The impact parameter
above which this approximation breaks down is
given roughly by bp-1/kp where kp is the wave
vector of an atomic electron (ko-1/ao) so that
bp Qp. Fof the vast majority of collisions in the
high-velocity limit, either the free-electron approxi-
mation (b &ao) or the classical macroscopic (i.e.,
dipole) approximation (ao & b &b,d) is valid.

Bohr, Bethe, and Bloch used these properties
of high-velocity charged-particle interactions with
matter to perform their classic stopping-power cal-
culations which are reviewed elsewhere by Fano
and by Ahlen. For P & 0.1 and for nuclear projec-
tiles with atomic numbers from 1 to 26 the theory
of Bethe, as modified by well understood correc-
tions (see Ahlen for a summary of these), is capa-
ble of predicting particle stopping power (energy
loss per unit length) to better than 1%. Ahlen
has apphed similar techniques to evaluate a reliable
expression for the stopping power of magnetic
monopoles with P &0.1.

For projectile velocities &0.1c the above simpli-
fications fail. With the exception of conducting
absorbers, the instantaneous interaction of the pro-
jectile is essentially limited- to the atom through
which it passes. Furthermore, the average energy
transferred to atomic electrons is so small that it is
impossible to disregard their binding to matter.
Since energy transfers to atoms can exceed the
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kinematic hmit to free electrons, the stopping
power at low velocities is enhanced over that
which one might expect. In addition, atomic elec-
trons are actually not at rest, so it is kinematically
possible for them to receive more energy than the
limit for stationary electron targets. Thus, for ex-

ample, E-shell ionization is standardly observed'

for proton projectile velocities below that for
which 2m V y equals the E absorption edge.

To this date, there is no satisfactory theory
which covers the stopping power of protons for
0.01 &P (0.05. Fol nuclei heavier than protons
the problem is even more difficult due to the com-
plications of electron capture and loss. For
P ~0.05, the Bethe theory accounts well for proton
stopping power when augmented by the shell

corrections, which take into account the fact that
the excitation of inner-shell atomic electrons is
strongly modified due to the large velocity of these
electrons (the standard Bethe theory assumes that
projectile velocities are much larger than electron
velocities). Heavier ions can be handled at larger
velocities when the capture and loss effects cease to
dominate the interaction between the projectile and
the stopping medium. For P ~0.01, Lindhard"
has been quite successful in accounting for the
features of the electronic stopping power of
charged particles. (Electronic stopping refers to
the energy lost in collisions with electrons within
the medium which lead to either atomic excitation
or ionization. This is to be opposed to nuclear
stopping, where energy is lost in collisions with the
nuclei of the medium; for proton energies less than
several hundred electron volts, nuclear stopping
dominates while the opposite is true at higher ener-

gies. ) He has done so by using a model in which
the properties of the absorbing material are simu-
lated by a degenerate Fermi gas of noninteracting
electrons. Such a model. accounts for many of the
features of conduction electrons in metals, and the
Thomas-Fermi approximation has proven success-
ful for the description of static properties of large
atoms. It is not surprising, therefore, that this ap-
proximation is also successful in describing dynam-
ic problems such as those involving the stopping of
charged particles. An appealing feature of
Lindhard's technique is that it is formally quite
similar to that used for high-velocity calculations
such as that performed by Landau. ' The princi-
pal difference is in the use of different dielectric
permeabilities. For large velocities, the distant col-
lisions transfer energy from the projectile to im-
pact parameters large compared to interatomic

spacirig. Thus a model in which the stopping ma-
terial is composed of discrete, bound atoms is ap-
propriate and the familiar frequency-dependent
dielectric constant e(co ) is adequate to describe the
response of the medium. Static screening in dielec-
trics is reflected by the reduction of the electric po-
tential by the factor 1/e(0). Thus, a point charge

q appears many atoms away as a charge q/e(0).
On the other hand, the dielectric constant clearly
cannot be used for low velocities in which the pro-
jectile effectively sees the cloud of electrons of a
single atom at a time. Since this cloud has many
of the properties of a Fermi gas, the screening of
the point charge q should be characterized by the
potential (qe ")/r. Lindhard" has shown how
the correct screening can be accounted for in a na-
tural way by including spatial as well as temporal
variations of material response in the macroscopic
Maxwell equations. This is achieved by allowing
e =e(k, co) to depend on the wavelength as well as
the frequency of the excitation. Ziman' has em-

phasized the importance of such a description for a
wide variety of physical phenomena. For the case
of static screening one used the result that
e(k, 0)=1+1, /k for small k. Thus, since the
Fourier transform of the potential q/r is q/2~ k,
one finds that the electric potential in k space in a
degenerate Fermi gas is q/2n. (k +A, ) which is
the transform of the spatial field qe "/r, as re-
quired.

In this paper we will be applying Lindhard's
technique to the slowing of monopoles. We regard
the success of the technique in describing measured
proton stopping power as evidence supporting our
calculations for monopoles. However, due to the
somewhat unfamiliar nature of Lindhard's calcula-
tions we will derive our stopping-power result in
several different ways, each of which illuminates a
separate feature of the problem. We should em-

phasize at this point that our results are not direct-
ly applicable to problems relating to the electronic
excitation and ionization of particle detectors, al-
though the techniques employed here should be
useful as a guide in thinking about such problems,
We begin by considering a heuristic calculation of
monopole stopping power in conductors.

SIMPLE TREATMENT
OF MONOPOLE STOPPING PO%ER

IN CONDUCTORS

Consider a cylindrical coordinate system (p, P,z)
in which the monopole, assumed to be infinitely
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massive, travels on the z axis with velocity V. %e
divide the (infinite) conducting medium into
volume elements, each consisting of a loop at con-
stant p and z with cross section dz dp. At the mo-
ment the monopole is at z =0, the electric field it
produces in each "wire" is determined by the
Biot-Savart law for magnetic charges (we neglect
screening; this would be invalid in superconductors
but it is a good approximation for ordinary con-
ductors):

o.E22apdpdz .
V

The integral over z can be carried out to yield

3m VS=
2 f cr dp/p

(3)

(4)

One might be tempted to assume that .=ocr( ac=0)
is the standard zero-frequency conductivity and
that a lower limit on the impact parameter of -ao
should be imposed. This choice might be thought
to be justified on the basis of the discrete nature of
matter at this scale. The resulting stopping power
would be

3n g Vo(0)
4c ao

This is somewhat unsatisfactory in that we have
used a cutoff impact parameter in such a way that
the stopping power is quite sensitive to the choice
of its value. One is generally better off and more
nearly correct if the cutoff appears in a logarithm.
Equation (5) is in fact incorrect and we can under-
stand why if we consider the properties of electri-
cal conductivities in real metals.

E=gVp/cR

where g is the monopole charge and R =z +p .
The field is parallel to the loop and thus has a
nonvanishing line integral around it so that a
current will flow. From Ohm's Law, the energy
dissipated by this current flow is given by

de=oE 2rrpdpdzdt,

where 2m.pE is the voltage around the wire and
oE dp dz is the current in the wire (o is the con-
ductivity). The quantity de is the energy dissipated
in the time dt. If we define monopole stopping
power S as the total energy dissipated per unit dis-
tance traveled by the monopole, then

In the Drude theory of conductivity' o. is ex-
pressed as a function of co in the form

cr(co)=o(0)l(1+co r ), (6)

where w is the mean time for the collisions of con-
duction electrons with positive ions in the conduc-
tor. Since the properties of conductivity are deter-
mined by those electrons at the surface of the Fer-
mi sphere, the collision mean free path A is related
to ~ via

1 BD 4m
V B=O, VXH= + Jo

c Bt c

& aa
V D=4mpo, V XE=——

c Bt

where v~ is the Fermi velocity- of the conduction
electrons. It is shown elsewhere' that
o(0) =co& r/4m where co& 4rrNe --—/-m is the
square of the plasma frequency of the conduction
electrons. Ziman also shows' that an approximate
expression for A is

A =50aT~/T,

where a is the lattice constant, Tm is the melting
temperature of the metal, and T is the actual tem-
perature. This expression is claimed to be valid
within an order of magnitude.

To apply these results to our theory we would
need to relate impact parameter to frequency. It is
natural to set co equal to the inverse of the "col-
lision time" p/V so that o(p) =o(0)/(1+ V r /p ).
Equation (5) would then be valid in the limit
V r «ao or, equivalently, when V/vz is small
compared to the ratio ao/A which is in turn less
than 1. However, by using Eq. (6) we are making
a serious error. This is due to the fact that Eq. (6)
is derived under the assumption' that the Fermi
velocity is much less than the ratio co/k where k is
the wave vector of the excitation. For the present
case k is the inverse of the characteristic length
over which fields change appreciably so that
k-1/p. Thus, co/k- V, which we have just seen
must be smaller than the Fermi velocity in order
for Eq. (5) to apply. Since the opposite limit must

apply for Eq. (6) to be valid, we see that greater
care must be applied to obtain the correct stopping
power. This is where we can take advantage of the
work done by I.indhard. " He analyzed the proper-
ties of electron gases and found that they could be
described by Maxwell's equations:
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where po and Jo are extraneous charge and current
densities and where the Fourier transforms of the
fields are related by

bility 6 p and g g" are related by

e(k, co ) =e'(k, co ),
(12)

B(k,co) =p(k, co)H(k, co),

D(k, ro)=e(k, co)E(k,a)) .
(10) k 1—

tM(k, co )

2

[e"(k,co ) —e'(k, co )] .
C2

The conductivity is included in the definition of
the dielectric constant":

o"'= Im[e"'(k co ) —1],
4m'

where tr (l) refers to the component of the field
transverse (longitudinal) to the k vector. In the
formulation where one uses the magnetic permea-

Lindhard gives several results for e and p de-

pending on the physical situation. For the semi-
classical approximation (which is essentially the
same used in the Thomas-Fermi description of
atoms) one assumes the de Broglie wavelength of
electrons in a degenerate Fermi gas to be small
compared to other relevant scales. For this case"

2

e '(k, co)=1+—3 Np

4 N

—2N

( 2l 2)

N —UFk
ln

N +UFk

r

1 —N' /u k

VFk
(13a)

where N'=N+i/~ and
r

3N& N
' N —VFk

E'(k, co)=1+ 1+. — ln
UF2k2 2kuF N'+UFk

(13b)

3'e'=1+ f,
2U 2 (14a)

count, the permeabilities for a degenerate Fermi
gas become (excluding dynamical spin effects)"

In the above, the magnetic moment of the electrons
is assumed to be zero even though the spin is taken
into account insofar as it relates to the Fermi-
Dirac statistics. If one takes the dynamical effects
of spin into account, an additional component of
the transverse permeability is obtained":

r

kPF egg N' N —kuF5e"=— 1+ ln
~2N2@3V 2kuF N +kuF

(13c)

where

f= —, +—[1—.(z —u') ]ln
Sz z —u' —1

+—[1—(z+u') ]ln
z+u'+1
z+u' —1

(14b)

with the logarithms being principal values and
where u'=co'Iku2 and z=kl2kz. Lindhard also
gives

where pF ——muF and p~ ——eA/2mc is the Bohr mag-
neton.

When the quantum-mechanical effects of the
finite wavelength of the electrons are taken into ac-

I

with

Ntr 1 P ftr
N

(14c)

r

I If"= , (z +3u' +1)— [—1—(z —u') ] ln, — +[1—(z+u') ]2ln
32z z —u' —1 z+Q —1

(14d)

For the present simplified calculation in which monopole stopping power is equated to conductive losses,
we will neglect dynamical spin effects. Furthermore, we will be interested only in the transverse conductivi-
ty since V D=O ~ k E(k, co ) =0 (this applies both to monopole stopping and to optical response of metals
for which the Drude theory is intended). Thus,

o = Im(e") .
4m
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We first show that the Drude result [Eq. (6)], is a consequence of Eqs. (15) and (13a) in the limit k~ 0.
Holding co constant, we find for small k that the semiclassical approximation (which should definitely be
valid for the optical case since the electromagnetic wavelengths are much larger than the Fermi wavelength)

1s

2
Np

e '=1+—
4 N

2N 1 N

UF k UFk UF k2 2 2 2

UFk 2 UF k—2-, ——
N 3

(16)

or

and

r 1—
2

NN

N 7 N 'T

+
1+co r N(1+N r )

p;„=A'/mvz ——I/k~ . (20)

angular momentum is quantized in units of A', the
smallest wire with a nonzero area element corre-
sponds to a radius

2

cr= /1+co rNp S

4m

which is identical to Eq. (6).
We now take the opposite limit, i.e., kvF »N

which corresponds to the stopping of low-velocity

monopoles. For the moment we neglect damping
which implies that kvz » I/r or, in terms of our

present calculation, p &&UF~. In this case, it is easy

to show that

This is the same order of magnitude as our previ-
ous choice. However, the present interpretation is
to be preferred in that we are not saying that the
technique fails at some scale size. In fact,
Lindhard's fully quantal permeabilities should be
valid at all scales and we will see that p;„ is prov-
en to be —1/kz in this theory. To conclude this
section, we write our result for monopole stopping
power in conductors obtained in our model:

3'2

o(k, co) =
16UFk

(17)

Nzg V
8=A, ln(Ak~),

C UF

(21)

pmax —UF& —~ ~ (19)

Since the semiclassical approximation does not

adequately consider the wave nature of the conduc-
tion electrons, it cannot yield the correct minirnurn

value for p. However, it is easy to obtain p;„ in

an ad Aoc argument reminiscent of semiclassical

treatments of relativistic stopping power. For con-

duction electrons confined in a wire of radius p,
the angular momentum relative to the monopole is

-pmvF where we use the fact that UF »V. Since

By replacing k with 1/p and inserting the result in

Eq. (4) we find that

Npg V
ln(pmax/pmin)

C'VF

and p,„and p;„are logarithmically divergent

cutoffs which prevent S from being infinite. It is

easy to see where p „originates. When p & UFz

our neglect of damping (i.e., of the i/r term) is in-

correct. If one assumes that co =0 and that

kvp « 1/r, then it is found that 0 =co& r /(4m )

=o.(0). Thus, for p»v~r, o is constant and the
integral for S decreases as 1 /p , so that the integral

converges. It is clear then that

where A, is a number of order unity.

STOPPING-POWER CALCULATION
USING MAXWELL'S EQUATIONS

We now consider monopole stopping power from
a more rigorous point of view. Namely, we calcu-
late the energy loss by evaluating the force acting
on the monopole due to the fields induced in the
material. In this way we do not have to introduce
the dependence on wavelength and frequency in the
artificial manner above. Furthermore, screening
effects are taken into account within a rigorous
framework. Although this will turn out not to be
important for the case of monopole stopping power
it is apparent that it would be absolutely necessary
for the energy loss of electric particles.

To begin, we will not specify the nature of the
material through which the monopole passes. We
assume, however, that the velocity is so small that

. we can neglect all time derivatives in Maxwell's
equations. Nevertheless, it is important to first
write down the symmetric Maxwell equations' to
clarify the roles of B and H in monopole stopping
power:
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V B=4mp, VXH= — +c Bt c

(22)

= —J~.H J, E,—(23)

where S=(c/4n. )(EXH) is the Poynting vector.
The obvious interpretation of this is that it is the
H and not the B field that does work on the mono-

pole. We will see that if it were the other way
around, the monopole stopping power would be
strictly zero at low velocities, in contradiction to
the results of the previous section.

To proceed, let p~ =g5(r —Vt). Then

V B=4ng5(r Vt) . — (24)

In terms of Fourier components this equation reads

ik B(k,co)= 5(co —k V) .
2%2

In the limit of very small velocities we neglect time
derivatives in Eq. (22). [This can be shown to be

V D=4mp„V XE=—— — J
c Bt c

where p and J are extraneous magnetic mono-
pole charge and current densities and p, and J,
are the analogous electric monopole densities.
Note that the relation J,(induced) =o.E is con-
tained within the definition of the dielectric per-
meability which relates D and E via Eq. (10).

It is straightforward to show from Eq. (22) that

1 BB BD
4n dt r}t

legitimate by using the full Eq. (22) to derive an
expression for monopole stopping power; if this is
done it is found that as long as V & vF it is legiti-
mate to neglect the time derivatives. ] Since
V )&H=O for the low-velocity approximation
( J,=0 in either dielectrics or conductors), we can
write H= —VP so that in k, to space

H(k, co)= i k—p(k, t0) .

Since B(k,co }=@(k,c0)H(k, co) we have

(26)

p(k, to)=
~ ~ 5(t0 —k.V) .

2m. ~k p(k, to)
(27)

(29)

(We use the minus sign here since we will interpret
stopping power as positive. )

We now restrict ourselves to the case of a degen-
erate Fermi gas of electrons. For the moment we
neglect dissipation (i.e., r = ao) and consider Eqs.
(14a) and (14b), which describe such a situation in
a fully quantal framework. Separating f into real
and imaginary components f=f& +if&, Lindhard"
shows that

The stopping power of a monopole is merely the
force exerted on it by the medium, which is given
by gH. V/V (by symmetry the electric force on the
monopole must vanish). Therefore, we have

2. g I~3k~ 5(to —k V) k V
(2 )

2m kzp(k, to )

Since the stopping power is real we obtain

g2 to dk kV 1S=- Im co dc' .
~@~ o k kv p(—kyoto }

and

f~(u, z)= —+—[1—(z —u) ]ln + [1—(z+u) ]ln
1 1 z —u+1 1 2 z+u+1
2 8z z —u —1 8z z+u —1

(30a)

—Q, Z+Q +1,
fq(u, z)= —[1—(z —u) ], iz —u

i
&1&z+u,

8z

0, iz —ui )1,

(30b)

where z=k/2k~ and u =to/kuz. Similarly for e" we have Eqs. (14c) and (14d) with f"=f&' ifq'. —

f'~'( zu)= —,(z +u +1)— ~ [1—(z —u) ] ln +[1—(z+u) ] ln
32z z —Q —1 z+Q —1

L

(31a)
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and

—,mu(1 —u —z ), u+z&1,3 2 2

gt g —[1—(u —z) ],
~

u —z
~

&1&u+z,
32 z

0, iu —zi &1.

(31b)

By using Eqs. (12) and (29) we easily obtain

gUFp ~ dz
2 2 2

S= 2' —3u 2 udu .

geo& VS=
2c UF

ln
1

zmin
(33)

Note the similarity to Eq. (18). The cutoff z;„ is
clearly related to our neglect of damping as we saw
in our previous discussion of p,„. In that context
we found that k;„=I/A for the case of conduc-
tors. Another way of seeing this is to interpret
klkF as the scattering angle of an electron off the
monopole. According to the uncertainty principle,
one cannot simultaneously localize position and
momentum so that k;„ is related to the delocali-
zation of the electron Sb via k;„-I/5b The.
quantity 5b is essentially the lateral breadth of the
electron wave packet which is scattering off of the
monopole. If k &k;„, then the uncertainty princi-
ple will be violated. For the case of conduction
electrons, 5b -A (any broad plane wave will be
broken into small wavelets by scattering off the
positive ions of the lattice). For ordinary atoms,
5b -ap since electrons are localized in the atoms.
Thus, for conductors,

1/zmin 2kF~

and for nonconductors

(34)

1/zmln =2kFaP ~ (35)

To calculate stopping power for atoms in noncon-
ducting liquids and solids we will use the total
number of electrons in the medium to determine
Fermi energies and plasma frequencies:

f2
cop 4nNe /m, eF ———— .(3n. N)

2@i (36)

(32)

In the limit V/Uf « 1 we have fq' —,mu(——1 —z )

for z & 1 and fz' ——0 for z & 1; we also find that

fz ——(m/2)u for z&1 and fz ——0 for z&1. Keeping
only those terms to lowest order in u we find

Ziecop V
S,= 3 Ci(X),

UF

w here X =e /(nAuF) and

'd
Ci(X)=

[z +X fl(O,z)]

If one approximates f&(O,z) =1 it is found that

2' Z e V
S,= ln

3+8

137UF 2c+inn. —1+
c 1377TUF

(37)

(38)

(39)

if P is assumed to be small compared to unity. In
the above, it is also assumed that the projectile
does not capture orbital electrons. In actual fact
for large values of Zi this is not valid and the pro-
jectile charge dependence is reduced from its qua-
dratic nature. Lindhard and Scharff' have found
that the expression

8me apV
S,=

uc

z 7/6~

(z 2/3+z 2/3)3/2 (40)

is a good approximation to data. For protons,
however, Eq. (39) should be reasonably accurate.

Note that Eq. (39) is not divergent even though
it was obtained in the limit of zero damping. This
illustrates the key difference between electric- and

I

where X=Z2p/32m„, Z2 and A2 denote the atom-
ic number and weight, respectively, p denotes mass
density, and m„ is an atomic mass unit. For sim-

ple conductors we will calculate, using Eq. (36), a
"bulk" stopping power with Z2~ Z2 —1 and a
"conduction" stopping power with Z2~ 1.

It is important to note that in the above deriva-
tion, z was naturally limited from above by 1 in
the limit u «1. This justifies our choice of p;„
in the previous section.

It is instructive at this point to consider the
stopping power of electrically charged particles.
By using the same approximations as we have (i.e.,
neglect of damping, of time derivatives and u «1),
Lindhard" has shown that for particles with elec-
tric charge Zie,
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magnetic-particle stopping power. If a monopole
is slowing in a conductor or a degenerate Fermi
gas its maximum impact parameter is limited by
dissipation of eddy currents (if the monopole has a
large velocity in a dielectric the adiabatic limit
determines its cutoff). For a number of years it
was believed' that similar limitations applied for
electric particles. However, the failure to observe
temperature-dependent stopping power of a parti-
cles in conductors prompted Kramers' to reexam-
ine the problem, and he found that the plasma fre-

quency provided the natural impact parameter cut-
off via the adiabatic relation v/co~; the electric par-
ticle is capable of inducing coherent oscillations of
the conduction electrons, producing an effective
energy level of the medium with an energy Ace~.

Such modes are inacessible to monopoles due to
the lack of a longitudinal electric field. For very
low projectile velocities there is a slightly different,
although related, cutoff. This has to do with the
notion of screening. In the limit k —~ 0 for co =0
Eq. (13b) reduces to

2

e (k,co)=1+
3cop

VF k
(41)

This implies that the potential in the vicinity of a
particle of charge Z~e is of the form

P =Zie exp( A,r )/r, —

where A, =3~~ /vF . If electrons are more distant
than 1/A, from the ion they do not scatter off it
since they do not see it due to the screening of the
longitudinal field. Again, the same effect will not

apply for magnetic monopoles due to the absence
of a longitudinal interaction.

The importance of these remarks lies in the ob-
servation that since the cutoff impact parameter
for monopoles is larger than for electric charges
(were it not for screening, electric-charge stopping
would be limited by dissipation, as is the case for
monopoles), the term ln(1/z;„) is at least as large
as the corresponding one for electric charges.
Thus, if one is not convinced of the numerical ac-
curacy of these calculations of monopole stopping
power, one can at least obtain a firm lower limit
from available data.

It is of interest at this point to consider what ef-
fects the dynamical aspects of electron spin, i.e.,
the magnetic moment, have on the above results.
One might be tempted to incorporate Eq. (13c) into
the calculations in order to do this. However,
when this is tried, it is found that the magnetic
moment's contribution to stopping power diverges

as k „.Physically, this is due to the form of the
spin-monopole interaction potential, —p B. The
force on the magnetic moment p is (p. V )8 so
that it varies as 1/r where r is the electron-
monopole separation. Thus, in a collision of a
monopole with a stationary magnetic moment at
impact parameter b, the momentum transfer goes
as (1/b )(b/V) and the energy transfer goes as
1/(b V) ) so that when one integrates over 2~b db

a result 1/bm;„ is obtained. With the interpreta-
tion bm;„=1/km», we get the above divergence for
k „.With a divergence this severe it would be
foolhardy to attempt to estimate the size of the
contribution to stopping power. The reason for
this problem clearly has to do with the neglect of
the wave nature of the electron in Eqs.
(13a)—(13c). Unfortunately, we do not know of an

expression for 5e" which takes into account the
electron spin in a fully quantal manner. However,
we can put a limit on the magnitude of the effect

by considering the Fermi-Teller approach to low-

velocity stopping power which we take up in the
next section.

THE FERMI-TELLER APPROACH
TO LOW-VELOCITY STOPPING POWER

Fermi and Tdler' have used a very simple but
physically illuminating approach to estimate the
stopping power of slow negative muons in matter.
As with Lindhard, the projectile was assumed to be
passing through a degenerate Fermi gas. By re-
stricting collisions between the electrons and the
projectile to those for which the energy transfer to
the electrons is sufficient to raise the total energy
greater than eF, they obtained the result

rnZ~e V
S,= ln(1/g;„),3' (43)

where l(;„ is the minimum allowed scattering an-

gle between the directions of an incident and scat-
tered electron momenta. They assumed this
minimum angle is determined by the maximum
permissible impact parameter due to screening and
they obtained f;„-(a /eve)'~. Thus, aside from
the additional term in the bracket of Eq. (39), the
Fermi-Teller result is the same as the Lindhard re-
sult. This lends us confidence that the Fermi-
Teller approach can also be used to estimate mono-
pole stopping power. The advantage of this tech-
nique is that it enables us to include the dynamical
effects of the electron spin, as we shall presently
see.
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Consider a slow, heavy projectile passing
through a degenerate electron gas. Assume that
the projectile velocity V&& vF &&c. In this limit
there is no need to distinguish between angles mea-
sured in the laboratory frame and those measured
in the rest frame of the projectile. This approxi-
mation would not be permissible if we considered
energy loss in a classical gas in which the projectile
would be equally likely to lose as to gain energy
unless the relative number of overtaking to ap-
proaching collisions were properly taken into ac-
count; this is in fact the basis of Fermi's mechan-
ism for the acceleration of cosmic rays by massive
magnetic irregularities in the interstellar medium.
The energy transfer to an electron is given by

2.0—

1.8—
C
~ 1.6—0'O

1.4—
0

1.2—

1.0
I

0 20 40 60 80 100 120 140 160 180

4) (deg)

FIG. 1. Ratio of the Kazama-Yang-Goldhaber {Ref.
19) electron-monopole cross section to the classical cross
section [Eq. (48)] as a function of center-of-mass scatter-
ing angle.

b, T=p V(cosO' cosO ), — (44)

where 8 is the angle between p and V, p is the in-
cident electron momentum, and 8' is the angle be-
tween the scattered electron's velocity and V. The
time rate of energy transfer to the Fermi gas is
given by

dE =f, n( e) de u, dQ'dQ do.

&& b, T(8', O, e)F(8', O,e), (45)

where

u =p lm, e = —,mu
1 2

m
P726 ~ 6 (FF ~

n(e)= 0, 6') E'F

and dQ =sinO dO dP, dQ'=sinO'dO'dP' and where
d0./dQ' is the differential scattering cross section
to be evaluated at the relative velocity u (not V).
The function F(8',O, e) is defined by

r

1, 1f E'+ET) 6F,
'8 8"= 0 otherwise. (46)

Fermi and Teller evaluated dE/dt for the case of a
Rutherford cross section,

do.

4p u sin"(1(/2)
(47)

where cosl( =sinO sinO'cos(P' —P )+cosO cosO' By.
performing the indicated integrations in Eq. (45)
they obtained Eq. (43). Note that since only the
screening angle had to be inserted after the fact,
the Fermi-Teller approach is apparently handling

d0 g8
4p c sin (g/2)

(48)

In Fig. 1 (do/dQ')/(do/dQ')z is plotted for the
two cases g =+137e/2 and g =+137e. Note that
except for large scattering angles ( & 40 ) the exact
cross section is very nearly equal to the Rutherford
cross section. This leads us to write

d0
dQ'

d0
dQ'

d0'
dQ' (49)

In Fig. 2 these two contributions are compared for
the cases g =+137e/2 and g =+137e. The values
for (do/dQ')a were obtained from Ref. 19 where
they were presented as the data in Fig. 1 to -1%
accuracy. Thus, for g &40' we can only claim an
upper limit for (der/dQ')a which is denoted by
curve a. For 1( ~ 40 the upper limit is given by
curve b. The stopping power due to the Ruther-
ford component can be obtained from the Fermi-
Teller calculation by replacing Z&e with guF/c.
%e have set v =vF since for V&&vF only those

the wave nature of the electron properly. This is
due to the fact that by utilizing a differential-
cross-section procedure one is in fact dealing with
momentum transfer rather than impact parameters.
In the Fermi-Teller approach then, one is in princi-
ple assuming the electron wave packets to be infin-
itely broad. This leads us to believe that by using
the electron-monopole cross section evaluated by
Kazama„Yang, and Goldhaber' we will be consid-
ering dynamical effects of electron spin. This is
due to the fact that in Ref. 19 the Dirac equation
was solved to get the cross section. It is con-
venient to express this cross section as a ratio to
the classical "Rutherford" cross section for mono-

poles;
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electrons with U near the surface of the Fermi
sphere are capable of being ejected from the
sphere. So

1000

500—

mge VU

Sa —— ln(1/g;„) .
3K

(50)

100

l(tm;„(monopoles) & g;„(electric) . (51)

This enables us to put a lower limit on monopole
stopping power. It is easy to see that

In this expresson lt;„ is a minimum allowed elec-

tron scattering angle. Since screening is not im-

portant for monopoles we know that

50
U

0'a
hl

Q
N~ 10

U
CV

CL

2

g UF
Sg /Sp )

e c
(52)

1.0

where Sp is proton stopping power. Since
S =Sz+S~ the total monopole stopping power
must exceed the limit above. For g =137e, we
have the useful result that monopole stopping
power must exceed proton stopping power (for
uF -ac) The det.ermination of a limit for Sa is
easily done. We can write Sa &S, +Ss (a and b

correspond to curves a and b in Fig. 2). By defini-
tion, S,=0.01'. The general expression for S
can be shown to reduce to

I I I I I I I I

0 20 40 60 80 100 120 140 160 180

e (deg)

FIG. 2. Comparison of (do /dQ')s to (do /dQ')q [see
Eq. (49)]. Units are indicated on the vertical scale.
Curve c corresponds to (do./dQ')q for g =+137e/2 and
curve d corresponds to the case for g =+137e. Curves
a (l( & 30') and b (l( & 30') are upper limits for the
(do/dQ')q contribution to the tota1 cross section.

2m gF 7p w 2m'
2 d o

2 2

S = Vf d8' f d8 f dP'sin8 sin8'(cos8' —cos8) (53)

where do/dQ' is evaluated at the Fermi velocity
of the electron gas (not at the projectile velocity
since V«uF). Note that there was a typographi-
cal error in the Fermi and Teller paper and that
the term (cos8' —cos8) appeared rather than its
square. The contribution due to curve b in Fig. 2
corresponds to do/dQ'=g c /(4p c ) so that

2m 6F g2e 2

Sb —— -V
m fi SmeFC

I

Since

ln
1

&Sq [(4/3~)m e V/R ]

S~ =-(210 MeV/cm)v E (silicon), (56)

the ratio Sb/S~ can be quantitatively estimated by
using actual proton stopping-power measurements.
Taking silicon as the target material, we find that

x'
X f,dx' f,dx(x' x)'2~—

which can be expressed in terms of Sz as

1
Sb ——Sg 41n

(54)

(55)

where E is the proton kinetic energy in keV. Thus,
in(1/P;„) &0.48 so that Sb &0.5'. So the
Fermi-Teller approach yields the result

4. mgeUF
SFr ——

3
Vln (1+b),

Ac
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where 0&b &0.5. By noting that z;„=p;„/2 we
can take the ratio of SFr to Si, [the Lindhard re-
sult, Eq. (33)] to find

S~/Si, ——2(1+b) 1+0.19/ln

(58)

For 1n(1/1(t;„)=0.5 this ratio varies from 1.4 to
2.1 depending on the value of b Thi. s suggests
that spin effects do not dominate monopole stop-
ping power at small velocities although a signifi-
cant contribution due to interaction of the electron
magnetic moment cannot be ruled out. In fact,
Ullman has argued ' that since the energy of in-
teraction with an electron at a distance ao is simi-
lar for a proton and a monopole, their low-velocity

stopping powers should be similar, a result we have
arrived at by different arguments. The magnetic
interaction is given by geh'/2mcao and the electric
interaction is e /ao. For g =137e these energies
are the same within a factor of 2. One might ex-
pect, therefore, that by coupling to the spin of an
electron a slowly moving monopole could excite
energy levels with efficiency comparable to excita-
tion by a proton. Classically, this corresponds to
the situation where a force is exerted on the elec-
tron by means of the gradient of the monopole's
magnetic field. More detailed calculations will be
required to achieve a more quantitative evaluation
of the role of the electron's spin in the slowing of
slow monopoles.

In calculating the parameters for the Fermi gas
we assume properties of the bulk medium. It
would be more accurate (and absolutely essential
for gas absorbers) but much more laborious to take
suitable averages throughout the medium by vary-

ing impact parameters and taking into account the

rarefied spaces between atoms. In so doing one
would require realistic radial profiles of electron
densities in atoms as provided by Thomas-Fermi or
Hartree-Fock descriptions. However, we will see
that for silicon the Lindhard description accounts
well for actual proton data even with a naive use
of bulk properties. In this case vF ——0.106c. The
Lindhard expression [Eq. (39)] for protons in the
limit X « 1 (for the present case, 1 =0.22) gives
the result

Sz(Si)=(143 GeV/cm)P

=(209 MeV/cm)v E, (59)

S(si)= 180
cm 137e

(60)

Since the Lindhard technique does not take into
account electron spin in a dynamical way, this
must be interpreted as a lower limit to monopole
stopping power. It is conceivable that spin interac-
tions could increase it by as much as a factor of 2.
As we have seen earlier, a more firm lower limit
on monopole stopping power for g =+137e is pro-
vided by measurement of proton stopping power.

The above expression for monopole stopping
power is valid only for V &0.01c. At large veloci-
ties (V & O. lc) we can use an earlier result for sil-
1con:

where E is in keV. This is remarkably close to the
experimental value quoted previously. It is prob-
ably only an accident that the agreement is so good
since it is difficult to measure stopping power to
within 30/o for these small velocities. Emboldened

by this success we now use Lindhard's expression
for monopole stopping power with t/i;„=ac/UF
[see Eq. (35)] to find

2

0.72 (8.18+Inp2y ), g=+137e/2, p&0. 1,
S(S.) (g/cm )

2.89 (7.73+lnp y ), g=+137e, p&0. 1,
(g/cm )

(61)

which we compare to the low-velocity results
T

S(Si)= .
20

2 p, g =+137e/2, p &0.01,
GeV

(g/cm )

78 P, g =+137e, P &0.01
GeV

(g/cm )

(62)
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Taking the particular example of Na at 20'C, for
which T~ =98'C and a =6.4a0, we have for the
bulk electrons ln(1/z;„) ——,=0.23 and for the

1

conduction electrons ln(1/z;„) ——,=6. 16. The
bound-electron stopping power is

2 2

V(0.23)
2c Up

while the conduction-electron stopping power is

2 2

V (Z2 —1)'i (6.16)
2C UF Z2 —1

0.05

0.01
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S

g = ~137e!

I I I I I I I II
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0.05 0.1
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so ihe total stopping power is

g Q)p

,~ V(0.23+1.33),
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FIG. 3. Stopping powers in silicon for protons and
for monopoles with g =+137e/2. Solid lines are calcu-
lations and are taken from Ref. 6 (high-velocity-proton
curve labeled Bethe), Ref. 9 (high-velocity-monopole
curve labeled Ahlen), Ref. 11 (low-velocity-monpole
curve labeled Lindhard) and Eq. (60) of this work (low-

velocity-monopole curve). Dashed lines are extrapola-
tions of the various theories into regions of questionable
validity. Note that the Bethe theory as shown does not
include shell corrections. The shaded region indicates
estimated range of errors for the slow-monopole stop-
ping power. The open circles are the averaged values of
high-quality measurements of proton stopping power in
silicon and are taken from Ref. 20.

where the second term in parentheses corresponds
to the contribution from conduction electrons
while the first term corresponds to bound elec-
trons. The conduction electron's contribution ap-
parently dominates. %e can compare this result to
that obtained by Martem'yanov and Khakimov
who used a variant of Landau's' method for
stopping-power calculation to obtain the rate of en-

ergy loss by slow monopoles in conductors. They
found that

4m Keg
2 e

PIC UPZ2

where E is the bulk electron density. Expressed in
our form their result is

in Fig. 3. Qpen circles corresponding to measured

proton stopping are also shown, as are calculations
of low-velocity proton stopping power from the
Lindhard expression and high-velocity calculations
from the Bethe equation (for which shell correc-
tions were not used). The shaded region corre-
sponds to a very conservative range of possible
monopole stopping powers and it overlaps the ex-

trapolation of' high-velocity stopping power when
extended into the region 0.01 & P &0.1.

Let us now consider the monopole stopping
power in a conductor. For such a system there are
two separate contributions to monopole stopping
power: from the bound electrons for which
tj'j;„=ac/uz, and the conduction electrons for
which ttr;„=(ac /zu)/(5 OaT /aoT) where uF' is
the Fermi velocity of the conduction electrons.

Similarly we distinguish ~& from co& . %e have
for alkali metals like sodium the following rela-
tions: re ——(Z2 —l)cop and uF ——(Zp —1)' up.

'lTg COp

S
2 2y3

V
c uF(Z2 —1)

(63)

For the case of Na, the ratio of our result to theirs
is 1.15, which is quite good agreement. However,
this is probably an accident and should not be tak-
en too seriously since the authors of Ref. 22 as-
sumed the Drude conductivity [Eq. (6)] which we

have shown to be inappropriate for calculations of
stopping poweI.

LIMITATIONS OF THE CALCULATIONS

For each of the three approaches utilized above
to calculate the stopping power of slow monopoles,
we have assumed that the stopping material is
composed of a gas of noninteracting electrons at
zero temperature. The existence of a positively
charged background has been incorporated only
with regard to the damping of the electron gas and
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to provide a physical rationale for preventing the
Coulomb disruption of the electron gas. An addi-
tional requirement for the validity of our calcul-
taions has been that typical wavelengths of the
electrons in the Fermi gas are smaller than those
of the excitations induced in the gas by the atomic
nuclei and by the monopole. This so-called semi-
classical approximation is reflected in our use of a
quasicontinuous electron energy density function in
Eq. (45) for our calculation of stopping power via
the Fermi-Teller technique. For the Lindhard
technique we have not explicitly required the semi-
classical approximation insofar as we used the ful-

ly quantal expression for the magnetic permeabili-

ty. Thus, in arriving at Eq. (33) we made use of
the limit V/uF « 1 to eliminate the contribution to
stopping power from those Fourier components for
which k &2k+. However, since z;„must be less
than 0.61 in order for there to be positive stopping
power, it is necessary that kzap & 0.8 or that
A~ &7.9ao for the case of nonconductors. The
latter inequality is not too much less restrictive
than the criterion for the validity of the semiclassi-
cal approximation. Since this is the same criterion
required for the Thomas-Fermi model, which is
valid for Z2 & 10, we expect our calculations to be
valid for the same range of atomic numbers of
nonconducting stopping materials. For conductors,
of course, the description of the conduction elec-
trons as comprising a degenerate Fermi gas is quite
valid and our confidence in the stopping-power
calculation is strong.

It is essential in determining the validity of our
calculations to consider the possible effects of very
strong magnetic fields on the validity of
Lindhard's expression for e and p. The expression
becomes invalid if the field strength is such that
currents induced in directions other than that of
the magnetic field are strongly suppressed. This
happens if the electron's period of gyration in the
magnetic field is small compared to the damping
time. We now calculate this classically, to deter-
mine the gyration frequency as a function of im-

pact parameter in the field of the monopole.
Consider an electron traveling with velocity uF

on a trajectory with impact parameter b in the
field of a monopole with charge g. Its distance
from the monopole as a function of time is given
as

(b2+u 2r2)1/2

The instantaneous gyration frequency is then

eB e g
CO =

mc mc (b2+u~2r2)

The angle of rotation in traveling from t =0 to
t =~, where v is the damping time, is

p= f codt= eg p' dt
~c "P b +u t

eg UTER
tan

mcbvF b

For a Dirac monopole and a rotation of 2',

, uFr 4nbPFtan-'
b aap

If we take PF =0.01, then

17b=tan
ap

For conductors we assume uzi »b and

17 =m /2;b

Qp

so

0.09&p

and we see that the assumption is justified. For
nonconductors u~~-ap, and we obtain numerically

b =0.08ap .

In our first two calculations of monopole stopping
power in this paper we used a minimum impact
parameter corresponding to b —1/k~-0. 73ao, for
Pz ——0.01. Clearly, the Lindhard equations for E

and p would be valid in this region.
Another conceivable limitation of our calcula-

tions is that due to the kinematics of transferring
energy from slow heavy projectiles to atomic sys-
tems. From Eq. (44), we can estimate the max-
imum possible energy transfer to be 2mvF V. For
conductors, the energy levels of the conduction
electrons are continuous and energy transfer is pos-
sible for all values of the monopole velocity V. In
insulators, gases, semiconductors, etc., there are
threshold excitation and ionization levels which
must be exceeded by the kinematic limit in order
for the system to be excited or ionized. For sys-
tems in which the minimum excitation energy is
several electron volts, one would expect the
kinematic limitation to result in cessation of elec-
tronic energy loss at a monopole velocity some-
where between 10 c and 10 c. In addition, one
might expect a more complicated velocity depen-
dence than the linear one derived in the preceding
sections for monopole velocities greater than the
kinematic limit. However, we suspect that these
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limitations are not too severe with regard to mono-
pole stopping power (although they may be for
considerations of various types of detector
response). The reason for this is based on an anal-

ogy with the stopping power of electrically charged
particles. One would naively expect our arguments
regarding kinematics to apply to the stopping
power of electrically charged particles as well as of
magnetic particles. However, experimental obser-
vations ' indicate that in silicon, the electronic
stopping power for proton velocities ranging from
—10 c to 10 c is very well described as being
proportional to velocity, with no evidence of
threshold effects. A similar result has been ob-
served for the electronic stopping power of hy-

drogen ions in carbon foils for projectile velocities

ranging from 6)& 10 to 3)& 10 . Lindhard has
noted that the electronic stopping power of ions
heavier than hydrogen is similarly characterized by
a linear dependence of stopping power on velocity
and that the distinction between conduction elec-
trons and tightly bound electrons is not as strong
as one might suspect. He argues that the total ki-
netic energy of the projectile is more than adequate
for the production of electron excitations by means
of the nature of the quasielastic collision process in
which a projectile with its electron cloud forces its
way through the electron cloud of the target atom.
With this point of view, the threshold for the exci-
tation of an atomic energy level is determined by
the requirement that the total center-of-mass kinet-
ic energy exceeds the excitation energy. For a
GUT monopole and an excitation energy of 3 eV,
the threshold velocity would correspond to
P -2 X 10 for a collision with a carbon atom.
We will see in the next section that the energy loss
of monopoles at such low velocities is dominated

by the kinetic energy gained by the recoiling atoms
in such collisions. Nevertheless, it is important to
realize that electronic excitation is also possible at
very low velocities.

Another example which helps to illuminate how
the kinematic constraints on electron energy loss
can be overcome is that of Cherenkov radiation.
This phenomenon involves the loss of energy by a
projectile in parcels which may be much smaller
than any electronic excitation levels of the stopping
material. The energy parcels are in fact lost not to
the stopping material itself, but to the combined
system which includes both the electronic states of
the medium and the electromagnetic field. In
dense materials where the index of refraction is
significantly different from unity it is in fact im-

possible to discuss separately the electronic and the
electromagnetic fields. One might expect that in

passing through a degenerate Fermi gas, analogous
states with low-lying energy are made accessible to
slow-moving projectiles. We are encouraged re-

garding the validity of this analogy by the fact that
the usual derivation of the Cherenkov intensity re-
lation follows techniques similar to those used by
Lindhard, in that stopping effects are analyzed by
means of the properties of the electric and magnet-
ic permeabilities. For the case of monopoles this
argument can be made more specific by noting that
the energy levels of an electron in a magnetic field
perpendicular to the plane of motion of the elec-
tron are quantized with the values

Ei= (l+ —, ) .
PlC

For an electron in the vicinity of a monopole this
reduces to

Ei =7.6 eV (g/137e)(l + —, )/[r (A)]

where r is the monopole-electron separation. To
lose energy in small parcels, the monopole merely
has to provide for the existence of these energy lev-

els and to excite the electron into low-lying levels
0

(for r = several A) and then to have the elec-
tromagnetic field induce the decay of the levels. In
fact this must be what is actually occurring in the
Lindhard technique for calculating monopole stop-
ping power. The reaction force on the monopole is
due to the diamagnetism of the stopping material.
This is a consequence of Lenz's law in which an
induced electric current opposes the flux which in-
duces the electric field in the first place. The par-
cels of energy loss correspond to the quanta of the
magnetic field which is produced to oppose the
field of the monopole. If the quanta actually cor-
respond to energies sufficient to raise the atoms of
the stopping material to excited states, then the
monopole leaves the medium with net atomic exci-
tation energy which will ultimately yield fluores-
ence, Auger emission, heat generation via internal
conversion, etc. In a sense, one can compare the
relationship of the excitation of atoms by passing
monopoles to the emission of low-energy quanta to
the relation of resonance fluorescence to Rayleigh
scattering for real photons. A similar relation ap-
plies to scintillation and Cherenkov radiation.
There are, of course, major distinctions between
Cherenkov radiation and the "emission" of the
quanta associated with slow-monopole energy loss.
Our intention here has been merely to point out
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the possibility of exciting electronic-electro-
magnetic modes in which atoms themselves are not
individually excited. This distinction is quite im-
portant when one considers the response of particle
detectors to slow monopoles. It is possible for the
electronic stopping power to be quite linear in
monopole velocity while detector responses display
different velocity dependences.

COMPARISONS WITH OTHER WORK

We have already briefly touched upon the esti-
mates of the stopping power of slow monopoles
obtained by Ullman ' and by Martem'yanov and
Kh.Khakimov. In each easy, the results obtained
agree roughly with those obtained here, but it is
not clear that this is not an accident. For example,
we have seen that the authors in Ref. 22 used the
Drude conductivity which we have shown to be in-

valid. In fact, Akerlof has used the same as-

sumptions as in Ref. 22, but he has obtained stop-
ping power in conductors several orders of magni-
tude larger than found in Ref. 22. It is likely that
Martem'yanov and Kh.Khakimov made canceling
errors in their calculations. Similarly, Ullman's '

educated guess was most likely just a lucky one in
predicting the similarity between monopole and
proton stopping power. His conclusions were
based on the monopole-electron magnetic moment
interaction. However, we have seen here that it is
the interaction between the monopole's electric
field and the electronic charge that determines the
similarity. It was shown above that the role of the
monopole-electron moment interaction is not clear
at the present time, but that it probably does not
dominate the interaction.

In the past year a number of other papers have
been written which deal with the interactions of
slow monopoles with matter. These have achieved
rather wide distribution in preprint form and we,
therefore, feel an obligation to comment here on
their content. We feel that substantial misconcep-
tions could arise if some of these papers are viewed
uncritimlly. Trefil has claimed to mlculate
slow-monopole stopping power by incorporating
second-order electron motion into the formalism.
He does so by eschewing the low-velocity approxi-
mation used in Sec. 13.2 of Ref. 14 in which Bessel
functions are expressed as logarithms. However,
by adapting the other features of Ref. 14 to apply
to monopole stopping power he does not avoid the
fundamental assumption of the impulse approxi-
mation in which atomic electrons are exposed to

purely time-dependent perturbations. We have
shown here that such an approximation will lead
to erroneous results and that the spatial depen-
dence of the perturbation must be included for
slow monopoles. Hayashi has attempted to
evaluate the stopping power of slow monopoles by
modifying the Fermi-Teller calculations much as
we have done here. However, by incorrectly using
the prescription Z~e~gV/c, a V dependence of
monopole stopping power was inferred. The error
here was in assuming the monopole-electron in-

teraction to be determined by the monopole veloci-

ty rather than the electron velocity. McIntyre and
Webb have followed the same general scheme of
Hayashi in replacing Z&e by gV/c. However, they
chose an expression from l.indhard and Scharff'~
for electric-charge stopping power which was pro-
portional to Z~ rather than Z~ due to the effects
of electron mpture and loss. The resulting mono-

pole stopping power was proportional to V . This
is incorrect both for the reason stated above with

regard to Hayashi's result and due to the fact that
the monopole charge would not be screened by
captured electrons even in the event that such
would happen. Thus, comparison to the stopping
power of screened electric charges is clearly in-

valid. It is unfortunate that results such as those
referred to above have been quoted with the pur-

pose of demonstrating either the feasibility or im-

practicality of using conventional excitation or ion-
ization particle detectors to search for GUT mono-

poles. It never seems to be realized that there may
be significant distinctions between energy loss by a
projectile and detector response, which we em-

phasized in the preceding section.

NUCLEAR STOPPING POWER

In the above sections we have considered the en-

ergy loss by monopoles in electronic collisions. We
now want to consider briefly the loss in collisions
with atoms, which might be expected to dominate
at very low velocities in analogy with the stopping
power of electric charges. One might be tempted
to obtain this so-called nuclear stopping by mono-
poles by making the substitution Z, —+g13/e in an
expression such as that obtained in Ref. 31. How-
ever, this cannot be correct since the nuclear stop-
ping of electric particles strongly reflects the fact
that at low velocities the projectiles are almost
completely neutralized by the capture of orbital
electrons. Owing to the absence of magnetic
charge in the stopping material such shielding is
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not possible for monopoles.
In what follows we will apply classical tech-

niques to the problem. This is probably adequate
in view of the fact that the Coulomb parameter
Z~Z2a/P~a(g/e)Z2 for monopoles. If Zz &&1,
then this quantity is large compared to unity and it
follows that the classical approximation is valid.
We will assume that the atoms of the absorbing
material have no magnetic moment. Then the in-

teraction is dominated by the transverse electric
field IEq. (1)]. When the monopole is well within
the atom the coherent response of the nucleus will

dominate that of the electrons and one can neglect

the latter. For large impact parameters the atom
can respond to an applied electric field only
through its induced electric dipole moment. This
will lead us to utilize the atomic radius as a cutoff
impact parameter.

By using Eq. (1) it is easy to show that the
momentum transfer to a nucleus of charge Z2e,
and mass M2 ——22m„ for an impact parameter p is

2gZ2e
hp=-

CP

evaluating high-velocity stopping power (see Ref.
14). Here, as there, p;„ is estimated by setting
bE(p;„)=2M2 V, the kinematic limit of energy
transfer. This gives

gZ2e
Pmm M V

(67)

(68)

In this equation we neglect subtleties which allow
for slight dependences of atomic radius on atomic
number. For silicon, Eq. (68) yields

'2

For electronic stopping power one uses the adiabat-
ic limit for p,„. This is clearly not appropriate
here since nuclei can absorb energy in any amount.
However, since we are here concerned with energy
loss to the recoil of atams instead of individual
electrons we use the fact that for p & ao the
momentum transfer is not nearly as large as indi-
cated by Eq. (64) due to the opposing effect of the
atomic electrons. Hence, we set p,„=ao to obtain

4+%,g Z2 e M2Vcao
Snuc =

2
ln

M,c' gZ2e

where the nucleus is assumed to be at rest com-
pared to the monopole, a good approximation as
long as the monopole velocity V& 10 c. The en-

ergy transfer is

S„„,(S ) = 0.79
g/cm 137e

X 13.12+InP —ln
137e

(69)

g 2Z 2e 2

lE=-
M2c P

By integrating over impact parameters,

4m%, g Z2e P „2 2 2

M2C Pmin

(65)

(66)

For P =10,g =+ 137e /2, S„„,= 1.4
MeV/(g/cm ) which is about 7% of the electronic
stopping power. For P= 10 S„„,is only l%%uo of
the electronic stopping power.
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