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Baryoninm internal color transitions in the L =0 state
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Color transitions internal to diquark and antidiquark for baryonium in the I.=0 state
are explicitly considered. Significant color mixing is found, raising the possibility that
baryonium states do not exist.

In recent papers, %einstein, and &einstein and
Isgur' considered the possibility that internal color
mixing of any multiquark state is so strong that
such a hadron cannot exist. Their results are based
on a harmonic-oscillator potential. This leaves the
possibility that their conclusion is an artifact of the
harmonic limit. In this paper their conclusion is
substantiated for the L =0 state of baryonium by
replacing the harmonic-oscillator potential by a
harmonic-oscillator potential plus a nonharmonic
potential U(r}. This potential is related to baryon
data in first-order perturbation theory.

The Hamiltonian is

H =pm;+Hp+Hhyp, (1)

where m; =m is the common constituent quark
mass;

Hp ——QP;~/2m +g A; AJ [ , k.r
~ +—U(rJ )]

gp 2 '2+m; ',

where A;(q} and AJ(q} are the coIor vectors of the
quarks [for antiquarks A;(q) ~—A';(q)], rtj. are
the interparticle distances, and U(r 1 ) is some un-

known potential which incorporates a short-range
Coulomb-type piece and deviations from the
harmonic-oscillator form at large distances;

Hh„~
——V2AQA;. AII —Sn(S;.SJ)5' '(r 1)+3rj [3(S; rj)(SJ rj) —S; SJ]I . (3)

The coefficient in Eq. (3) has been chosen for ease
of evaluation (compare the baryon states described
by Isgur and Karl ). U and Hi,„& can be treated by
first-order perturbation theory using harmonic-
oscillator wave functions.

A baryonium system is now considered. This is
inade up of two quarks at positions r i and r2 and
two antiquarks at positions r3 and r4,. Use of the
relative coordinates

I

will be made in subsequent calculations. The
diquark-antidiquark system has a relative angular
momentum L, which is equal to zero in the present
case. Hence for states of zero total angular
momentum quarks 1 and 2 have a relative angular
moinentum /; which is the same as that of anti-

quarks 3 and 4.
Following Weinstein, ' the wave functions for the

T and M baryonium systems can be expressed as
(summation is over repeated indices; a,P, tr = 1,2,3)
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(5 l35 l3 +5 ~ 5 l3) I q q q~q~ ) .
24

(6)

(Eel —A1 A31E3) (E61 A2 A41E3)

= —1/1/2,

(E, IA, A, IE, )=(E,
I

A', A', IE, )

Here d'~r is the Levi-Civita totally antisymmetric
tensor.

I q q q~q~ ) are the direct-product color
wave functions for the (qqq q) baryonium.

There are six terms in the sums of Eqs. (5) and

(6), corresponding to the six two-body forces be-
tween the four particles consisting of quarks and
antiquarks. From Eq. (2), it is seen that one needs
to use potentials of the form

g A;.AJ V(ri) .

«s I
Al A~41E3&=&E6

I

—A2. A31E3&

=+1/v 2,
which yield

6V3 ———,k ( —2V 2p2.p3)

3V6"' «»ng &E3
I IE6 &

= &E6
I

E3 &)

First, the wave functions given by Eqs. (5) and (6)
will be used to evaluate the color factors
(IA;A I):

(E6
I

—A1 A3
I E6) = (E6 I

A2. A4
I
E6) = ——, ,

(E6
I

A1 A2
I
E6)—(Es

I
A3 A4

I
E6) —+ (7)

(E6
I

A1 A4 IE6) —(E6
I A2 A3 IE6)—

(E3
I

A1 A3 IE3)—(E3
I

A2 A4 IE3)—

(E3
I

A1 A2IE3)=(E,
I
A, A4 IE, )=——, , (8)

The off-diagonal matrix elements as given by (12)
will be used to take into account color mixing.
Neglecting color mixing one can immediately write
down energies and corresponding eigenstates of the
potentials given by Eqs. (9) and (10). For the
ground state, it has been shown that

gj, l 40,0(P2l P3lp4)

A 3A 3/2

/ exPl (+1 P2 ++1 P3 ++2 P4 )f
2 2 2 2 2 2

(13)

&E3
I

Al A41E3 &
=«3 I A2 A3

I E3 &

(The above results are found to be in agreement
with those calculated in Ref. 3).

Using the coordinate system defined by Eq. (4),
it follows that

6Vs ——g(E6 I
A; Ai I

E6). ,krli-
l (J

= —,k (p2'+p3'+ —,p4')

where

~2 (3~+ /ir2)1/2 ~ (3g /ln)1/2

2 2
A& =AS&, CO& =COS

~

2 2
A2 =A S2, N2=N$2,

so that one can write for T or M baryonia

Eo o
——( 3iric!71+ , fic02), —

(16)

(17)

—= 2&(2(P2+P3 )+5P4'f ~ (9) d(M(T), 4=1) lI (M(T), (.=1)

Similarly,

V Ho 1 k(2 2+2 2+ 4
2)

= —,&[3(P2'+P3')+2P4'] . (10)

According to %einstein and Isgur, ' in addition to
the terms (9) and (10), one should also consider
internal color transitions between the T and M
baryonia as shown in Fig. 1.

The color factors relevant to the internal color
transitions are

g (T(M),a =o) g(T(M), g=o)

FIG. 1. Internal color transition accompanied by a
change in the angular momentum {I)of the diquark and
of the antidiquark.
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where for T
(si,s2) =(1,( —, )' )

and for M

(Si,S2)=((—,)', ( —, )' ) . (18)

By using the value co=250 MeV from the baryon

fit of Isgur and Karl, one obtains for the energies

Et '1
' of T and M baryonia from Eqs. (15)—(18)

Eo 0
——1056 MeV and Eo0 ——1014 MeV . (19)

For I = 1, the wave functions and energies for zero
total angular momentum are

11/18 13/2 2
T 2 + . , + 2 2 2 1/2 26, 1 / / (P2 P3}exP — [P2 +P3 +(—, } P4 ]

3 7T 2
(20)

1/2 2 1 1/2 2 5 1/2 2
3/8 13/2 2

40, 1 7/s 1/4 9/4 P2P3} p 2
[(2) P2+(2 P3+ 3} P4]

(3) 2

Eo 1
——5fico1+ —,Aco2, Eo, 1

= 1556 MeV, Eo, 1
——1368 MeV .

(21)

(22)

= —0.5466fm

= —137 MeV . (23)

Moreover, from Eqs. (12), (13), (20), and (21) it fol-
lows that

& 40013~6 I eo, 1 & =
& too I 3V6 I 1('0, 1&

(13), (20), or (21), the contribution of U to the en-

ergy is just (1(L, t, UQL, p). For transition between
T and M, the contribution in the ground state is

($0,0, Ufo 1) = (iI(0 0, Ufo 1), where $0 0 and $0 0 are
given by Eq. (13), t/io 1 is given by Eq. (20}, and

$0 1 by Eq. (21). Using the same evaluation pro-
cedure as in Ref. 1 it then follows that

The Hamiltonian excluding the hyperfine in-

teractions is given by (HHo+ U}, where

4

g Us ——g (g
I
A; A

I
B & U'(r J. )

&L =1=0
I
3U3 I

L =1=0&=—832 MeV,

(L =l =0
I 6U6 I

L =I =0& =—919 MeV,

and

(25)

(26)

I». IB&= IE, &. IE6&,
(L =O, l =1

I 3U3 I
L =O, l = 1 &

= —974 MeV, (27)

(L =0,1 =1
I

U IL =O, l =1&=—1083 MeV,

and the color factors (A
I A; AJ I

B& are as found
in Eqs. (7), (8), and (11). For ijjL, 1 given by Eqs. and

(28)

(L, =0 i=1 I3U6 IL =o i=o&=&L =o1=1I6U3 IL =o i=o
=(L =0,1 =OI3U6IL =O, I =»
= (L =0, l =0

I 6U3 I
L =0,1 =1&=101 MeV . (29)

The difference in the signs of the values of Eqs.
(25)—(28) and that of Eq. (29) arises from the
color factors. This has already been seen earlier
for the case of purely harmonic-oscillator potential
[compare the signs of values of Eqs. (19)—(22) and
that of Eq. (23)].

It is now possible to calculate the confinement
energies for the various states without taking into
account the color mixing. These values are listed
in Table I, using Eqs. (19), (25), and (26) (the re-
quired value of w =250 MeV, as mentioned ear-
lier).

In principle, one should calculate the hyperfine
splitting. Since it will be seen later that the
baryonic states do not exist at the confinement lev-

el, it is only of academic interest to take into ac-
count the hyperfine perturbations at this point in
the discussion. (For interested readers they are
given in the Appendix. )

The color mixing is now taken into account. It
arises from the p2 p3 part of the 3V6 term in the
harmonic-oscillator part of the Hamiltonian [Eq.
(12)] and from 3U6 part of the nonharmonic term

[Eq. (24)]. This corresponds to color transitions
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TABLE I. Strength of internal color mixing for the confinement energies of ground state {L=0) baryonium levels

considering only harmonic-oscillator term and harmonic-oscillator plus U term.

State Harmonic oscillator only

Energy before mixing {MeV)
Harmonic oscillator

plus U term
Mixing strength

Harmonic oscillator only Harmonic oscillator+ U term

T
M

2456
2414

1624
1495

—0.44
—0.25

—0.59
—0.07

characterized by changes in the internal angular
momentum (1) of both the diquark and the antidi-
quark (Fig. 1). Then, from Eqs. (23) and (29) the
following is noted:

=—36 MeV. (30)

The mixing between
I
T) and IM) states can be

expressed by the following matrix:

&3 IH I
3& (3 IH I

6&

&6IH I3& &6IH I6&
(31)

Its strength is thus described by the ratio

iV6+(L =0,1=1I UIL =0,1=0)
=,v, +(L =o,1 =oI UIL =o,1 =1)
—6V3+(L =0,1=1

I
UIL =0,1=0)

6V3+(L =0,1=0I UIL =o 1=1&

R= off diagonal(1 =0~1= 1)
diagonal(1 = 1)—diagonal(1 =0) (32)

%e are grateful to the Natural Sciences and En-
gineering Research Council of Canada for partial
financial support (Grants Nos. A0358, A4485).

For comparison purposes the values of mixing
strength R are listed in Table I for the two cases of
(i) the simple-harmonic oscillator term and (ii) the
simple-harmonic plus U term. The signs and mag-
nitudes are found to be consistent with the calcula-
tions of Weinstein and Isgur' implying that for the
present case of L =0 the baryonium spontaneously
splits up into two mesons. In other words
baryonia do not exist at the confinement level for
L =0. As far as L+0 values are concerned, one
could make a definitive statement only after mak-

ing explicit calculation for these cases. However,
on the basis of the present calculations, it appears
p/ausible that baryonia also do not exist at the con-
finement level for L+0.

APPENDIX

In this appendix the values given in Table I are refined by also taking into account the hyperfine interac-
tion.

After truncation in the orbital-angular-momentum space, the Fermi contact term, Eq. (3), can be reduced
to

H„„,= 8V 2Am(L, 1 —
I
5(ri3) IL', 1') g (S;.SJ)(A AJ)

l gJ

—8V 2Avr[(L, l
I
5(ri2)

I
L', 1') —(L,l

I
5(ri3)

I
L', 1' )] [(Si.S2)(Ai A2)+(S3 S4)(A3 A4)]

(Al)

(A2)

The coefficients in Eqs. (Al) and (A2) have been chosen for ease of evaluation (compare the baryon states

where Sk and Ak are the spin and color vectors for the kth quark, and r,
&

is the distance between the ith
and jth quark. In writing Eq. (Al) the fact that the matrix elements of 5(rJ ) are the same for ij =13, 23,
14, 24, and for 5(r 1 ) when ij =12, 34 has been used. The tensor contribution, Eq. (3), can be expressed as

H„„=3V2Ar& [3(S; r)(SiJ~ r J ) —S.;.SJ]A;.AJ .
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as described by Isgur and Karl ). The parameter A can be evaluated from the results of Ref. 2:

g —jy =4/~ ~ 300 Mey .

Using Eqs. (4) and (13),

(L =01=0
~
5(ri2) ~L =01=0)=2 (5(p2)) =si a /(2n)

Similarily one obtains

(A3}

(A4)

(L =0,1=0
~
5(ri3)

~

L =0,1=0)=
' 3/2

2$ )$g

$)+Sg
Q

(2m. )
(A5)

and

(I, =0,1 =1
~
5(r„)

~

L =0,1 = I )=0,
(L =0,1=1i5(ri3) ~L =0,1=1)=—, [a /(2ir) ](si s2 )

X ( 5s
—7/2s —3/2 12s —5/2S —5/2+ 2ps

—3/2s —7/2)

(A6)

(L =1=0
~
5(ri2)

i
L =01=1)=(L =01=1

~

5(ri2)
~

L =1=0)=0,
(L =1=0

~
5(ri3)

~

L =0,1=1)= (L =0,1=1
~
5(ri3)L =1=0}

r

a3 35/8(s)5/2 1+(—)
(t)

—3/2
(2~)3/2 [89 2~30]i/2

where

s =[(—, )' +(—,)' ]/2, s'=[1+(—,)' ]/2, t =(s+s')/2 .

1+(-,')'"
2

(A8)

(A9)

In order to find the eigenvalues of H„„„onestarts with a set of basis functions in the color-spin space. A
good choice seems tobe the eigenvectors of the first term of Eq. (Al). It is noted that products S"A~ con-
tained in this first term are among the generators of SU(6)„. Hence

—4g g(S; SJ)(A; AJ)= 2N+2C6(tot) —S„,(S„,+1)/3
a i)j

+C3(Q)+2S&(S&+I)/3 —4C6(Q) + C3(Q)+2Sg(Sg+ I)/3 —4C6(Q),

(Alp)

where C6, C3, and S(S+1)are, respectively, the
Casimir operators of SU(6)„, SU(3)„and SU(2), ;
the labels Q, Q, and tot refer, respectively, to the
diquark (made up of the quarks 1 and 2), the an-

tidiquark (made up of the antiquarks 3 and 4}, and
the entire baryonium system, while the subscripts c
and s refer to the color and spin subspaces.

To use Eq. (Alp), it is necessary to construct

TABLE II. Diquark-antidiquark combinations formed into color-spin SU(6)„representa-
tions. n, n„and n, are the dimensions of the SU(6), SU(3)„and SU(2), representations.

State
Origin

[n ]S[n l [n ]
Origin as a combination of

[n„n, ] S(n„n, ) factors

C
D
6
H

[21]S[2 1]
[21]S[21]
[15]S[15]
[15]S[15]

0
0

0,1,2
0,1,2

P5]
[405]
[35]

[189]

(6,3) (N(6, 3)
(6,3) g(6, 3)
(3,3) (3,3)
(3,3) (3, 3)
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TABLE III. Strength of internal color mixing for the ground-state {L=0) baryonium
levels. The quantum numbers J, I', and I refer to the total angular momentum, parity, and
isospin of the whole system. l and n, refer to orbital angular momentum and SU(3), repre-
sentations of the diquark and antidiquark.

State
Origin as a combination

of (n ) (n ) factors
Energy before
mixing (MeV)

Mixing
strength

C
6
G
C

D

1+
1+
1+
1+
2+
2+
2+
2+

0
0,1,2
0,1,2

0
0

0,1,2
0,1,2

0

0
1

1

0
1

0
1

(6) g (6)
(3) e (3)
(3) 4m (3)
(6) g {6)
(6) g(6)
(3) (N (3)
{3)e (3)
(6) e (6)

1247
1914
1639
1495
1684
2050
1809
1875

—0.05

+ 0.23

—0.11

—0.59

C(/ =0)~G(/ =1),
G (/ =0)~C (/ = 1),
D (/ =0)~H (/ =1),
H(/=0)~D(/ =1) .

(Al 1)

(A12)

(A13)

(A14)

From Eqs. (Al), (A3), and (AS) —(A10) the contri-
butions to the energy due to hyperfine interactions
between the state with different values of / are

wave functions which span specific SU(6)„repre-
sentations. These have already been constructed by
Kalman, Hall, and Misra. Of the many states
contained in that paper, for illustration purposes,
we consider only the states C, D, G, H; these are
reproduced in Table II. For them there is no con-
tribution to the energy from the tensor term. Also,
there is no mixing by H„„,between color states
with the same value of I. In Table III, the total
energies of these states, before color mixing but in-

cluding the contributions from the hyperfine in-
teraction described by Eqs. (Al), (A2) —(A7), and
(A10), are as given.

The terms 3V6 and 3U6 will thus produce the
mixing of the following states:

(C IHs» G)=3 MeV,

(D iHs» iH)= —3 MeV.

(A15)

(A16)

The total energy due to internal C~G color
transition for the part of the Hamiltonian

HJ —3V6 + 3U6 + Hs» is then [Eqs. (30) and
(A15)]

(3
~

H, i
)6= ( 6~ Hi 3 ) = —33 MeV (A17)

and for the D~~H system [Eqs. (30) and (A16)]

(3
i H$

i
6)=(6

i
H/

i
3)= —39 Mev . (Alg)

In order to take into account completely the con-
tribution of internal color transitions, one also
needs (3

i Hz i
3) and (6

i
H3 i 6), where [Eqs. (1),

(9), and (10)]

H, =gP /2m+, V," +,U, +H,», (A19)

H3 +Pi /2m +—--6V6 + 6U6+Hg». (A20)

It is noted that H&, H2, and H3 are obtained by
truncation in the color space. In Table III are
given the energies before mixing and the corre-
sponding value of R [Eq. (32)].
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