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Relativistic corrections to the electric dipole
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We calculate the relativistic corrections of leading order to the electric dipole one-
photon transition rates of charmonium using an approximately relativistic theory of the
composite system and the simple harmonic-oscillator-type confining potential. We find
that the corrections are large, of the order of —30% to —70%, for the decay rates.

I. INTRODUCTION

Recently, ' we have presented a new treatment of
the interaction of a composite system with the
quantized radiation field, within the framework of
an approximately relativistic theory, ' which is
relativistic to order 1/c in the sense that it has a
representation of the ten generators of the Poin-
care group to the same order. The generators are
expressed in terms of the position, the momentum,
and the spin variables of the fixed number of con-
stituent particles which make up the composite
system. The position and the momentum variables

are canonically conjugate and the wave functions

of the composite system involve only one time, the
time of the observer, so that the formalism is quite
similar to the ordinary nonrelativistic Schrodinger
theory. Since the "no-interaction theorem"" '

does not hold in approximately relativistic theories,
the position variables can satisfy the classical
world-line condition of Currie, Jordan, and Su-
darshan" to order 1/c . In Ref. 1 we have shown

that in this theory the interaction of a composite
system of E spin- —, Dirac particles with the quan-

tized radiation field should be represented, correct
to relative order 1/c, by the interaction Hamil-
tonian

N

Ht=ig "[[rq,H] A„+A„[r„,H]] —g s„B„—g 2 ~ s„E„Xp„
@=1i 2c impc ~ (2m' c

N 2- .-ig —", , s„(V„XE„)+g, , [p„,s„B„]+,
14m 'O' " " " P=14mp'C'

where H is the Hamiltonian of the isolated compo-
site system. In Eq. (1) we have included only the
terms which are linear in the quantized transverse
vector potential A(r, t) and in the fields E and 8
since in this paper we are only interested in the
one-photon transitions' ' of the composite sys-
tem. The symbols e~ and m& ((M=1,2, . . . , N)
represent the electric charges and masses of the
constituent particles, while r&, p&, and s„
represent their position, momentum, and spin
(spin- 2 ) variables. Also,

O„=O(r„,t),

where 0& stands for A&, &&, or E„in Eq. (1). The

advantages of using Eq. (1) for the interaction
Hamiltonian have been spelled out in Ref. 1. In
particular we have shown" that the one-photon
and the two-photon transition amplitudes of the
composite system obtained on the basis of this in-
teraction Hamiltonian satisfy the requirement of
relativistic invariance to relative order 1/c, pro-
vided the position operators satisfy the classical
world-line condition. "

To order 1/c2, the Hamiltonian H (of the isolat-
ed composite system) occurring in Eq. (1), is given

by
N 2 N pPP y P + U(0)+ U(1) (3)

2~@ p —1 8mp C
3 2

229S 1982 The American Physical Society



2296 K. J. SEBASTIAN 26

where U' ' and U'" are the potential terms of the
zeroth and first order in 1/c, respectively. The
relativistic center-of-mass (c.m. ) variables are de-

fined in such a way that when expressed in terms
of them, the Hamiltonian and the other generators

of the Poincare group assume the single-particle
form. Krajcik and Foldy have shown that to or-
der 1/c the relativistic relations between the con-
stituent and the c.m. variables are given by

1
rp ——p~+R-

2c
Pp P ~p P 1

P 2C v=1

~.'p„)v(p„X~„)XP+H.c. +
2m,M

' ' „,2M2c2

(r~XP + oXm'„& (7 XP 1 ())
2m„Mc „)2m„Mc „)2M c2 M f dP W'",p„ (4)

p„=m„+"P+
2m' (5)

(r„X( ~„XP)

2mpMc
dJ p 9 p (6)

where P is the total or the c.m. momentum of the composite system. In Eqs. (4)—(6), W()) is an operators
of order 1/c which forms a part of the Lorentz-boost operator. It depends explicitly on the internal in-
teraction among the constituent particles. The internal position and momentum variables p& and m& are not
all independent. They satisfy the constraint equations

N N

g m„=O, g m„p„=O.
p=1 @=1

In terms of the relativistic internal and c.m. vhriables, the Hamiltonian of the isolated composite system
should have the form

H=(h +c P )'

where h is the internal Hamiltonian which depends only on the internal variables. We expand the internal
Hamiltonian h in powers of 1/c as

(9)

where h" is of the ith order in 1/c and M is the sum of the rest masses of the constituent particles. Using
Eqs. (3)—(6), (8), and (9) we obtain

h (o) g & + U(0)(P
1 2m'

(10)

N 4
7T

( 1
+ mugh"'= —g ", , + U'" r„=p„+R,p„=n.„+"P, s~=o„.

18m' c M

We will assume that U' ' is independent of the internal momenta. In terms of the c.m. variables, the total
angular momentum of the composite system is

J =R)&P+ j,
where the internal angular momentum or the spin of the composite system is

(12)

(13)
N

j = g (p~X ~„)+g (r„.
@=1 p, =1

We define T(to) to be the probability amplitude of finding the composite system at time to in state
~

A )
with the simultaneous presence of a photon of energy co, momentum k, and polarization vector e if the
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composite system was originally {at time t =0) in state
~

8 ) with no photon being present. Using the in-

teraction Hamiltonian of Eq. (1) in the first-order perturbation theory and Eqs. (3)—(11) we have shown
elsewhere that the one-photon electric dipole (E 1) transition amplitude of the stationary composite sys-

tem —including the relativistic corrections of leading order —can be written as
' 1/2

1
Tzi(tp) = c

V
(14a)

where ~A )t and ~8)t are eigenstates of the internal Hamiltonian h =h'p'+h"',

&a -&~ k
I I

ko —— ——k 1+
c 2Mc

N

Xp= g e~pp
@=1

is the electric-dipole-moment operator, and

N

t2(p„'n„+n~„z)[p„—(p„n„)+(~„p„)p.„]J
20

1 P1~c

(14b)

(14c)

iQ
p U(l)

aw P (14d)

It should be noted that the momentum ko is slight-
ly different from the photon momentum k because
of the recoil of the composite system as a result of
the photon emission. When we go beyond the ex-
treme nonrelativistic limit we can no longer neglect
the recoil effect. In Eqs. (14), Xp gives the nonre-
lativistic limit of the E1 transition operator while

Xi represents its relativistic correction of order
1/c . In Eq. (14d) Q=g ie& is the net electric
charge of the composite system. Equation (14) is
quite interesting because through it we have a com-
pact expression for the E 1 transition amplitude of
any composite system of Dirac particles bound by
any kind of internal interaction which can be
represented by a potential. A particularly interest-
ing aspect of Eq. (14) is the second term on the
right-hand side of Eq. (14d) which depends expli-
citly on the interaction term U"'. It comes specif-
ically from the use of the relativistic c.m. variables.
Since it is proportional to the total charge Q, it
vanishes when Q becomes zero. As a result, the re-
lativistic correction to the E1 amplitudes are quali-
tatively different for the electrically charged and
neutral composite systems. Also the relativistic
corrections given by Xi of Eq. (14d) are indepen-
dent of spin except for a possible spin dependence
coming from the term involving U~". In any case,
for electrically neutral composite systems the rela-
tivistic corrections to the E1 transition operator
are all spin-independent.

In this paper we will apply Eqs. (14) to calculate
the relativistic corrections of leading order to the
one-photon E1 transitions of charmonium. '

This application should be interesting for several
reasons. First of all, the relativistic corrections, in

general, are expected to be important for char-
monium. The relativistic terms of order 1/c in
the Hamiltonian give the fine and the hyperfine
structure splittings in the energy spectrum of char-
monium. From the magnitudes of these splittings
we must conclude that such relativistic terms are

by no means negligible. So we should also expect
significant relativistic corrections of order 1/c in
the one-photon transition probabilities of char-
rnoniurn. Also, in the transitions we are consider-

ing, P'~P:+y and XJ~Q+y j(=0,1,2), the pho-

ton energies are not negligible compared to the rest
masses of the particles involved. This situation
makes it even more probable that the relativistic
corrections to the amplitudes of these transitions
are quite important. Second, the study of the rela-
tivistic corrections to the E1 decay rates may give
valuable insights in the search for the correct form
of the potential to be used in charmonium calcula-
tions. This will be especially true if the one-
photon E1 transition probabilities of charmonium
depend sensitively on the specific form of the po-
tential chosen. In fact we already know that the
nonrelativistic limit of the E1 decay rate is a rath-
er sensitive function of the binding potential. For



2298 K. J. SEBASTIAN 26

example, the results of the nonrelativistic calcula-
tions' of the E 1 decay rates of g'~XJ. +y
(j =0, 1,2) using the simple harmonic-oscillator po-
tential agree fairly well with experiment, whereas
the nonrelativistic results obtained from the use of
a linear potential are too high by almost a factor
of two. ' Finding the correct form of the potential
acting between the c and the c quark is one of the
important problems in the phenomenological
theory of charmonium. This potential should
reproduce all the experimentally known properties
of charmonium. So far the potential, including its
relativistic corrections, was mostly considered only
on the basis of the energy spectrum of charmoni-
um.

Because of the uncertainty about the form of the
confining potential in charmonium we will first
derive a formula for the E1 decay rate valid for
any form of the potential. But in order to make
the numerical estimates we have to know the wave
functions of charmonium and for this we have to
specify the potential. In conformity with the usual
practice we will here assume that there are two
pieces to this potential, a confining potential which
is responsible for the permanent binding of the
quarks inside charmonium and a Coulomb-Breit
potential' which is operative at short distances
and which arises' ' due to the exchange of a
massless gluon between the quark and the anti-
quark. Nobody has succeeded in deriving the con-
fining potential from quantum chromodynamics.
As a first attempt, in this paper, we choose the
confining potential to be the potential of an isotro-
pic simple harmonic oscillator. This model gives'
the energy spectrum of charmonium —including
the fine and the hyperfine structure splittings —to a
fair degree of accuracy, although not as good as
the results from a linear potential. Moreover the
results of the nonrelativistic calculations of the
E 1 decay rates of P'~XJ +y using the simple-
harmonic-oscillator (SHO) wave functions agree
better with experiment than those obtained from
other confining potentials. In order to show that
this agreement is not just accidental and that such
nonrelativistic results are reliable we should show
that the leading relativistic corrections are small.
As a result of our calculations using this model
and Eqs. (14) we find that the corrections to the
usual nonrelativistic results' of the E1 decay rates
are quite large ( —25% to —62% for g'~X +y
and —43% to —55% for X,~g+y).

The format of the rest of the paper is as follows.
In Sec. II we specialize Eq. (14) to the specific case

of charmonium where X =2, the masses are equal,
and the net charge Q of the composite system is
zero. This simplifies the formula considerably.
We then derive an interesting expression for the
E 1 decay rates —including the leading relativistic
corrections —which is valid for any electrically
neutral two-particle composite system with equal
constituent masses and bound by an arbitrary po-
tential. In Sec. III we specify the details of our
model of charmonium and then using this model
we calculate the matrix elements involved in the
formulas for the E 1 decay rates. In Sec. IV we
make the numerical estimates and compare them
with experiment. The results of our numerical cal-
culations are summarized in Tables I and II. Fi-
nally, in Sec. V, we make some concluding re-
marks.

II. FORMULA FOR THE E1 DECAY RATE
QF CHARMONIUM INCLUMNG THE

LEADING RELATIVISTIC CORRECTIONS

In this section we want to derive a general for-
mula for the one-photon E1 decay rate of char-
monium applicable for any interaction potential.
For this purpose we first rewrite Eqs. (14) for the
special case of charmonium, where

2E =2~ e& = —ez=+eq =+

m)mp
m) ——mp ——m, p= = ~m,

m&+m&

~) = —7Tp= m, p) —pp
——q,

(15)

p&= —p~= ~ q.

It should be noted that m. and q as defined are
canonically conjugate to each other. In Eqs. (15) e
is the charge of the proton. Using Eqs. (15), the
E 1 transition operators Xo and X~ of Eqs. (14c)
and (14d) become

Xo——e& q,

X~ ———
I (q ~+a.q )

ik eq

20 mc

(16)

——,[q(q vr)+(m" q)q]I. (17)

From Eq. (14a), the E 1 decay rate or the transition
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probability per unit time for the charmonium to
make an E 1 one-photon transition from state
18&r to state

I

A &r (irrespective of the direction
of the emitted photon's momentum and polariza-
tion) is given by

Since the operator X& is of order 1/c compared to
Xp we obtain, correct to relative order 1/c,

I r &~
I
Xo+Xi

I
8 &r

I

=
I r &~

I
Xo

I
8 &r I

+2«(r &~
I
Xo 8 &r 'r &~

I
Xi 18 &') (19)

where the asterisk denotes the complex conjugate. In Eqs. (18) and (19) the state vectors
I

A &r and
I
8 &r

are eigenstates of the internal Hamiltonian 'h =h' '+h"'. Let us write

l~ &r= l~&o+ l~ &i 18&r =18&o+18&i (20)

(21)

Using Eqs. (16)—(21) and the result that

where 3 &p and
I

8 &o are eigenstates of the nonrelativistic internal Hamiltonian h ', and
I
A & &

and
I

8 &,

are their relativistic corrections of order 1/c . Since the second term on the right-hand side of Eq. (19) is

already of relative order 1/c, and since we are interested in calculations correct only up to relative order
1/c, we can use the eigenfunctions

I
A &p and 18 &p in the evaluation of the matrix elements in this term.

But in the calculation of the matrix element of the first term in Eq. (19) we should also include the relativis-
tic corrections

I
A & ~ and

I

8 & ~. Thus, correct to relative order 1/c,

Ir&~ I
Xo I 8 &r I

=
I
p&~

I
Xo I

8&o
I

+2«(o&~
I
Xo

I
8&o o&~ 'I Xo I 8&i

+p&A
I
xp

I

8 &p'] &2
I
xp I

8 &p).

[q,h' ']=—m,
p

we obtain, correct to relative order 1/c,
kp= 3eq ko 1o&~

I q18&ol
BA

(22)

+2«(o&~
I q 18&o'&~

I q 18 && +o&~ q 18 &o'& &~
I q I

8 &o)

——, kp «(p&A
I q 18&p'p&A

I q q I
8 &p)

CO+,Im(o&~
I q IB&o.o&~

I
q(q. ~+~ q)+H c. IB&o»

40 pc
(23)

where kp is given by Eq. (14b) and

I I I
NBA =EB EA =Ckp (24)

The one-photon E? decay rate given by Eq. (23) is

applicable to any two-body composite system made

up of spin- —, Dirac constituent particles of equal

masses but opposite charges and bound by an arbi-

trary potential. In Eq. (23) the first term in the
square brackets represents the nonrelativistic limit
while the remaining terms represent the relativistic
corrections of relative order 1/c . The second
term in the square brackets is specifically due to
the recoil momentum of the composite system as a

result of the emission of the photon. The third

term is due to the relativistic modification of the
wave function. Although Eq. (23) is valid for arbi-

trary internal interaction, in order to make numeri-

cal estimates of the matrix elements in this equa-

tion, we need specific expressions for the wave
functions and for this we have to have a specific
Hamiltonian, including the relativistic terms of
order l/c . Once the Hamiltonian is specified, the
remaining generators of the Poincare group should

be so chosen that they satisfy the Lie algebra of
the group to order 1/c . The important physical
constraint in choosing the Hamiltonian is that it
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should, at least to a reasonable degree, reproduce
the known energy spectrum of charmonium. In
the next section we describe a specific Hamiltoni-

an, and using its eigenfunctions, we then calculate
the matrix elements of Eq. (23) for the E 1 decays
g'~X, +y and X;~f+y (j =0, 1,2).

III. A SPECIFIC MODEL OF AN
APPROXIMATELY RELATIVISTIC

HAMILTONIAN AND THE
CALCULATION OF THE RELEVANT

MATRIX ELEMENTS

It is possible that quantum chromodynamics
(QCD) (Refs. 16,17,20) is the fundamental theory
of strong interactions. But, unfortunately, because
of the complexities involved in a non-Abelian
gauge theory, nobody has so far calculated from it
the potential acting between a quark and an anti-
quark in a completely convincing manner. This

situation makes the phenomenological theory of
charmonium even more valuable. In accordance
with the usual phenomenological ap-
proaches' ' ' we will here assume that the po-
tential energy of a qq system should be

U= UAF+ Uc (25)

where UAF is the so-called "asymptotically free"
part of the potential which is applicable at short
distances or at high values of the momentum
transfer between the quark and the antiquark,
while Uc is the confining potential which is appli-
cable at large distances and is responsible for the
permanent binding between the q and the q. We
assume UAF to be due to the exchange of a mass-
less vector gluon between the quark and the anti-
quark. So to order 1/c, UAF is exactly similar to
the Fermi-Breit potential' which arises due to the
exchange of a massless photon between the electron
and the positron. Specific calculations' ' will
give

I
r 1- rz

I

E 1

2 Pi 'P2+H c
I
rl —rz

z Pl (r 1
—rz) (r 1

—rz) Pz+H. c.
4m, m2C2

m )m2C
2

sz (rl —rz)XP] s 1 (r 1
—rz) X Pl

+ 2I?l )m2C

sl (rl r2)XP2 E sz (rl r2)XP2+
I
rl r2I'

(1+—, s, .sz)5' '(rl —rz)
7?l im2C

E 1

m]mzc
I
rl —rz

I

3 S,.(r]—rz) s 2.(r]—rz)
(26a)

where

4E=(e]ez ——,ca, ). (26b)

In Eq. (26b), a, represents a dimensionless strong-interaction running coupling constant which depends on
the c.m. energy of the qq system. Its value can be calculated, in principle, from asymptotically free QCD.
For the problem at hand we will take its value to be'

a,=0.2, (27)

where Uc' is of zeroth order in 1/c while Uc ' is of first order in 1/cz. In this paper we choose Uc]0] to be
the isotropic simple harmonic (SH) potential. That is,

(0) & 2 ~ ~ 2Uc = 212e2o Irl —rzl
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where coo is an unknown angular frequency which, in principle, can be obtained from the known energy
spectrum of charmonium and also by other means' ' and p stands for the reduced mass given by Eqs. (15).
For the moment we will let Uc' to be arbitrary. It should be chosen on the basis of phenomenological con-
siderations and in accordance with the constraint that the Hamiltonian together with the other generators of
the Poincare group satisfy the appropriate Lie algebra to order 1/c . We write the Hamiltonian of char-
monium, correct to order 1/c, as

2 p 2 p"3 2+ 2@a)0 I
ri r2l +Uc'+U&»

mp p )8m~ c
(29)

where UAF is given by Eq. (26a).
In order to calculate the matrix elements in Eq. (23) we need the internal energy eigenfunctions of char-

monium correct to order 1/c . For this we need to know the internal Hamiltonians h' ' and h'". In order
to calculate them from Eq. (29) we first note, using Eq. (8), that

h = limH.
P~O

From Eqs. (4)—(6) we also obtain

lim(ri —r2) =q, lim pz ——m„, lim s„=o&.
P~O P~0 P~O

Then using Eqs. (30) and (31), we get from Eqs. (29) and (26a)

2

(30)

(31)

(32)

and

4
h()) rr EC 1 K

( ) 1( )4m3c2+ 2m2c2 q
+

2m2c2 q3
"

+ [0, (r2 —3(o i q)(02 q)]+ lim Uc'.
mcq P~O

From Eq. (33) we see that h"' is arbitrary to the
extent that limp oUC is arbitrary. We have to fix
limp OUc' on the basis of phenomenological con-
siderations. In this connection we note that many
calculations' of the energy spectrum (including
the fine and the hyperfine structure splittings) of
charrnonium were done with the assumption that

this Harniltonian there is an appropriate Lorentz-
boost operator which when commuted with H and

other generators satisfies the Lie algebra of the
Poincare group to order 1/c .

Next we notice that if we define

l=qpm,

lirn Uc ' ——O.
P~O

(34)
S = 0'&+ 0'2~

j =1+s,
(35)

Since the results of such calculations are in fair
agreement' with experiment we will also make
this assumption. In any case it is worthwhile to
find the consequences of Eq. (34) for the one-

photon E1 transition rates of charmoniurn. How-
ever it must also be pointed out that in some treat-
ments of charmonium [for example, the work of
Schnitzer (Ref. 25) and some others] Eq. (34) is not
assumed. We can also show that corresponding to

then the operators l, s, 'j, and j, commute with

the unperturbed internal Harniltonian h' '. So we

can label the eigenstates of h' ' by the integers l, s,
and j which are related to the eigenvalues of l, s,
and j in the usual way. It is the convention to
take the unperturbed eigenfunction of P(3.1 GeV)
to be the 1 S~ state in the notation n '+'lj where

n is a radial quantum number. In the same nota-
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h(0) = + 2I N02q2
2p

(36)

tion P'(3.684 GeV) is the 2 S] state while the X
states are given the following designations:

xo(3.414 GeV) —+ I P]],

X](3.508 GeV)~1 P],

Xp(3.552 GeV)~1 Pp.

In calculating the matrix elements in Eq. (31) we

need to know the eigenfunctions of h' ' and their
relativistic corrections of order 1/c due to ]]]"].
For this purpose we can treat h' ' as the unper-

turbed Hamiltonian and h"' as the perturbation.
Here we come across a problem. %e cannot solve

the eigenvalue problem of even h' ' in closed form.
So as an approximation we take

as the unperturbed Hamiltonian, and then as per-
turbation we get

h(1) & +h(1)
q

(37)

where the operator h"' is given by Etl. (33). This
should be a quite reasonable approximation for the
problem at hand for the following reason. We are
interested in evaluating the matrix elements of
q, q q, etc. , between the eigenfunctions of h ' '.
These matrix elements are weighted towards the
larger values of q. So the short-distance (small-q)
behavior of the wave function, which is determined
to a great extent by the K/q term in the potential,
is not very important for their calculation. The
large-distance behavior of the wave functions,
which is very important in this case, is mostly
determined by the SH potential. So we take the
unperturbed wave functions of g, XJ, and f' to be

1/2
4(3

&]3s =
X++

g2q 2/2 YO (38)

Xo
(0) (z,~i, 1 ] 1 ] 1

YOX
gqe ~ Y] X+++ ~ Y]X—— ~ ]

v 3
(39)

l 1 1 p
Y17+ —- ~ Y1X++

1/2 v2 v2
3

x]~p 3
]p] gf g2q2g2 1 ] 1

3 m
gqe

2
Y1X —

1 ++
1 p 1

Y]X ~ Y] X+
2

(40)

X,-y']] =(0)
1 P~

1Y1X++
0

Y1X+p+ Y1X++v'2 V 2
' 1/2 ' 1/2

g~q~/2 1 I 2 Yo 1
Y

—]X
gqe ~ Y]X + — ]X+ + ~3 1r ~6

Y1
1 0 1

2
X

(41)

(42)
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where

k=( ~0)'" (43)

F~ 's are the spherical harmonics, and I++, 1+,and I are the three spin-triplet states with the z com-
ponent of the total spin s having the values +1, 0, and —1, respectively. In Eqs. ()8)—(42) the angular
and spin functions written in a column correspond to the different values of the quantum number mj. and

mq decreasing from top to bottom. The eigenvalues h' ' can be written as

E„''=[2(n —1)+1+—,]co0. (44

We also want to know the first-order corrections to the above wave functions due to h"'. In finding this
we should note that one term in h"', the so-called tensor force term

(1) E 1 E 1
+2 3(+1'(I)((72.q)] = —

2 2 3 S12
mc q 4m' q

(45)

does not commute with the orbital-angular-momentum operator 1 although it still commutes with s, j,j„
and the parity operator I'. So this term can mix unperturbed eigenstates with different 1 values but with the
same s,j, and mi and with the same parity. Since h'" is diagonal in the subspaces of the degenerate eigen-
functions of 1 Sl and 1 I'J we can apply the formulas of nondegenerate perturbation theory to find the rela-
tivistic corrections of the wave functions of these states. With the state 2 Sl we have to be more careful.
Since the unperturbed states 2 Sl and 1 D( are degenerate and since hr" of Eq. (45) can mix these two

states we have to apply the full machinery of degenerate perturbation theory. If PI'&'s denotes the first-
I

order correction to the wave function, due to h '", we find that

~

k )00(k
~

h" '
~

P',' )
(1)

C
(0) (0)

((23S,—2( (3D, +( ~(~S + X (01 (0))
k+2 Sl 1 Sl 1 Dl 2 Sl

where

1

l(~ ll ~22~~12) + I]

and

(46)

(47)

(E(0) E(0) )2 S] 1 S]

In Eq. (47), for i,j= 1,2,

(48)

where

(0) (0) (0) (o) (49)

For the first-order corrections ((1", 3'P and (()", 3' we find
J 1

(1) . (0)

i k~1~,2r

k+1S,2S, 1D

ik)00(k ih'"
i

1 Pi)0
(~(01 E(0) )k 13P.

J

ik)00(k ih'"
i

1 Si)
(E(S Ek )—(0) (0)

(50)

(51)
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where

and

(/~3'p. ,h
'"

p, 3p. )
J Ja:=

1 2cop

«i3s ""'&i3D,)

2~o

1/2

~ ~i 5 J,mj ~

(52)

(53)

(54)

where O'J~ the angular and the spin-dependent part of the wave function, can be read off directly from Eqs.

(39)—(41). Using Eqs. (38)—(42) for the wave functions and Eqs. (33) and (37) for the operator h'" we can
evaluate the matrix elements of Eqs. (48), (49), (52), and (53). In doing this we have to be careful about the
matrix element of the spin-spin interaction (the interaction energy of two stationary spin magnetic dipole
moments) given by

Vn rr 3 lo 1 ~2 3(&i'8(&~ f)1.
m c q

(55)

Kg
2~o

SV6( 1 Kg
16m c coo 2~6~ m c coo

(56)

First of all we should note that Eq. (55) is valid only for q+0. So in evaluating the matrix element of V

between the S states we have to eliminate a small region around q =0 (in which region the integrand blows

up) in the integral involved. Then we find, from the angular integrations, that the matrix element of V, ,
is zero between any S states. The matrix element of V between other states can be calculated by well-

known techniques. ' We now write down the results of our calculations for P, a:, 5, a~~, aqua, and a&~..
' 1/2

8 Kg
SK 6cop

7v10 g v 2 Kg 56+I,, I —, + —,I:J(J+I)—4llj(J+ I)—81I
m c coo 10 Sam c coo

(57)

2

ISa
Kg

teal C COp

(58)

16K)
ISM

I

SK( 75$ Kg
Q)) =

3Mir 16m c 6~m.m c

2 Kg
~z& =~&z=—

3 Sm pm'

15( 56K(
16nl c ISED 17m c

(59)

(60)

(61)

The first terms on the right-hand sides of Eqs. (56), (57}, (59), and (61) represent the matrix elements of the
Coulomb-type term E/q in h"' whereas the second and third terms are, respectively, the matrix elements of
the relativistic correction to the kinetic energy and of the interaction terms of order Ilc in h'". In Eqs.
(58) and (60) only the term V ~ of Eq. (55) contributes to the matrix elements.

We are now in a position to calculate all the matrix elements in Eq. (23). Below we give the results for
the different decays.

A. g'~XJ+y

In calculating the experimentally observed decay rate, I/rs„, from Eq. (23) we must sum the right-hand

side of Eq. (23} over the internal-angular-momentum states of the final state
~
A )I and average it over the
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internal-angular-momentum states of the initial state 18 )i. In the following we will represent such quanti-
ties by adding the symbol g, ,„

to their left. We also notice that the SHO wave functions are such that the

operator q cannot connect the energy eigenfunctions which differ in their energies by more than coo. So the
infinite sums in Eqs. (46), (50), and (51) will not contribute to the matrix elements 0(A

I q 18)i and

i(A
I q I B)0 in Eq. (23). This circumstance simplifies our calculations considerably. Using Eqs. (38)—(42)

and (54) we then find

lmgo&XJ I q I
f'&o'0&XO

I
q(q'~+ ~ q)+H c

I
g'&o = —,(2j+1)—,

spin

«Xo&x; I q I
0'&0.0&x; I

e'q
I
0'&o = -, (2j+1)—,

spin

Q I 0&x; I q 14' &01'=(2j+1}
spin

9(2

and

(62)

(63)

(64)

2«Xto&X; I q I
0'&o o&X,: I q I

4'&i+0&X,:
I q I

4'&0 &&X; I q I
g'&p = j+' (v loy, —v 6@+2v5c, ).

spin

(65)

(:ombining the results of Eqs. (23) and (62)—(65) we obtain the sought-after result for the decay rate, name-

ly,

= —,e ko (2j+1) 1+(v 10y —v 6P+2~5c2) — —— +7e o 9(z J 2Mc 2 gi 10 p,ci (66)

The first term in the square brackets gives the nonrelativistic value while the remaining terms represent the

corrections in our order of approximation. The second term in the square brackets also contains the first-

order corrections due to the E/q term in the Hamiltonian. The remaining terms are purely relativistic.

S. X; 4+r

First of all we note that due to the special nature of the SHO wave functions the infinite sum in Eq. (51}
does not contribute to the matrix element, (g I q I XJ )o which is the same as i(A

I q 18)o in Eq. (23). For
the same reason, o(1( I q IXJ)i or 0(A

I q 18)i is zero with the expressions given by Eq. (50) for IXJ)i. We

can evaluate the integrals involved in the calculations of the matrix elements in Eq. (23) by making use of
Eqs. (38}—(42) and (51). After some straightforward calculations, we find

(67)

and

2«g(0&f1 q IXJ &o i&i}ll q IXJ:&o+o&fl q IX,:&o 0&4 1 q IXJ:&i) (~+v 5~)
spin

J 1 J

R.e g, (1t I q IX;.); =——,
spin

(68)

(69)

Po&gl q IX &o'o&g
I
q(q'~+~'q)+H c IX'&0

spin

(70}

We note that the results, in contrast to those of Eqs. (62)—(65) are independent of the quantum number j.
Substituting Eqs. (67)—(70) in Eq. (23), we obtain
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k=-,'e, 'k,', 1+ (P+Wsa)—
2Mc 4

I
3 ~as
O pcL

(71)

The first term in the square brackets gives the non-
relativistic value while the remaining terms rep-
resent the corrections. The second term in the
square brackets also contains the first-order correc-
tion due to the E/q term in h "r. The remaining
terms are purely relativistic corrections of relative
order U /c .

In the next section we attempt the numerical
evaluations of Eqs. (66) and (71) for the decay
rates and compare them with experiment whenever
possible.

I

the mechanism g~c+c —+y~e++e, and that
the c and the c quarks move nonrelativistically in

g, the decay rate for 1tt~e++e is given by the
16, 17,22

2 2

I (1(r~e+e )=4 ~R)s(0) ~,2C2

where Mo is the mass of the 1( Particle and R &s is
its radial wave function, obtainable from Eq. (38).
If we take"

I,„p(1(-~e+e )=6.5 keV

IV. NUMERICAL EVALUATION OF THE
FORMULAS FOR THE DECAY RATES

In order to make the numerical evaluation of
Eqs. (66) and (71) we should know the numerical

1

values of the constants g, p= —,m (m =mass of the

c quark), P, yj (j =0, 1,2), and c2. In order to cal-
culate the constants p, yj, 5, and c2 through Eqs.
(56)—(61) and (47) we should also know the value
of the constant E.

In the literature' ' the mass of the c quark is
often taken to be

m=1.65 GeV.

We will also adopt this value. There is, of course,
some uncertainty about it. Several values, ranging
from 1.1 to 2.1 GeV, have been used. ' ' The or-
der of magnitude of the relativistic corrections will
not be affected by this variation.

The value of g can be estimated in at least two
different ways.

(1) We recall Eq. (43) for g. For coo, the oscilla-
tor spacing, we take a rough mean between the
values implied by the 1S-1P spacing and the 1S-2S
spacing. Then we get

~o-0.33 GeV.

2

eq
——+ 3e,

we obtain

R&s(0)
I

=0.48.

On the other hand, from Eq. (38),
3

I
&,s(0)

I

'=

Comparing Eqs. (79) and (80),

/=0. 6 GeV/c,

in good agreement with the value given by Eq.
(75). For our numerical estimates, we take the
mean of the values given by Eqs. (75) and (81).
That is, we assume

(=0.56 GeV/c.

The constant E in Eqs. (56)—(61), according to
Eq. (26b), is given by

K = —(eq + —,ca, ).

Then, using Eqs. (26c) and (78), we obtain

E—=—0.27.
C

(79)

(80)

(81)

(82)

(83)

(84)

From Eq. (72) we also have

p= —,m=0. 83 GeV. (74)

We have calculated the constants p, y:, cq, and 5
using Eqs. (56)—(61), (72), (73), (82), and (83). We
obtain

Substituting Eqs. (73) and (74) in Eq. (43), we get

/=0. 52 GeV/c. (75)

(2) There is also another way to calculate g. If
we assume that the decay 1(~e++e proceeds by

P=—0.15, yo- —0.27,

y1- —0.21, y2——0.17,

5-+0.011, c2-—0.029.

(85)
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Using the numerical values given by Eqs. (72), (73),
(82), (84), and (85), we have then made the numeri-

cal evaluations of Eqs. (66) and (71). For the ener-

gy differences co&& and the wave vectors kp in the
formulas, we use their experimental values, ob-
tained from the known mass differences. We sum-

marize our results in Tables I and II.
Some comments are in order about Tables I and

II. The first-order corrections due to the E/q
term in h"' are given by the expressions
(V 10yj~'"' —i/6P '"') for P' —+XJ.+y decays and by
(4/v 6)p '"' for XJ~l(+ y decays where

P '"'=(2/3ir)' =—0. 11
2Np

(86)

V. CONCLUDING REMARKS

In calculating the constant g from Eqs. (76) and
(77) we had assumed that R ~s(0) was given by the
ground-state harmonic-oscillator wave function.
This assumption may introduce some error in the
calculation, especially because at small separations
(or for small values of q) the wave function should
be significantly influenced by the Coulomb-type
potential K/q which is operative in that region.

coul ~

(2/5 )1/2 4 0 06
COp

In Table I for P'~XJ+y decays, the results of the
nonrelativistic theory are somewhat larger than the
experimental values. The corrections are large and
negative, ranging from —62% for i)'j'~XO+y to
—25% for P'~X2+y. The corrected values for
the decay rates agree fairly well with the experi-
mental values. The bulk of the correction comes
from the relativistic modification of the wave
function which tends to decrease the rates by as
much as —65% for P'~XO+y. The corrections
in Table II for XJ —+it +@are also large and nega-
tive, ranging from —55% for X2~$+y decay rate
to —43% for Xo—+g+y. But in this case most of
the corrections come from the relativistic modifica-
tion of the E1 transition operator and due to the
modification of the wave function by the E/q term
in h'". The correction due to the relativistic
modification of the wave function amounts to only
—7%. Since the experimental values of the decay
rates are not known for g:~/+ y decays, we are
not able to compare the predictions with experi-
ment.

So it may seem that the value of g obtained from
the energy spectrum using the formula
g =(phoo)'~ is more reliable. In Sec. IV we have
seen that in this way we would get /=0. 52 GeV/c.
In fact if we calculate the corrected R ~s(0) which
includes the first-order (in perturbation theory)
corrections to the SHO wave function due to the
E/q term in the potential, we obtain,

0.53 GeV/c, remarkably close to the above
value for g'. But both of these values are quite
close to the value we have adopted for g, namely,
/=0. 56 GeV/c. In fact detailed calculations show
that changing g from 0.56 to 0.52 GeV/c will
change our numerical estimates of the decay rates
by less than 3%. This situation comes about be-
cause decreasing g increases the nonrelativistic lim-
it of the decay rate as well as its relativistic correc-
tions which have the opposite sign to the nonrela-
tivistic term, so that the corrected decay rate
remains almost the same.

Another important thing to mention is that
some authors' take the spin-orbit term in the
expression for h "' to be

2 - 1 d
VLS —— 1 sm'c' q dq

X UAF(q) ——,Uc '(q)

In Eqs. (33) and (37) we had neglected the contri-
bution from Uc'(q) to VLs, due to the effect of
Thomas precession. But inclusion of this contri-
bution will not make any change in our calcula-
tions in the previous sections; when Uc '(q) is the
SH potential —,prop q, its contribution to VL~

given by Eq. (88) is independent of q, and therefore
its matrix elements between states whose radial
wave functions are orthogonal simply vanish. Of
course this modification of the LS term in the po-
tential will affect the fine and the hyperfine struc-
ture splittings of the energy levels —presumably in
the favorable direction. '

We should also remark that some authors' ' at-
tribute a large anomalous magnetic moment to the
quarks. We do not see much theoretical justifica-
tion for this point of view. We had assumed
throughout this paper that the quarks are point
Dirac particles and hence have either zero or very
small anomalous magnetic moments. If the quarks
indeed have large anomalous magnetic moments
we should modify our starting Eq. (1). There will
be additional spin-dependent terms in the interac-
tion Hamiltonian of Eq. (1).
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TABLE I. Numerical estimate of the decay rate for P'~XJ+y given by Eq. (66).
r =(correction/nonrelativistic value).

Decay
Photon energy

(GeV)

f'~XO+y
0.27

&l+l'
0.18

12+y
0.13

Nonrelativistic
value of 1/~qq
(keV)

31 27 19

Corrections

Corrections due
to the modifica-
tion of the wave
function

Correction due to
the k/q term
(~5~Coul ~6pcoul) (

+9% +9%

Correction due to
relativistic modi-
fication (r2)

—65% —46% —34%

Total correction
(r)+r2)

—56% —37%%uo —25%

Correction due to
recoil term

( —ko/2MC) (r3)

—4% —3% —2%

Correction due to
the relativistic
term ( ——,k02/g2)

(r4)

—12% —3%

Correction due to
the relativistic
term

( —, co~~/pc ) (r5)

+ 10%%uo +6%

Total relativistic
correction
( ~R ~2+ ~3 +~4+ ~5 )

—71% —48%%uo —34%

Total correction
(~1+rR )

—62% —39% —25%

Predicted decay
rate including the
corrections (keV)

16

Experimental
value of decay
rate (Ref. 31)
(keV)

15.5+5 15.3+4.1 15.0+4.3
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TABLE II. Numerical estimate of the decay rate for P;+/+ y given by Eq. (71).
r =(correction/nonrelativistic value).

Decay
Photon energy

cong (GeV)

0+r
0.315

Xl~g+y
0.410

Xy~t(l+ y
0.450

Nonrelativistic
value of
(1/czar )NR (keV)

214 475 628

Corrections

Corrections due
to modification
of wave function

Correction due to
k/q term
[(4y~6)pcoul]
(» )

—17% —17% —17%

Correction due to
relativistic modi-
fication (r2)

—7%

Total correction
(r]+»2)

—24%%uo —24% —24%

Correction due to
recoil term

( —kp/2Mc) ( »3 )

—5% —6% —
7%%uo

Correction due to
relativistic term

( —4kp') (r4)

—13% —16%

Correction due to
relativistic term

(—cong/JMc ) (r5)

—7% —8%

Total relativistic
correction
(»R »2+ 3+»4+ 5)

—26% —33% —38%

Total correction
(r) (r]+»R)

—43% —55%%uo

Predicted decay
rate including the
corrections

[( I «BA )NR( I+~)]
(keV)

122 283



K. J. SEBASTIAN

Next we should also make a comment about
another assumption in our calculations. We took
the unperturbed energy eigenfunctions to be the
SHO wave functions and treated the E/q term to-
gether with h'" (of order 1/c ) as the perturbation.
Treating the K/q term as part of the perturbation,
even though it is of zeroth order in 1/c, can be
justified in our present problem, because, in the
calculatio~ of the E 1 decay rates we are interested
in the matrix elements of q, q q, etc., which are
not very sensitive to the short-distance behavior of
the wave functions. In fact, the first-order correc-
tion due to the E/q term to the quantity

i
(A

i q i
8) i, comes out to be only about + 9%

for g'~X/+y decays and —17% for XJ —+/+ y
decays, which result may be taken as a justification
of our assumption. On the other hand, when we
calculate the fine and the hyperfine structure split-
tings we are calculating essentially the expectation
values of the 1/q term in the unperturbed energy
eigenstates. So they should be sensitive to the
short-distance behavior of the wave function which
is governed to a great extent by the K/q term. In
fact the hyperfine structure splittings —calculated
in the first-order perturbation theory using the
SHO wave functions as the unperturbed wave
functions —turn out to be too small by a factor of
about 2. We expect that the effect of the E/q
term in the potential will increase these splittings
substantially, because the E/q term is attractive (K
is negative) and so its inclusion should increase the
probability of finding the c and c quarks at small
separations (small values of q), which in turn will

lllclcasc tllc cxpcctatloll value of tllc 1/q tcH11s

since most of the contributions to these matrix ele-
ments come from a small region surrounding the
point q =0. In fact detailed numerical calcula-
tions ' confirm this expectation.

Sucher, 26 Karl, Meshkov, and Rosner, ~7 and
McClary and Byers have also done work on the
relativistic corrections to the radiative transitions
of charmonium. Although Sucher has explicit for-
mulas for the relativistic corrections of the M 1

transitions of charmonium and somewhat implicit
formulas for the E1 transitions, he does not make
any numerical calculation for the E1 transitions
using a specific model. In comparing his work
with ours, it should be noted that his so-called
"pair terms" are all buried in the first term of our
Eq. (1) which involves the commutator of r& and

H. Also he does not make use of the relativistic
c.m. variables. In his approach the dynamical
recoil effects are in principle contained in the
dependence of the final-state internal wave func-
tion on the total momentum of the composite sys-
tem. Since the use of relativistic c.m. variables
does not contribute anything for the E1 transitions
of an electrically neutral system such as charmoni-
um our results should agree with those of Sucher
even if he neglects the dependence of the internal
wave function on the recoil momentum. On the
other hand, for M 1 transitions, we expect agree-
ment only if this dependence is taken into account
in Sucher's approach. Karl, Meshkov, and Ros-
ner 7 were only interested in the spin-dependent
corrections to the E1 transitions, coming from the
possible anomalous magnetic moments of the
quarks. In comparing our work with that of
McClary and Byers it should be borne in mind
that all spin-dependent operator corrections to the
E1 transition operator are buried in the commuta-
tor term, involving [r&,II] of Eq. (1). In other
words, when the E1 transition operator is ex-
pressed in terms of the commutator between the
position operator and the Hamiltonian, there are
no spin-dependent corrections if the quarks are
point Dirac particles with no anomalous magnetic
moments. McClary and Byers have by now also
carried out a complete numerical calculation for
a specific potential.

Finally, we should mention a word of caution re-
garding our numerical results. We have shown
that if we take into account the first-order rela-
tivistic corrections for g' —+XJ+y decay rates, we
could get bette~ agreement with experiment. On
the other hand, since the corrections are of the
order of SQ lo, some may question the reliability of
the final results.
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