
PHYSICAL REVIEW D VOLUME 26, NUMBER 9 1 NOVEMBER 1982

Relativistic harmonic-oscillator quark model
and E—+no decays

P. Colic and J. Trampetic*
Rudjer Boskovic Institute, 41001 Zagreb, Croatia, Yugoslavia

D. Tadic
Zavod za Teorijsku Fiziku, I'rirodoslovno-Matematicki Fakultet,

University of Zagreb, Croatia, Yugoslavia

(Received 24 June 1981; revised manuscript received 29 January 1982)

It is shown how the theoretical description of E~ mm decays depends on the particular

quark model. The relativistic MIT bag model is compared with the nonrelativistic

harmonic-oscillator model and with two relativistically corrected versions of the

harmonic-oscillator model. The relativistic effects in quark dynamics seem to be crucial

for the understanding of K~ mm transitions.

I. INTRODUCTION

Quark models have played an important role in
recent analyses of nonleptonic weak decays. '

They lead to theoretical results which are in rea-
sonable agreement with a number of experimental
data. Moreover, there are indications that some of
the theoretical results are independent of dynami-
cal details underlying a particular quark model. '

A decisive input seems to be the symmetry of ha-
dron states built up of valence quarks. In particu-
lar, nonleptonic hyperon decays and 0 decays
seem to be equally describable by the MIT bag
model and the harmonic-oscillator (HO) quark
model. In the nonrelativistic HO model, the miss-

ing small components of the quark wave functions
are replaced by the proper renormalization of the
model wave functions. It is interesting to investi-

gate whether this parallel extends to K~ n.m de-

cays.
In this paper we are concerned mostly with a

comparison of quark models. We do not investi-

gate other important questions, such as hard- and

soft-gluonic corrections or the best form of the ef-
fective weak Hamiltonian. We discuss only briefly
the importance of the analytic continuation of de-

cay amplitudes from an unphysical point reached

by current algebra to their on-mass-shell values.
There are two marked differences between the

MIT model and the HO model. The HO model is
entirely nonrelativistic, but allows for the separa-
tion of the center-of-mass (c.m. ) motion. Its me-
son dynamics is due to the motion of the quark
and the antiquark relative to each other. The MIT
model is ultrarelativistic, but without a possibility
for separating the c.m. motion. Its quarks move
relative to the center of the coordinate system in
which the bag is fixed.

The nonrelativistic character of the HO model is
not satisfactory. It is well known that the momen-
tum of a quark in a hadron is not negligible. '

This means that small components ought to be
taken into account even when using the HO model.
This can be estimated by replacing quark Pauli spi-
nors by Dirac spinors. "

To investigate the importance of the c.m. mo-
tion, we study a quark model which closely paral-
lels the MIT model. In this model, quarks move
relative to the harmonic-oscillator potential located
(or fixed) about the center of the coordinate sys-
tem.

We first discuss the calculations of E~~a am-
plitudes based on the MIT model and those based
on the nonrelativistic HO model. Next we consid-
er a modification of the HO model. Section IV
deals with the relativistic corrections to the HO
model. In the concluding section we summarize
all results and make a comparison.
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II. K~ m.w DECAYS DESCRIBED
IN THE MIT BAG MODEL

AND THE HO QUARK MODEL

lim A =A
~

——(Lq+ L s )(p.pq ),
p)~0

lim A =A q (L——~
L—s )(p p ~ ) .

p2~0

(2.3)

Current algebra (CA) is the only way by which
quark models can be introduced into the calcula-
tion of weak meson decay amplitudes. However,
the momentum dependence of physical decay am-
plitudes can be misrepresented in the soft-pion lim-
it. The remedies for that are usually based on a
general decomposition of the decay amplitude to
the leading order in meson momenta: ' ' '

Reference 3 used p p;= —, (m +m; ). For
m; « m (m « mx ), the value obtained was close
to the value which is obtained when all mesons are
on the mass shell, i.e., p pj ——, (m—+mj m—; )

This expression gives for the physical amplitude

A (M+M, +M, )

A (M~ M] +M2) =Lo+p& '(p2+p )L )

+pz (pi+p»)L~

+P (P2 P&)L—s .

The physical amplitude depends only on three
combinations of L components:

(2.1)

2

m +m2 —m~

2m] CA+ 2 2 2 2
m +m~ —m2

(2.4)

A (M~ M&+M2) phss=LO+(L& L, )(m ——m2 )

+(L2+L3)(m —m
&

) .

(2.2)

It follows from the well-known theorem' that

LO ——0. The rest can be fixed in the CA limit:

The amplitude (2.4) is just twice the value which
would follow by the choice p.p; =m . ' For
E~ ~~ decays, both mass factors are identical.
Therefore, the CA amplitudes obtained by the
I.ehmann-Symanzik-Zimmermann reduction of
both pions in succession are to be multiplied by
1.85 (1.72). These CA amplitudes are

A (K+~ ~+sr ) = (6C4)(a 3b)(4E Ez—)', GF GFcosoc»——noc (2.5a)

A (K ~ ~+sr ) = GF I [C~ —2!C2+Cs+C4)](a 3b)+(C6—+ —,Cs)(a+b)](4E Ex )'f
A(K ~~ m)= GF([.C) —2(C2+Cs —2C4)](a 3b)+(C6+——, Cs)(a+b)I(4E Ex)'

(2.5b)

(2.5c)

There is a technical detail connected with the QCD-induced left-right operators Os and 06. ' In the CA
procedure, an anomalous term appears in their commutators. The contribution from this anomalous term
is equivalent to the separable (i.e., factorizable or vacuum-insertion) approximation to the matrix element of
the operators 05 and 06. It has been argued that the separable matrix elements of the left-left operators are
already included in the CA decay amplitudes. ' This is not necessarily so with the operators 0& and 06.
However, the relevant difference seems to be rather small; for example,

0

&~i~2
I
Os

I

+ &cA — &~a I Os
I

It &
—&~i~z

I
Os

I
it &SEp

q) —+0 1r

(2.6a)

Here CA denotes the CA contribution with the
anomalous term included and SEP denotes the
separable contribution. The contribution (2.6a)
should be compared with the standard CA contri-
bution

& m,
'

I
0, I

E'& = —, x 22.3 x 10-' GeV' .f
(2.6b)

The contribution (2.6a) is small in comparison with
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a= J (u„u, +v„v, )d r,
b = J (u„v„v, +v„u„u, )d r .

(2.7a)

(2.7b)

(2.6b). These estimates were obtained using the
MIT model, but similar results are obtained using
the relativized HO model. A somewhat different
estimate can be found in Ref. 3. As we are in-

terested mainly in a comparison of quark models,
we have neglected both expression (2.6a) and the
correction discussed in Ref. 16.

The QCD enhancement factors C; in expressions
(2.5) are defined in Refs. 1 —5. The integrals over
the quark wave functions a and b are defined for
the MIT model in Refs. 1, 4, and 5 as follows:

Comparison of relations (2.5), (2.7), and (2.9) re-

veals the difference between the MIT model and
the HO quark model. In the MIT model, formulas
(2.5) depend on the combination (a —3b) = —1.20
)&10 GeV . In the HO model, this combination
is replaced by a larger value, i.e., (a 3b—) + I—x
=2.81)& 10 GeV . The smallness of the combi-
nation (a —3b), which is helicity-suppressed in the
MIT model, helps reproduce the E+~ m.+~ am-

plitude. The cancellation due to the helicity
suppression introduces an element of uncertainty in
the value of (a —3b). Small variations in the
MIT-model parameters can introduce marked
differences in the value of the AI = —, contribution

f ~
to decay amplitudes. For f ~

defined as
Here u and U denote large and small components
of the MIT-bag-model wave function, respectively.
The numerics we use in the present calculation is
based on the same set of model parameters as used
in Refs. 1, 4, and 5:

f&

——(C& —2Cz —2C& )(a —3b)

+(C|;+—, Cs)(a +b), (2.11)

Rg ——Rg ——R =3.26Gev

m(u) =m(d) =0, m(s) =0.279 MeV .
(2 g)

b~0,
' 3/2

P Px
a I ~ ——

(2.9)

The mesonic parameters appearing in expression
(2.9) are connected with the baryonic parameters

a& and x of Ref. 17:
' 1/2

2 2 1 2
PK =

1
P, fI =~~P,

az (3am„)'~——, x=m„/m, =0.6,
m„=0.33 GeV, ~=0.0106 GeV

(2.10)

In the nonrelativistic HO quark model, one obtains
for the model wave functions a and b '

using our parameters, we obtain f, =0.039&&10
GeV . The parameters used in Ref. 3, which are
slightly different from ours, lead to
f~ =0.618X10 GeV . This justifies the intro-
duction of the parameter g as follows:

(a 3b)~ (a ——3b)g . (2.12)

Using g= —0.3 and C5 ———0.3, one can reproduce
experimental decay amplitudes to a certain extent.
In the framework of the nonrelativistic HO model,
one has no motivation for introducing the parame-
ter g. In this model, the small components of the
quark wave function are absent and no helicity
suppression appears. The penguin-operator
strength C5 is also increased by some suitable fac-
tor P. ' This seems to be reasonable. The coeffi-
cients C5 and Cq depend strongly and crucially on
an uncertain choice of the renormalization mass p
and on the other parameters in the QCD calcula-
tions. In the HO model, the only way of repro-

TABLE I. K~ m~ decay amplitudes in the MIT bag model and the HO quark model,
with continuation given by (2.4).

Amplitude
(GeV)

MIT bag model
/=1 g= —0.3
P =1 P =1.9

HO quark model

C4 0.1C4
P=1 P=0 Expt. '

10'A (K+ w+~')
10'A (K' w+~-)
10A(K m. ~)

7.72
3.79
7.14

1.93
27.88
25.15

18.31
43.22
17.43

1.83
30.79
28.21

1.83
27.96
25.36

'Reference 5.
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ducing the E+—+ m. +m amplitude correctly would
be to suppress that part of the weak Hamiltonian
which transforms as 84 in SU(4) flavor. This
might be the result of various soft-gluonic effects.
At the same time, the representation 20 might be
strengthened. However, further study of these im-

portant questions, which are especially connected
with D-meson decays, is beyond the scope of the
present investigations. We just want to emphasize
that analogous problems would be encountered in
any nonrelativistic quark model. ' Table I lists
some illustrative numerical values.

III. THE HARMONIC-OSCILLATOR
SHELL MODEL

X 1+ IS P.'
16 m„'m,

' —2
P. P,

p, p„

(3.3)

4
' —5/2

Such an arrangement follows naturally because in
both models the center of mass is fixed at the ori-
gin and hadrons are static as if they had an infinite
mass.

It is easy to evaluate the integrals a and b:

S ll

In this model, the harmonic-oscillator potential
is fixed about the origin of the coordinate system.
Such a situation corresponds closely to the square-
well-potential "shell model, "which in its turn
parallels the MIT model.

As one is interested in general features and not
in precise numerics, relativistic corrections will be
introduced in an approximate way. The small
components P are connected with the large com-
ponents as

m,
X 1+

mu p2

a =7.3X10 GeV

b =1.2X10 GeV
(3.4a)

The numerical values depend on the choice of
the HOS-model parameters. The choice (2.10)
leads to

Op . 1 1
u = —I', o'r — — u,

2m r 2m Br

3/2
u =f(r)=N exp( —, P r ), —

1 a-u= u(r) .
2m Br

(3.1)
a =7.1X10 GeV

b=o.
(3.4b)

It is obvious that the HO model ought to be re-
lativized. If the small components of the Dirac
four-spinors were neglected, one would obtain the
following values instead of (3.4a):

The quantities u and v are analogous to the wave
functions u and U used in the MIT model. They
are normalized by the requirement

41TNf I r dr[uf (r)+Uf (r) j= 1

2 —1/2

Sf—— 1+—3 f
8 mf

pf —(Kmf ), f=u)d, S, .. .

(3.2)

Once the norm is fixed, one can use all formulas
appearing in Sec. II, just by making the replace-
ments u~ u and v~v everywhere.

In the HO "shell model" (HOS), helicity
suppression is also present. This is not surprising
because the spin and angular-momentum structure
of the HOS model were constructed so as to be
identical with the structure of the MIT model.

The combination (a —3b)=3.7&(10 GeV is
much smaller in this model than in the HO model
[i.e., (a —3b)~ a =2.81&(10 GeV j. It is in-
teresting to note that it would lead to the predic-
tion

A (K+~ sr+sr ) = 1.31)& 10 GeV, (3.s)

which is rather close to the experimental value
1.83&(10 GeV. If the CA result (3.S) is multi-
plied by 1.72 in order to continue it to the mass
shell, one obtains the value 2.25X 10 GeV.
However, neutral-kaon decay amplitudes come out
much too small, and one would have to consider
some strong enhancement of that part of the effec-
tive weak Hamiltonian which transforms as 20
(i.e., M= —, ) in SU (4).

The results depends on the HO parameter p
which was fixed on the basis of other experimental
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(
3

) I/2f3 —I

=0.81,
a —' (3.5a)

data. ' For example, in the HO model, the ratio of
pion-to-proton charge radii is

of a, b, and (a —3b) are estimated to be
2.91g10, 1.01&10,and —0.12&10 GeV,
respectively. In this way, one illustrates both the
importance of the relativistic effects and the
dependence of the combination (a —3b) on the
model parameters.

where one has
IV. THE HO MODEL

WITH RELATIVISTIC CORRECTIONS

(3.5b)

In the HOS model, expression (3.5a) remains un-

changed. The matrix element of r is diagonal, so
the contributions from the small components are
absorbed in the normalization (3.2). The ratio (3.5)
is in good agreement with the experimental value
-0.88. '

However, changes in value of the parameter P
can lead to a change in sign of the expression
(a —3b), whose value can even pass through zero.
This can be parametrized through the HO-
potential strength parameter a' which determines
the values of P:

(3.6)

Even the problem of a two-body potential be-
comes a complex exercise when a full relativistic
treatment is attempted. We shall, therefore, con-
tent ourselves with a somewhat less ambitious task
of calculating relativistic corrections to the nonre-
lativistic two-body HO model. The corrections
turn out to be very large, so that one should not
refer to corrections, but to a reformulated ap-
proach (i.e., the RHO model). The results we out-
line in this section can be considered mostly as a
qualitative illustration.

CA determines E~ ~~ amplitudes as matrix
elements of four-quark operators of the type

0= d X XIp X X Ip X
(4.1)

1 2 5

If the parameter I~ is increased eight times (i.e., the
parameters P are increased 1.68 times), the values

The quark field appearing in (4.1) can be decom-
posed in a standard way for a flavor f:

1 Pl
1(f(x)= 3/2(2n )

1/2 jd'q[uf(q)e ' bf(q)+Uf(q)e'~'"df'(q)], (4.2a)

with the following definition of the spinors u and U:

' 1/2

o"q, U(q) =
8+m

' 1/2 0 qE+rn 8+m
2ft1

(4.2b)

(4.3)

This approximation closely resembles that used in Ref. 11. In this reference, the SU(6) harmonic-oscillator
wave function was used, with Pauli spinors being replaced by Dirac spinors.

In the HO model, the operator (4.1) is to be sandwiched between meson states of the form~'

~Mi(k)) = I d'p fM(p)b k+p dp k —p i
0) .

PI pg.

Here k is the c.m. momentum, while b and d are the creation operators of the particle and the antiparti-
cle, respectively. The function f~(p) is a solution of the HO potential (in momentum space). Since the HO
model is nonrelativistic, one usually takes the nonrelativistic approximation for the operator 0. In our con-
siderations, this would mean simply discarding the small components in expression (4.2b). In order to calcu-
late the relativistic correction, the small components will be retained and their contributions calculated by
averaging over the HO wave function fM. For example,
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~ = I d'x( '
l 0,) "rs4.4.1„1'4a l

&')

d'pd'q U
'

k~ —q y&y, u
m

kz+q
Px

1
X u k +p y„y'v k —p f (p)fx(q)X X9X4,

Pn Pn. v6
(4.4)

(4.5)

where the factor (1/V6) X9X4 comes from the color-flavor-spin dependence. Since this formalism is not
relativistically covariant, one has to specify hadron momenta. The most reasonable choice is to take kaon at
rest, which then, in the CA limit, implies k =0. Furthermore, such a limit is implied by formulas (2.3)
and it closely parallels the MIT and HOS models in which hadrons are static. Expression (4.4) will then be

a complicated function of q and p . This is because q and p appear under the square roots of the spinors

u and U. In a reasonable approximation, all these q and p will be replaced by their average values, i.e.,

d'I fM(I»)

The small numerical inaccuracy introduced by such an approximation is not of great importance in view of
the approximate character of the whole procedure. It allows one to write expression (4.4) in a compact
analytical form,

A =6(a —3b),
' 3/2

p~pza=a
7T

(E, +m, )q(E„+m„)q(E„+m„)&2

16(E„)~ (E„)I(Eg)i

p ' pz'

(E„+m„),' (E„+m„),(E,+m, ),

(E;+m;)p q (m; +——3p x )' +m;; i =u, s .

3P 'Px-'

(E„+m„)p (E„+mg )q(E, +m, )q

(4.6)

Here a and b correspond exactly to the quantities

appearing for the first time in formula (2.5). Table
II lists some interesting numerical values. These
values depend on the choice of the model parame-
ters p and pz defined by (2.10) and (3.6). These
parameters are connected with the ratio of pion-
to-proton charge radii in the same way as in the
HO and HOS models. This statement is based on
the same arguments as those used in deriving for-
mula (3.5).

Comparison with experiments depends strongly
on the precise continuation of the CA results to
the physical point. In order to illustrate that, let
us first start with the continuation suggested by
Ref. 12. Practically, this means using formulas
(2.5) without the mass-dependent factors defined in

(2.4). It is obvious that only the strengthening of
the penguin terms, in connection with the weaken-

ing of the 84-flavor contribution (i.e., b,I= —, ), can

lead to agreement with experiment. This is evident

TABLE II. E~ m~ decay amplitudes in the RHO quark model, with the CA given by
{2.5) and (4.7).

Amplitude
(GeV)

x=1
P=1

x =0.5
P=1

x =0.45
P=5

x =0.45
P =10 Expt.

108A (E+~ m+m )

10 A (E m+m )
10'A(E —+m ~ )

4.13
10.68
4.84

2.07
9.72
6.80

1.86
17.46
14.83

1.86
27.26
24.63

1.83
27.96
25.36
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TABLE III. E~ mw decay amplitudes in the RHO quark model, with the continuation
given by (2.4).

Amplitude
(OeV)

x=1
P=1

x =0.25
P=1

x =0.1

P=2
x =0.24
P=4 Expt.

10'A (E+ ~++')
10'A(E ~m. +m )

10A(K ~7r K )

7.60
19.66
8.89

1.90
16.96
14.28

1.82
20.54
17.96

1.82
27.76
25.18

1.83
27.96
25.36

from the following formulas:

10 A (K+~ n+m }=. 4 13x, .

10 A (K ~ sr+a ) =6.78+1.95x

+1.96P,

10 A (K —+ m ~ ) =6.78—3.90x

+1.96P .

(4.7)

never strong enough to reproduce the experimental
amplitude for the K+~~+m decay. The same
situation is encountered in quark-density models.
Therefore, it was suggested in Ref. 12 that some
soft-gluonic mechanism should exist which would
be responsible for the quenching of the 84 contri-
bution.

V. DISCUSSION

Here x =1 and P =1 correspond to the standard
QCD-enhanced weak Hamiltonian. The parameter
x indicates the quenching of the operator 04 (C4),
while P measures the increase in strength of the
penguin terms. Only x & 0.5 can reproduce the ex-

perimental values listed in Table II. The prescrip-
tion of Ref. 12 requires that all amplitudes should
be multiplied by 0.92 and then x =0.45 fits the
A (K+~ a+m. ) amplitude.

If one used the factor 1.84, suggested by (2.4),
one would encounter an entirely different situation,
as illustrated in Table III. A very good fit of the
experimental results is possible if there are penguin
terms. The quenching of the 04 contribution can-
not work in the absence of penguin terms.

To obtain an (a —3b) combination which would

be almost vanishing, one needs significant altera-
tions in HO-model parameters. Such a situation is
different from that encountered in the MIT model.

Although we are primarily interested in a com-
parison of the HO model and the MIT model, let
us mention, for the sake of completeness, that
many theoretical attempts have been made to
understand the modification of QCD corrections
(i.e., "hard" gluons) on the basis of soft-gluonic
contributions. In most of the attempts, the 20
contribution increases and the 84 contribution is
quenched. The enhancement of the 20 contribu-
tion means that the value 6.78 in expression (4.7)
should be increased; thus, a fit to experiments
might be possible with smaller penguin terms.
However, the quenching of the 84 contribution is

Further discussion can be conveniently carried
out by comparing the values of a and b calculated
using the MIT model with those calculated in the
RHO model.

In the MIT model, with a =5.34)&10 GeV
and b =2.18)&10 GeV, the value of the crucial
combination is very small and (seems to be) nega-
tive, (a —3b}M,&

———1.2 X 10 ' GeV . Its precise
value depends strongly on the values of the MIT-
model parameters; therefore, this value can, in a
certain sense, be treated as a fitting parameter. In
the MIT model, this value can easily be zero, or it
can be small and positive; therefore, in Ref. 3 it is
replaced by (a —3b)g with g= —0.3. Thus, in

principle, the MIT model can explain the smallness
of the E+ amplitude.

In the RHO model, the situation is completely
different. In this model, a =1.95&10 GeV and
b =0.252X10 GeV, so that (a —3b) is always
positive and larger than the value calculated in the
MIT model [(a —3b)RHo ——1.20X10 ' GeV']. A
similar situation is encountered in the nonrelativis-
tic HO model [(a —3b)Ho ——aHo ——2.81X10
GeV ], but not in the HOS [(a —3b)Hos
=3.9X10 GeV ]. However, the results obtained
in the HO model depend on the model parameters.
The value based on the MIT model can be dupli-
cated only with some sizable changes in parameter.
One is thus inclined to conclude that both relativis-
tic corrections (i.e., small components) and recoil
corrections (i.e., c.m. motion) do play a role. Some
of the difference must also be caused by the con-
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fining dynamics of the HO model; the dynamics of
the HO model leads to the quark wave functions
which behave in a markedly different way from
the wave functions in the MIT model.

Thus, K~ mm decays can test for the essential
difference between quark models. In principle,
such tests are always possible with quantities de-
pending on the interference between small and
large components of the quark-model wave func-
tions. When the contributions from small and
large components add, the result can be model in-
dependent to a large extent: it is determined most-
ly by the color-flavor-spin structure of hadron
states (which is taken to be the same in all models),
while the scale is fixed by the renormalization of
wave functions. However, in practice, the theoreti-
cal analysis is rather involved, as outlined in Secs.

II an IV, and, therefore, no firm conclusion is pos-
sible. It seems that only the MIT model can ac-
count for E~ ~m decay amplitudes with the
standard QCD-enhanced effective weak Hamiltoni-
an. Even this conclusion is really not satisfactory
because it depends strongly on the very particular
details: on the fortuitous cancellation in the
(a —3b) term and on the enhanced penguin terms.
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