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Total cross section, elastic cross section, and the forward slope of the imaginary part of
the scattering amplitude are the three constraints in a numerical calculation of the spin-

flip cross section with variational calculus. In addition, the unitarity of partial waves is
used as inequality constraints.

I. INTRODUCTION

A method to apply the variational calculus to
scattering problems with spin was given in Refs.
1 —3. The spinless case was treated in Refs. 4 and
5. In particular, the systematics of the inequality
constraints was discussed in Ref. 5.

The basic idea in generalizing the theory of in-

equality constraints to the spin case is the defini-
tion of a complete set of classes such that the par-
tial waves of a process with spin belong to one and
only one of these classes according to their elastici-

ty or inelasticity. Thus for the n. +p scattering
there are two partial waves l+ and l for a fixed l.
Hence one can define four classes such that the
two partial waves in one of these classes are both
elastic, both inelastic, fi+ elastic and ft inelastic,
and vice versa. This approach makes it possible to
find the forms of partial waves in each class since
the Lagrange multipliers introduced for the unitar-

ity constraints have well defined forms in each
class given by the theory of inequality constraints.
For the theory we refer the reader to Refs. 1 —5.

We have applied this method recently to ~+p
and E+p scattering ' to find numerical upper
bounds on the spin-flip cross section G. Only two
constraints were used in these calculations, the to-
tal cross section and the forward slope of the ima-

ginary part of the spin-nonflip amplitude. Consid-
ering the complexity of the problem the results
were satisfactory, in that upper bounds could be
found rigorously by taking the spin and full unitar-

ity into account. Also the output was a consider-
able improvement over the input. One other in-
teresting feature which emerged was the large
discrepancy in the predictions of different phase-

shift sets for the spin-flip cross section. Apparent-
ly this quantity had not been calculated before (at
least to our knowledge). This demonstrates once
more the need for measuring the rotation parame-
ters or for theoretical criteria to distinguish be-

tween different phase shifts. From a practical
point of view the bounds we found were too large
even though the predictions of phase shifts in some
cases differed by more than a factor 6. Apparently
the total cross section and the forward slope alone
do not constrain the spin-flip cross section well

enough. For this reason we added a third con-
straint which is the elastic section. Above the in-

elastic threshold we hoped that three constraints
would give a better bound on G. The results con-
firm this. With two constraints the best bound
was larger than a factor 8, whereas with three con-
straints it is less than a factor 2.

Mathematically, the problem is as follows. We
have one quantity to be maximized which is G.
There are three constraints we shall call Ao, S, and
E. With these three constraints are associated
three Lagrange parameters a, P, and y. G, Ap S,
and E are functions of partial waves which have
well defined forms in terms of a, P, and y in each
of the four classes we mentioned before. The prob-
lem consists of fitting the three constraints and
thus determining the three Lagrange parameters
with these three equations of constraint. With two
constraints the relations were linear in a and P and
solving them was not difficult. With three con-
straints the third multiplier y introduces nonlinear-

ity and one has to solve three nonlinear equations
for a, P, and y. In practice one has to solve the
problem with a fairly complicated computer pro-
gram. The computer picks up for a given number
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(number of partial waves) in all possible ways par-
tial waves from each class and fits the constraints
and calculates the multipliers a, P, and y. The un-

itarity and the maximum condition impose some
inequality conditions on the solutions. The com-
puter tests the solutions against those conditions
and rejects them if they are not satisfied. The rest
it prints out. If there is more than one solution we
choose the largest one. Again we refer the reader
for theory to Refs. 1 —3 and for applications to
(6) and (7).

To make this paper self-contained we shall re-

peat a minimum number of equations and the new

features introduced by the third constraint.
In Sec. II, we give the expressions for G and the

constraints. We also give the forms of the partial
waves in different classes along with some exam-

ples of inequality conditions.
In Sec. III, we calculate from different phase-

shift sets all physical quantities and present them
in tables. %e also find the solutions in this section
and give them in tables for different energies.

In Sec. IV, we discuss and summarize our re-

sults.

II. VARIATIONAL PROBLEM

S=4k,
&2

——g l(1+1)[(1+1)al++laI ] .k dA

(4)

Here A is the imaginary part of the spin-nonflip
amplitude. aI+, a~, rI+, and rI are the ima-
ginary and real parts of the partial waves. k is the
c.m. momentum, s the c.m. total energy squared.
Equations (2)—(4) are the equality constraints.
The inequality constraints are given by the unitari-
ty of the partial waves and are

uI ——aI+ —ai+ —rI+ &0,2 2

(6)

The Lagrange function has the form

I.=G+&Ao+PS+yE

+ g(l+1)A~uI+ gllJ, Iu~ .

Here A,~ and pI are the l-dependent multipliers
which have well defined forms in each of the fol-
lowing four classes.

(I I ) Both fr+ and f~ are inelastic in this
class and have the forms

We want to maximize the spin-flip cross section
O.sF which is the integral of the square of the spin-

flip amplitude g over all angles. The three con-
straints to be satisfied are the total cross section

o, the elastic cross section o. , and the forward
slope of the imaginary part of the spin-nonflip am-

plitude f. Further, we require the partial waves to
satisfy the unitarity (elastic or inelastic). Since the
maximum problem is considered at a fixed energy,
we define new quantities G, Ao, E, S so as not to
carry energy-dependent factors in our calculations.
These are

k' 2l(l+1)G= o'sF= g2~ 2l+1 [(a~+ —ai )

+ (rI+ —r( )'],

kAo= cr = g [(l+1)a~++laI ]
4m.

1
ai+ ——ai ——— [a+1(l+1)P] .

2y

It was found that in the two-constraint case this
class did not contribute'; but now it can contri-
bute.

(I B ) In this class f~+ is inelastic but fi is
elastic. The forms of the real and imaginary parts
are

I'I+ =PI =0 ~

(1) ai+ —— IB——,[a+.l(1+1)p]),+

aI ——1

(2) ai+ ——— [&+l(l+1)p],1
+ 2(B+y)

ai ——0.
E= o = Q [(l+1)(at+ +r(+ )

k E
4m

+l(ai '+r, ')], (3)

Here B stands for B=2l/(21+ 1).
(I B+) In this class fI+ is elastic and f~

elastic. The real and imaginary parts have the
forms
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TABLE I. G and the constraints as constructed with m. +p phase shifts of eight different

groups at 2025 MeV c.m. total energy. Aside from kinematical factors, Ao, S, G, and E are
the total cross section, forward slope, spin-flip cross section, and elastic cross section as de-

fined by Eqs. (2), (4), (1), and (3).

Berkeley Boone 21
Berkeley path 1

Berkeley path 2
Saclay (2021 MeV)
CERN Kirsopp
CERN Experimental

(2024 MeV)
CERN Theoretical
Helsinki-Karlsruhe

Ao

4.2129
4.2455
4.1954
4.1155
4.0726
4.1611

4.1634
4.2220

33.3678
32.6431
30.2232
28.0632
30.1279
27.9800

28.0034
38.4210

0.3634
0.2092
0.3416
0.1739
0.4769
0.4681

0.4867
0.4285

1.6607
1.6554
1.6587
1.5855
1.5914
1.7725

1.7952
1.6593

E/A p

0.3942
0.3895
0.3954
0.3852
0.3908
0.4260

0.4312
0.3930

6/Ao

0.0863
0.0493
0.0814
0.0423
0.1171
0.1125

0.1169
0.1015

or

rI+ ——ri ——0 .

(1) ai+=1,

ai = ID ——,[o.+l(1+1)p]],D+

(2) ali=0,

[a+1(1+1)P].
2 +y

Unitarity and the maximum condition impose in
all classes on the expression a+1(l+ l)p+y in-

equality constraints. Again we shall not repeat
them here and will be content by giving a few ex-
amples. Thus in class B+B for the case (4) rela-
tions

a+ l(l+1)P+y &B

a+t(l+ 1)P+y &D

Here D stands for D =2(l+ 1)l(2l+ 1).
(B+B ) In this class both partial waves are

elastic and there are five different possibilities:

(1) ri+ ri ——ai+————ai =0,
(2) ri+ rI ——0, ai+————0, a( = 1,
(3) ri+ ri =0,——ai+ ——1, ai ——0,
(4) ri+ ri ——0, ai+ ——1,——al

(5) ri++0, r~ +0,
ai++0, ai +0 .

In this case the forms of the partial waves are
complicated and we shall not repeat them here but
will refer the reader to Eqs. (97)—(100) of Ref. 3.

have to be satisfied. In other classes there are
similar inequalities.

III. CONSTRAINTS

The three constraints Ao, S, and E are calculated
from different phase-shift solutions. For AD and E
to be different, that is for the third constraint to be
effective, we have to be in the inelastic region. As
references we used Refs. 8 and 9. Reference 8 goes
only up to 2189 MeV c.m. total energy. For
higher energies we used Ref. 9. Since the data for
different groups do not have the same normaliza-
tion, we calculated in addition to Ao, S, G, and E
also E/Ao and 6/Ao. The energies we choose

TABLE II. 6 and the constraints as constructed with m+p phase shifts of four different
groups at 2189 MeV c.m. total energy. Aside from kinematical factors, Ao, S, 6, and E are
the total cross section, forward slope, spin-flip cross section, and elastic cross section as de-

fined by Eqs. (2), (4), (1), and (3).

CERN Kirsopp
CERN experimental
CERN theoretical
Helsinki-Karlsruhe

Ap

4.6519
4.7751
4.2413
4.6850

46.6031
46.6685
32.8115
51.9000

0.3450
0.3255
0.3084
0.3299

1.4624
1.5600
1.4204
1.5242

E/A p

0.3144
0.3267
0.3349
0.3253

6/Ao

0.0742
0.0682
0.0727
0.0704
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TABLE III. 6 and the constraints as constructed with m+p Helsinki-Karlsruhe phase
shifts at five different energies between 2223 MeV and 2350 MeV c.m. total energy. Aside
from kinematical factors, Ao, 5, G, and E are the total cross section, forward slope, spin-flip
cross section, and elastic cross section as defined by Eqs. (2), (4), (1), and (3}.

2223 MeV
2244 MeV
2277 MeV
2302 MeV
2350 MeV

4.9160
5.1050
5.3780
5.6360
6.0470

57.3160
61.9400
70.1100
76.2900
86.5360

0.3282
0.3337
0.3348
0.3397
0.3307

1.5461
1.5708
1.6058
1.6434
1.7174

E/A p

0.3145
0.3077
0.2986
0.2916
0.2840

G/Ao

0.0668
0.0654
0.0623
0.0603
0.0547

from Ref. 8 are 2025 MeV and 2189 MeV c.m. to-
tal energy. Helsinki-Karlsruhe phase shifts of Ref.
9 go up to 4435 MeV and we choose the energies
2025, 2189, 2223, 2244, 2277, 2302, and 2350
MeV. The results are given in Tables I—III. As
can be seen from the data, in the predictions of
different groups for G or normalized G(G/Ao)
there are big differences. At 2025 MeV, for exam-

ple, they differ almost by a factor 3.

IV. SOLUTIONS

We search for solutions in the following way. In
each class ri+, ri, ai+, aI have well defined
forms as functions of the Lagrange multipliers a,
P, y and the partial-wave index I. Also in each
class there may be more than one type for the par-
tial waves which we discussed in Sec. II. We label

all these different forms of partial waves as fol-
lows:

Class

I+I
I+R-

Type

(1)
(1)
(2)

(1)
(2)

(2)

(3)
(4)

(5)

Label

In addition we use the label 10 for zero ampli-
tudes. As was discussed in Ref. 6 partial waves in
all classes except 8 have a minimum value imposed
by unitarity and maximum conditions. Therefore
the constraints are satisfied with a small number of
partial waves. For the two-constraint case we had
searched solutions with up to eight partial waves
and had found only two, three, or four wave solu-
tions. Since the computer cost becomes prohibi-

tive, we started in the three-constraint case with a
four-wave solution search. After this we increased
the number of waves to five, six, and seven to see
whether new solutions could be found. In most
cases no new solutions were found. In a few in-
stances five- and six-wave solutions were found
and these did not change the bounds, found with
four waves, appreciably. In no case was a seven-
wave solution found.

As indicated before, once the selected wave num-

ber is given, the computer picks up partial waves
in all possible ways from all classes. It fits with
those waves (which are functions of the Lagrange
multipliers a,p, y and the wave index 1) the con-
straints Ao, S, and E. In comparison with the
two-constraint case, the addition of the third con-
straint E introduces the third Lagrange multiplier

y, which in turn makes the three constraint equa-
tions nonlinear. The computer solves these three
equations for a, P, and y by iteration, and finds
the numerical values of the partial waves which fit
the constraints. However not all waves are accept-
able, since they must also satisfy the inequality
conditions imposed by unitarity and maximality.
The computer tests the solutions against those con-
ditions and rejects the ones which violate the ine-

qualities. With the remaining ones it constructs
the spin-flip cross section G and prints it out.
This is the required upper bound. In general there
will be more than one solution; in this case we
choose the largest. The values of a, p, and y also
are printed out.

We showed the solutions as a sequence of num-

bers, each indicating a particular label. Thus

2 9 4 2 4 10 10

means that
1=1 wave has the form of the class I+B (2),
1=2 wave has the form of the class I+I (l),
1=3 wave has the form of the class I B+(2),
1=4 wave has the form of the class I+B (2),
1=5 wave has the form of the class I B+(2),
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TABLE IV. Partial-wave solutions at 2025 MeV c.m. total energy which maximize the

spin-flip cross section (G) and satisfy the constraints. The first column gives the names of
the phase-shift groups. The six-number code in the second column indicates the labels of the

classes for partial waves from 1 = 1 to 1=6. n, P, and y are the Lagrange multipliers. G; is

the value of G as constructed from phase shifts. Go is the bound found with the variational

calculus.

Maximum solution Go

Berkeley Boone 21
Berkeley path 1

Berkeley path 2
Saclay (2021 MeV)
CERN Kirsopp
CERN experimental

(2024 MeV)
CERN theoretical
Helsinki-Karlsruhe

2 9 4 4 10 10
9 2 2 4 10 10
2 9 2 4 10 10
9 9 4 8 10 10
9 9 4 8 10 10
2 9 2 8 10 10

1.5022
1.6340
1.4565
1.6601
1.6544
1.7212

—0.0689
—0.0759
—0.0709
—0.0929
—0.0796
—0.0921

—1.8949
—1.9597
—1.7421
—1.7819
—1.9762
—1.8542

0.3634
0.2092
0.3416
0.1739
0.4769
0.4681

1.1316
1.0102
0.9051
0.7173
0.9781
0.9976

1 9 9 4 10 10 1.8103 —0.0903 —1.9545 0.4867 1.0448
2 4 9 2 10 10 1.3782 —0.0543 —1.9930 0.4285 1.4406

l=6 wave is zero, and
I =7 wave is zero.
We give the solutions in Tables IV, V, and VI. As
remarked before, the results show a definite im-

provement over the two-constraint case. The best
result is for the CERN theoretical-fit phase shifts
at 2189 MeV for which the bound for G is O.SS as

opposed to the value of G constructed from phase
shifts, which is 0.31. The ratio is only 1.78. In
the worst case we have a factor of 4.8 and in most
cases the bounds differ from constructed values of
G by a factor of order 2 or 3.

IV. SUMMARY

The application of the variational method was

extended to problems with spin. ' Unitarity is

taken fully into account. For rr+p scattering

upper bounds are calculated at different inelastic

energies for the spin-flip cross section G. In addi-

tion to the unitarity of partial waves which

represent inequality constraints, three global con-

straints are used. These are the total cross section,

elastic cross section, and the forward slope of the
imaginary part of the spin-nonflip amplitude. The
results show a definite improvement over the two-
constraint case studied before in which the elastic
cross section was not used.

The technique is rigorous and general. In prin-
ciple it can be applied to arbitrary spins. In prac-
tice the number of classes for amplitudes becomes
large with larger spins. But this can still be han-
dled with computers in applications. Also the con-
straints must have the single series form in partial
waves. In the case studied here two of the con-
straints (Ao, S) were linear in partial waves and one
(E) was quadratic. Almost all of the solutions
found start with l =1 wave either in class 2 or 9.
When comparing the results of this paper with
those of the two-constraint case, we would like to
remark that the l.abeling of classes has not been
changed. Only, since the class I+I did not con-
tribute in the two-constraint case, it was not used.
Here it can contribute and is labeled 9 in order not
to change the label numbers of the following
classes. The label of the zero-amplitude class is

TABLE V. Partial-wave solutions at 2189 MeV c.m. total energy which maximize the
spin-flip cross section (G) and satisfy the constraints. The first column gives the names of
the phase-shift groups. The six-number code in the second column indicates the labels of the
classes for partial waves from 1=1 to 1=6. n, P, and y are the Lagrange multipliers. G; is
the value of G as constructed from phase shifts. Go is the bound found with variational cal-
culus.

Maximum solution G; Go

CERN Kirsopp
CERN experimental
CERN theoretical
Helsinki-Karlsruhe

2299810
9949810
2 9 9 4 10 10
2942410

1.2993 —0.0445 —1.9496
1.3316 —0.0476 —1.8978
1.2463 —0.0581 —1.5768
1.1704 —0.0369 —1.9374

0.3450 0.8650
0.3255 0.8934
0.3084 0.5503
0.3299 1.1672
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TABLE VI. Partial-wave solutions between 2223 MeV and 2350 MeV c.m. total energy
which maximize the spin-flip cross section (G) and satisfy the constraints. Only Helsinki-
Karlsruhe phase shifts have been used. The six-number code in the second column indicates
the labels of the classes for partial waves from 1 =1 to 1=6. a, P, and y are the Lagrange
multipliers. G; is the value of G as constructed from phase shifts. Go is the bound found
with variational calculus.

2223 MeV
2244 MeV
2277 MeV
2302 MeV
2350 MeV

Maximum solution

2992810
9944910
2924910
9924410
29942 8

1.2106
1.2173
1.0963
1.1070
1.1841

—0.0379
—0.0355
—0.0295
—0.0288
—0.0280

—1.9497
—1.9912
—1.8970
—1.8944
—1.9900

G;

0.3282
0.3337
0.3348
0.3397
0.3307

Go

1.1317
1.1183
1.1334
1.0938
1.0499

changed from 9 to 10.
The number of partial waves needed in the solu-

tion increases with energy as one would expect.
Only at the highest energy we used, 2350 MeV,
had the variational solution six waves. At all
lower energies four or five waves were sufficient.

Finally, we would like to remark that the values

of 6 constructed from different phase shifts dif-
fered at some of the energies we looked at by as
much as a factor 2.8. (In other cases it was even

larger. ) This difference is a relative value between
the predictions of phase shifts and not between the

unknown experimental value of 6 and the phase-
shift predictions. The latter could be better or
worse.
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