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A soft-pion study using current algebra and the partially conserved axial-vector current

(PCAC) hypothesis is made of the proton-antiproton annihilation process pp ~K+K 3m .
Of the three neutral pions only two are considered as soft with the third pion forming

part of the external final state. The differential rate for the process is normalized to the
differential rate of the corresponding process without the soft pions. Theoretical predic-
tions for the branching ratios at various antiproton momenta are compared with the exist-

ing experimental data.

I. INTRODUCTION

Successes of the current-algebra —PCAC (par-
tially conserved axial-vector current) formalism
have established that the study of strong-interac-
tion processes is much simpler using current opera-
tors. In recent years, among the strong interac-
tions studied with the formalism are proton-
antiproton annihilations' and kaon-proton in-

teractions. ' In all these applications, the max-
imum number of soft pions involved is two. In
processes like pp —+EKmw, the pions can have mo-
ments too large for them to be treated as soft.
Also in the pp annihilation processes at vanishing
momentum, the number of pions emitted can be as
many as four. 7

In applying the current-algebra —PCAC formal-
ism to multiple-pion-emission processes, one finds
that the manipulation of derivatives through time-
ordered products becomes increasingly difficult as
the pion number increases. However, in dealing
with such processes, it is not necessary to treat all
the pions as soft. One can regard some of them as
being in the external final state. Therefore, in our
attempt towards decreasing the pion momenta and
also increasing the number of emitted pions, we
consider the process pp~E+E 3m, and treat
only two of the pions as soft. This way we avoid
double commutators between A& and B&A&, which
are present when all the three pions are treated
soft. Taking all the pions in the neutral mode has
the added advantage that one needs to consider
gradient coupling only as pointed out by %ein-
berg. Like Uritam, ' we too subscribe to van

Hove's point of view that the theoretical expres-
sions should be in the most differential form avail-

able, rather than have some or all the variables in-

tegrated over. So we present the differential rate
for the process in all the relevant kinematic vari-
ables and normalize it to the differential rate for
the process pp ~E+E m . In order to make a
comparison with experimental data, we finally in-

tegrate the resulting expressions numerically over
the independent variables to obtain the branching
ratios for various antiproton momenta. Owing to
lack of experimental results for pp~K+E 3iro,

the branching ratios thus obtained are, however,

compared with data on final products in other
charge states. The comparison is quite reasonable
since the results of Greenhut and Intemann4 indi-

cate that the branching ratios for pions in different
charge states have nearly the same order of magni-

tude, especially at low center-of-mass energies.
In Sec. II, we derive the amplitude and differen-

tial rate for the process pp —+E+E a +2m and
normalize it to the differential rate for the same

process without the soft pions. In Sec. III, we
present the branching ratios for various center-of-
mass energies obtained after integrating over the
relevant kinematic variables, and compare them
with the available experimental results.

II. pp —+%+It m +2m AMPLITUDE
AND DIFFERENTIAL RATE

According to the Lehmann-Symanzik-Zimmer-
mann reduction formula, the matrix element for
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the emission of two pions in the reaction

i~f+m (k, )+H(k, )

is proportional to

Jd'xd'ye "'"e ' "
X (f

~
&(g(x), PP(y))

~
i) .

(2.1)

(22)

ized, renormalized pion-nucleon coupling constant
(g„ /4m 14.6), P„ is the renormalized pion field
operator, and p, and M~ are the pion and nucleon
masses. Through Eq. (2.3), Eq. (2.2) can be rewrit-
ten in terms of the derivatives of the axial-vector
currents A&. The derivatives can be brought out-
side the time-ordered product using the standard
identity. The resulting commutators like

a„~„=(C.W 2)g,
where C =026&M~@ /g, (0); Gz(=1.18) is the
axial-vector coupling constant, g, is the rational-

(2.3)

i and f are the initial and final states containing
particles such as p, p, E+,E, and ~ . k~ and k2
are the pion momenta and a and P are their iso-

spin indices. We have the PCAC equation

S(x,—y, )[~;(x), a„~i'(y)] =S.~(x)ax
(2.4)

are dropped on the basis that they are of the same
order as the PCAC correction terms. Integrating
the resulting expression by parts, introducing
Klein-Gordon operators and through Eq. (2.3) re-

placing B&A& with P, we have

2

(p +k) )(p, +k~~)

where we have used the relation

5(xo —yo)[AO(x), A~(y)]=i5(x y)e pyV—r(x),

and

(2.5)

(2.6)

gtÃp . d4 d Z gcE gp

is the matrix element for the emission of two axial-vector currents in the process i ~f. The factor of —, on

the right-hand side of Eq. (2.5) comes because of the pulling out of derivatives symmetrically from the
time-ordered product.

gcP 4~ 4@~ ~ p2 Q p2 p p ~ P y

(2.7)

(2.8)

is the matrix element for the emission of two pions of momenta k~ and kq and isospins a and P in the pro-
cessi~f

(2.9)

is the matrix element for the emission of an isovector photon in the process i ~f. This term can be
dropped from Eq. (2.5) if all the pions emitted have the same isospin index. We have

~ab ~ah+~~ah ~ah + ~( ~) @Pa Pb )Mab /+ab

Equation (2.5) now becomes

2

l4"
( 2+k 2)( 2+k 2)

(2.10)

(2.11)

If we now set k~ gE~ and kq =gEq, so th——at g—+0
corresponds to the soft-pion limit, for a process
like a~P+mn where a and P are different ha-
dronic states, the matrix element is of zeroth or-
der in g. Therefore, in evaluating the expression
(2.11) in the soft-pion limit, we look for pole terms

l

that go as k in M&~. The matrix element for
the emission of an isovector photon of momentum
k =(k~+kz) also must have pole terms that ge as
k . In evaluating the isovector term, we can use
the low-energy theorem for photon emission due to
Low. ' With the help of the theorem, we can ex-
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2

p ~ 33 1 . m 33
k]k23fp~ 2 1

4 &2~ ~

p
Pole terms of the order of k ' arise when an
axial-vector vertex is attached to a nonterminating
external line. Parity forbids insertion of A„ into
pseudoscalar-meson lines. Therefore, we need to
consider only the diagrams given in Fig. 1.

(2.12)

press the amplitude for the emission of the photon
in the process i ~f in terms of the corresponding
process where the photon is absent. Setting k~,
k2~0 and considering two-neutral-pion emission,
a=P=3, we have

The contribution from the diagrams can be writ-
ten in the usual way. The central interaction in
these diagrams can be written as

M =A+8'Q, +8"g,+Co.„„Q",Q,', (2.13)

where Q& ——q~ —qz+k3, Q2 ——q~
—q2 —k3, and q&,

q2 are the kaon momenta and k3 is the pion
momentum. If the kaon production is considered
to be at threshold,

{2.14)

where Q =k3. Retaining only the zeroth-order
terms in pion momenta in k ~k2M& we have

6 2

k~&k2M",=, ~, (p2)(AF~ +&Fs )&,(p& )
k', k,'(k', +k', )

' (2.15)

considering proton-antiproton annihilation at vanishing laboratory momentum, we have p&
——pz ——(O, lM~)

and

F„=—4(k', +k', )(k, k,),
Fs ——k )(—gk )kg+ k &gk2 —k2IA'19+ ~2& 1)+k 2( QIr 2~1+II2Qllr 1 ~1~28+6' 18~2)

+2ik )k2(gk2 —k2g+gk) —k)g)

Replacing the Dirac spinors with Pauli spinors we find

U2(pz)AFq u„(p& ) =0 .

Therefore, the matrix element for the emission of two pions in the process pp~E+K rr is given as

(2.16)

(2.17)

(2.18)

T 0
X

k~

K

0cw wM~ + «TTlW W WM

kq

(b)

(c)

r&

0fW WMWJ
'f WWWWl

k3

NK 0r w
V ~j k3

FIG. 1. Diagrams of order k ' contributing to M„~.
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Oo
2 4

M2 Mz i
2 p p p p U, (p2 )BFsu„(pi )

C kikg(ki+ki)
(2.19)

where r and s are spin indices of the proton and antiproton, respectively. The matrix element thus obtained
is valid in the unphysical region k&, k2~0. Using PCAC as a "smoothness condition", we assume that the
matrix element can be extrapolated on to the pion mass shell. '" We find the

~
M„~ averaged over the in-

itial and summed over the final spin states as

2 4 2

( ~Mgp ~

)=8B
2 p p p p I ki [ki k2 Q —k2 (ki Q) —(k2Xki Q) ]

C k ik2(k i+k2)

+k2 [kg ki Q —ki (k2 Q) —(kiXk2 Q) ]

+2kik2[(ki k2) Q —(k2 ki)(k2 Q)(ki.Q (2.20)

The differential rate for the reaction pp~E+E n +2m is given by the expression

pp (271)' Miv' d qi d q2 d ki d k2 d k3d' w =
i5 p p (~(Pi+Pe gi g2 ki k2 k3)( I M-

l

') p. . . , . (2.21)
(2~)i5 pPip2P 2q &

2q', 2k', 2k', 2k 3

We consider the pp system as a single particle decaying into R (=E+E m)and E (=. 2m ). The system
R decays further into S ( =E+n. ) and T ( =E ). E itself decays into two pions while S decays into a kaon
and a pion. Out of the 15 variables in Eq. (2.21), 9 get integrated over trivially. The remaining six variables
are chosen to be the following: m»» ———R, m = —E, m» ———S, 8» (the angle between R and S),
8 (the angle between E and one of the decayed pions), and P [the relative azimuthal angle between the di-

pion (E) and R decay planes]. We have

d6w = dm»» dm» dm d(cos8»)d(cos8 )dp (
~

M,„~ )
(2'ir) 2 @ m»» m» m

X[(E +m»» m~ ) 4—E m»»~ —]' [(m»» +m» m»') 4m—»» m» ]'

X [(m»~ +m» p) 4m» —m» ]—'~ (m 41J2)'~, — (2.22)

where E is the square of the center-of-mass energy of the pp system.

(
~
M,„~ ) given in Eq. (2.20) has to be expressed in terms of m»», m»„, m„~, cos8», cos8, and P.

For this we first express the variables in Eq. (2.20) in terms of I.orentz invariants and then in terms of the
chosen variables. The relevant equations are tabulated in the Appendix.

In Eq. (2.22) the unknown term B in (
~
M,„~ ) can be eliminated if we normalize the rate d w to the

rate of the process pp~E+E n. where the soft pions are absent. Considering the annihilation at rest and
kaon production at threshold, the matrix element for the reaction pp~E+E n. becomes

M„=U, (p2)Bgu, (pi ) . (2.23)

One finds

2 — 22
( iM,„ i

)= , B E 2m» 2—m» +— — (2.24)

The corresponding expression for the differential rate is
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dw=dm» ( ~M,„~ )[( m—» +m» +p ) 4—m» p, ]'~
16(2m )

[(E +m» m—» ) 4E—m» ]'
Em@

(2.25)

The ratio of Eq. (2.22) to Eq. (2.25) gives the dif-
ferential rate for the process pp &K—+K ir +2m, .

normalized to the differential rate for the same
process without the soft pions.

III. COMPARISON OF THEORETICAL
AND EXPERIMENTAL BRANCHING RATIOS

Our expression for the differential rate for the
process pp~K+K 3ir presented in its fully dif-
ferential form in Eq. (2.22), affords us a great deal
of information, predicting a spectrum in the six in-
dependent kinematic variables. The simplest com-
parison we can make with the available experimen-
tal data is, of course, through the branching ratio,

R =w(pp~K+K 3n )Iw(pp~K+K n), .

obtained by integrating the expressions in Eqs.
(2.22) and (2.25) over the kinematic variables
within their limits. We perform the integration
numerically for different energies by generalizing
our expressions to hold at nonzero laboratory mo-

menta of the antiproton. The theoretical predic-
tions thus obtained for the branching ratio R are
tabulated in Table I. Since experimental results for
the particular reaction pp~E+E 3~ are not
available, comparison could be made only with
data' on the final products in other charge states.
Although the theoretical branching ratios are con-
sistently lower, they show the same energy depen-
dence as the experimental ratios as displayed in
Fig. 2.

It is known experimentally' that pp annihilation
at rest occurs in the S state. That state can be
either a singlet 'S state or a triplet S state; in gen-

eral it is a mixture of these two states. In the past
current-algebra predictions have been in good
agreement with experiment for S waves. At higher
energies more angular momentum states come in
and current algebra is not reliable. When annihila-

tion takes place at rest, there is enough center-of-

TABLE I. Ratio of calculated reaction rates R =w(pp~K+K 3m )/w(pp~K+E m )

at various center-of-mass energies.

p laboratory momentum

(GeV/e)
Center-of-mass energy

(GeV)

0.0
0.5
1.0
1.2
1.36
1.5
1.61
1.80
1.95
2.0
2.5
2 7
3.0
3,5
3.7
4.0

1.877
1.938
2.082
2.149
2.205
2.254
2.293
2.360
2.412
2.430
2.602
2.669
2.767
2.926
2.987
3.077

0;008
0.015
0.044
0.067
0.091
0.115
0.158
0.229
0.292
0.314
0.599
0.745
1.011
1.561
1.822
2.258
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FIG. 2. Comparison of theoretical prediction of
R =w(pp~K+K 3~ )/m(pp~K+K n. ) with experi-

ment at various laboratory momenta.

mass energy available to produce the desired final-
state products, namely, EE3~. Until now little
theoretical attention has been given to pp annihila-
tion with more than two pions in the final state.
This is partially due to the computational difficul-
ties involved as the pion number increases beyond
two. In our case we overcome the difficulty by
treating only two of the pions as soft. Considering
annihilation at rest introduces its own simplifica-
tions.

Retaining the isovector photon term M~ and
considering two oppositely charged pions as soft
might have brought the theoretical predictions

closer to the experimental results. However, in
such a case only half the diagrams given in Fig. 1

contribute to k~ik2 M„~.
Our theoretical predictions when compared with

the available experimental data are consistently
lower by an order of magnitude even at small
center-of-mass energies. Even in the past dis-

crepancies of this kind have been reported. '~ ~ The
predictions of Grant, Schillaci, and Silbar'5 for the
process pp~npm+ are smaller by an order of mag-
nitude compared to the experimental results.
Schillaci and Silbar' felt that higher-order terms,
present because p+0, dominate the resonance ef-
fects and that the resonance contribution due to
the production of intermediate isobar b, (1236) was
substantial enough to account for the observed
discrepancies. Similar "off-shell" resonance effects
were suspected to be the reason behind the
discrepancy between soft-pion calculations and ex-
perimental results in pp~EE2n. In a recent soft-
pion study of the process NN~NNn. , Dubach, Sil-
bar, and Kloet' show that the postemission 5-
resonance contribution is significant. However, in-

clusion of 6-postemission and nucleon-preemission

diagrams removed the discrepancy with experiment
only partially.

It is well known that the annihilations yielding
E mesons produce an intermediate resonance state
of E'(890) meson in large fractions. For example,
at 1.2 GeV/c laboratory momentum of the antipro-
ton, the rate of resonance production, ' E'En m

(EK'nn) in the process pp~E &E+m+n+ni-s. .
about 80%%uo. In addition, pion resonances p and co

are known to be produced along with the kaons.
A look at Table II reveals the abundance of reso-
nance production in two different reactions of the

type pp +EE3m at 3.7 Ge—V/c "This de.finitely

influences the amplitude for reactions such as pro-
duction of the b, resonance in the case of NN
~NKVD. .

The other reason for the discrepancy could be
that we have treated only two of the pions as soft

TABLE II. Percentage of resonance production in pp annihilation into two kaons and
three pions at 3.7 GeV/c.

Final state
Percentage of resonance production

P

K',K-+m+~+~-
K01KOI~+~-~0

75+15
30+15

25+10
40+15 5+5
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with the third forming part of the final state.
With three-pion emission, one has to consider m-m

effects' and these would have come out of the
soft-pion formalism automatically if all the three
pions were treated soft. This is now being investi-
gated and is to be shortly reported elsewhere.
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APPENDIX

The terms appearing in Eq. (2.20) must be expressed in terms of the chosen kinematic variables m»»
m»~, m~„, cos8», cos8~, and P. For this purpose we first define

P=R+K& R=S+T, K=k|+kp&h=ki —k2, Q=S —T& S=qi+k3& T=q2 .

In terms of these, the variables in Eq. (2.20) are given as

k; = Pk;/—E,
k, '=k, '+(P k; )'/E',

Q Q2+ (P,Q)2/E2

k; Q=(k; Q)+(P k;)(P Q)/E

k| k2 ——ki kg+(P. ki)(P kg)/E

with i =1,2. We can form the following invariants from the variables in (Al):

K, Q E, R E, b, , b, R, /&. Q, Q, Q R, R, S, S R .

We write the terms occurring in (A2) to (A6) in terms of those in (A7):

(Al)

(A2)

(A3)

(A4)

(A6)

P ki ——, (R K+I, R+K—),
P.k, = , (R.K b, R+—K'), —

P Q=Q R+Q E,
1

ki Q= —,(Q E+b, Q),
1

kp Q= —,(Q K —b, Q),
ki.k2 ———,(E —b, ),

where

(A9)

(Alo)

(Al 1)

(A12)

(A13)

2 — 2
~KK~

S = —m~ 2

=PB ~~ —4p

Q =771»» —2m» —2m»2 — 2 2 2

R K= 2(m»» +m~~ E), —

Q R =PE» —Pl»~2 2

S.R = , (I» m»»~ I»—), — —2

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)
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2 2 . 2

g (~2))g2 R K —(R K)
E

1/2 2
1/2

S R (S—.R) R K (R—K) (Q R)(R K)
Q K= —2cos8»

R R
+

R

cosg(L&L2)'~ [—(Q R)K (R.—K)(Q K)](b R)

(R K) —R K

Also,

Li [R——K (R.—K) ]6 (b R—) K

L2 —[R2K2 —(R K)2]Q~+[2(Q K)(R K)—K~(Q.R)](Q.R)—(Q.K)2R~ .

We also have

(ki X kg. g) =(kqX ki.Q) =X,

t
K2[R2Q2+2 +2(Q.R)2 R2(g.g)2 Q2(Q.R)2+2(g R)(g R)(g g)]

4E

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

+4 [2(Q K)(Q R)(R K)—R (Q K) —Q (R K) ]

+(Q.K)'(b. .R)'+(R K) (6 Q)' —2(Q K)(R K)(b, R)(h Q) j . (A28)
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