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Relativistic form factors for hadrons with quark-model wave functions
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The relationship between relativistic form factors and quark-potential-model wave functions is examined using an
improved version of an approach by Licht and Pagnamenta. Lorentz-contraction effects are expressed in terms of an
effective hadron mass which varies as the square root of the number of quark constituents, The effective mass is
calculated using the rest-frame wave functions from the mean-square momentum along the direction of the
momentum transfer. Applications with the parameter-free approach are made to the elastic form factors of the pion,
proton, and neutron using a Hamiltonian which simultaneously describes mesons and baryons. A comparison of the
calculated radii for pions and kaons suggests that the measured kaon radius should be slightly smaller than the
corresponding pion radius. The large negative squared charge radius for the neutron is partially explained via the
quark model but a full description requires the inclusion of a small component of a pion "cloud" configuration. The
problematic connection between the sizes of hadrons deduced from form factors and the "measured** values of
average transverse momenta is reconciled in the present model.

I. INTRODUCTION

For a number of years simple quark potential
models' "have proven quite successful in describ-
ing the static properties of hadrons. Unfortunate-
ly, there is as yet no definitive way to use the
model wave functions to describe dynamical prop-
erties such as those contained in the electromag-
netic form factors of pions, protons, and neutrons.
Although static properties of light hadrons are
quite well described in their rest frames by non-
relativistic wave functions, ' "or more realisti-
cally by pseudorelativistic wave functions, "the
electromagnetic form factors derived from them
cannot be compared directly to data. For a com-
pletely satisfactory description of the data up to
moderate momentum transfer (q) one would re-
quire a full-fledged relativistic theory of multi-
particle systems. Such a theory appears to be
currently intractable and for the foreseeable future
there is probably no viable alternative to a basical-
ly three-dimensional approach with noncovariant
wave functions. Nevertheless, one must give a
relativistic meaning, however limited, to such a
wave function before it can be used in calculations
of nonstatic properties. Since the external kine-
matics of the system can be treated in a relativis-
tically invariant manner it is the internal model
wave function which requires a tractable scheme
of relativization.

Several schemes" ' for boosting model wave
functions to relativistic velocities have been pro-
posed. Basically these suggestions allow for the
Lorentz contractions which occur when the compo-
site systems are in motion. However, the pre-
scriptions proposed to date have all differed. It is
the purpose of this work to find a reasonable and
parameter-free prescription which can be consis-

tently tested using model wave functions calculated
from a Hamiltonian that is the same for mesons
and baryons. The Hamiltonian and the wave func-
tions derived from it for the systems of interest
are discussed in Sec. II.

The relativistic "boost" pr escription adopted
here is based on the I icht and Pagnamenta ap-
proach" but modified in a manner similar to the
suggestions of Mitra and Kumari" so that the re-
sulting form factors scale correctly"" at large
q'. Our particular prescription is discussed in
Sec. III and involves an effective cluster "boost
mass" which can be calculated directly from the
model wave functions. The use here of an effec-
tive cluster mass M which varies as v~~ for an n-
particle cluster is in keeping with the earlier pro-
posals by Brodsky and Chertok. '

Comparisons of our calculations with the avail-
able electromagnetic data on the pion, kaon, pro-
ton, and neutron are given in Sec. IV and provide
an accurate description of the data. The present
prescription suggests the interesting result that
the measured kaon charge radius shouM be small-
er in magnitude than the measured pion charge
radius even though their "rest-frame" radii behave
in just the opposite manner. It also gives some in-
sight into the negative mean squared charge radius
of the neutron and reconciles the "observed" sizes
of hadrons with the "measured" values of the aver-
age transverse momentum squared (p, ') of quarks
in a hadron.

II. MODEL WAVE FUNCTIONS AND FORM FACTORS

In the rest frame of a given composite system
of n quarks we have found a nonperturbative quark
model which yields a reasonably accurate descrip-
tj.on of both qq mesons and q baryons. The Ham-
iltonian for particles of mass m, and momentum
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p$ 1s

H= Q (p( +mq ) ~ + Q Fq' F~v(~

with the constraint P,.p,. = 0. The interaction v, &

involves several components:

v,.& = (Van) + VLa + (V„) (2)

(4)

in which X~ is a total spin state with eigenvalue S
constructed from the quark and antiquark Pauli
spins. The total angular momentum (&) is con-
structed by vector coupling the spin state g~ to the
orbital state represented by a spherical harmonic
1'~(r). All the dynamics are in the radial solutions

U~zd (r) which are conveniently transformed into a
harmonic-oscillator basis via the expansion

(5)

Eigenvectors and eigenvalues are obtained for each
S, 8, and parity m = (-)~" using a standard diagon-
alization procedure. For the pion and kaon con-
sidered in the next section J'=0 and S=0 so that
I =0 is also required. Elastic rest-frame form

in which the long-range (LR} component is a linear
confinement potential and the short-range (SR)
component is associated with a one-gluon-exchange
potential with strong spin-spin interactions. The
term t/'„applies only to qq interactions and allows
for their mutual annihilation into two or three glu-
ons. Details are given in Ref. 1.

Although the above Hamiltonian uses relativistic
kinematics and effective quark sizes, the use of
Pauli spin for each quark yields eigenvectors
which are not invariant under Lorentz transforma-
tions on the center of momentum. The solutions
are therefore limited to situations wherein the
system is in its own rest frame. Form factors
can be derived directly from such wave functions,
e.g. , the elastic charge form factor for a charged
system of point quarks:

n

&„p(q') = — g*(r) Q e, e"' g((r)d7, (3)

in which Z is the total charge, e,. and r,. are the
charge and position vector of the ith quark, and

(v) is the model eigenvector solution with eigen-
value o'. and with v collectively denoting all intern-
al coordinates. We refer to the above as a rest-
frame (RF) form factor rather than a nonrelativis-
tic form factor because we have included relativis-
tic corrections in our basic Hamiltonian.

For qq mesons only one separation vector r is
involved and solutions are obtained using

factors are then constructed using

U„(d*)=g ' fdrrU;, ",(r)

p pal/3~ 1/3
i (6)

being given in terms of the scaled coupling con-
stant A defined in Ref. 1 and a constant P =1.659
GeV' '. The use of a finite-size quark is essential
to the success of the nonperturbative approach
adopted here"" and to our knowledge was first
used by Kang and Sucher. '

For the charged pions we have q,.=q/2, Z,e,. =+1
and f, (q') is independent of i The. mean square
radius defined by

E„(q ) =1 —(r )„q'/6+O(q )

yields, for m',

(r )„r-- ,' f drr' ~U'„,(r) ~*+ 6f!, —

with the last term arising from the quark finite
size (P, —=P,. for the pion). As indicated in our
earlier work' the model value of (r')»'~' obtained
for pions is 0.425 fm which is significantly small-
er than the measured values" 0.52 ~ (r)'I ' ~ 0.&9

fm. A corresponding discrepancy occurs in the
form factor and as we shall see can be satisfactor-
ily explained only when the effects of Lorentz con-
tractions associated with the moving frame are in-
cluded in the form factor of the qq system.

In the case of the kaon system we have m„=m„
=0.24 GeV, m, =0.46 GeV, and

(r')„=0327fdrr ~U (r)~' +46„'+23, ',
(11)

which involves different coefficients from the pion
due to the unequal masses of the quarks. We note
that the value calculated in the rest frame

(r)aF'~'=0. 444 fm

is a little larger than the corresponding pion value
as indeed one might expect due to the smaller po-
tential "binding" effects in the kaon. Transforming
to a moving frame inverts the above result as indi-
cated in Sec. IV.

For baryons the model calculations are consid-

& sin(q, .r) U„,(r)f,.(q') (6)

in which q,. =Q», m&q/Z, .m,. is the appropriate mo-
mentum transfer associated with each quark.

The extra factor f, (q') corresponds in our model
to the use of quarks with an effective size' given
by a Yukawa distribution, i.e.,

f, (q')=(1+P, 'q') '

with
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The coefficients in Eq. (12) are the orbital coeffi-
cients of fractional parentage which allow us to use
a convenient basis set wherein the particle labeled
3 is distinguished from the other two. We have
also vector coupled the orbital angular momenta
l, l„ to make the total orbital angular momentum

L with projection M~. For the nucleon we only use
L =0. The label y is used to distinguish between
degenerate states with the same quantum numbers
which are linearly independent. We assume the
basis is chosen to be orthonormal.

A completely symmetric basis state with definite
total angular momentum J, isospin T, and hyper-
charge F is constructed using appropriate products
of SU(6) flavor and O(3) orbital states:

([3])= Q [x,([f]) '4 (p, x, [fJ y)1

(13)

where for the nucleon T=2, K=+1. In this case if
f=3 we have

X»"1/ "1 rz([3])= (X.'X,'+X".X", ) (14)

with

Xe [X12( 12) X3( 2)]l/2 Z

and

Xt = [X12 (T12) X3( 2)]1/2 Tz (16)

given in terms of "parent" states of definite total
spin (isospin) values S» (T») for particles one and

erably more complicated. For three quarks we
must have overall antisymmetry in the total space
which includes color, flavor, Pauli spin, and or-
bital subspaces. Since we require a color singlet
for physical baryons and for three quarks this can
only be achieved by an antisymmetric color state
(Young tableau [1']) the remaining subspaces must
be constructed with overall symmetry [3]. The re-
maining subspaces are then described using a six-
dimensional oscillator representation in the coor-
dinates p, A. which are given in terms of quark
position vectors by

p = (2)'/'(r, —r,), X= (—,')'/'[r, +r2 —2r,].
Appropriate orbital states with definite permuta-

tion symmetries (denoted by [f]) are constructed
using the methods of Moshinsky and collaborators"
which yield, for a total oscillator quanta N = 2n,
+ l, + 2n~+l~,

4'zz„(p, X, [f)y) = g a(n, l, n„l„,NL[f ]y)
n l n)tl)t

&&[ft„, (p)~„, (x)],„.

two which are symmetric (S) or antisymmetric (A)
in particles 1 and 2 as S» (T») =1 or S» (T») = 0,
respectively. Similar parentage representations
occur for the other symmetry states ([21]and
[1']) and again we have a convenient basis in which
particle 3 is distinguished from the other pair.

In the three-quark baryon the above parentage
representations are convenient because they great-
ly facilitate the evaluation of matrix elements of
one- or two-body operators. In particular, elec-
tric and magnetic operators given by

(1Va)

g = 3e,e"'3,
BR= 3p,3z

(16a)

which only act on the "last" particle. Matrix ele-
ments of 8 and W are thereby reduced to one-body
integrals since the dependence on r„r2, - etc., can.
be integrated out using orthonormality in the (12)
subspac es.

For the nucleon we have only u and d quarks in-
volved which have fractional charges e„=+3, e~
= -3, respectively. If the quarks are Dirac point
particles then we expect g„=g„=~/nt, g, =~/m„
where M is the physical proton mass and m =m„
=~„,m, are the rest masses of each quark. Owing
to our approximate treatment' wherein small"
components of the relativistic spinors are elimi-
nated in favor of finite-size quarks we should ex-
pect I, to be replaced by an effective g value given
by

gett ~/n ett

in which m', "is an effective quark mass. We in-
troduce such a concept (rather than simply using
an anomalous magnetic moment for quarks) be-
cause it appears that an effective mass m', "can be
calculated from the rest-frame Hamilton'. an.
Moreover, the same effective mass is needed in
the boost prescription described in the next sec-
tion.

Actual rest-frame baryon states g (r) are ob-
tained using linear combinations of the states de-
fined by Eq. (13) which diagonalize the baryon
Hamiltonian. As discussed elsewhere' our baryon
Hamiltonian is directly related to the meson Ham-
iltonian except for V„becoming zero for baryons.
For numerical simplicity we have also neglected
spin-orbit and tensor interactions in the baryon
calculations. In this work we also neglect the pa-

(1Vb)
gg= p qz

e"'~

with p, « =g, e, cr, z being the appropriate magnetic-
moment operator in nuclear magnetons, can be
written for identical particles as
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rametrized three-body effects considered in the
earlier work. ' In any event such effects are quite
small and will not alter the major results obtained
here. Rest-frame form factors for nucleons are
then calculated from Eq. (3) for the electric form
factor and from an analogous equation (but with

p, ,e in place of e,) for the magnetic form factor.

III. FORM FACTORS FOR MOVING FRAMES

y„'(f r,})= y„((r',}), (20)

where g„ is the probability amplitude for a moving
observer and g„ is the wave function in the rest
frame. The internal coordinates r, and r,. in the
respective frames are connected by Lorentz trans-
formations. In particular, for elastic scattering
EA=E~ and for the z axis chosen along p one ob-
tains the following relationships for the internal
coordinates:

0 0 'A z0S' ] -3' ] ~
z ) — z c ~ (21)

The z and y directions are not affected by the
boost and the z direction is contracted in the Breit
frame by the inverse boost factor:

—(1 + 2/4 M 2)-l/ 2 (22)

Here we interpret M„as the effective mass of
the composite system A. and assume that it obeys
a relativistic mass relation with respect to its
constituents:

We begin by recalling the essential assumptions
of Licht and Pagnamenta" in making a transition
from a rest-frame noncovariant matrix element to
a relativistic matrix element in the Breit frame.
The major assumption is that the interaction caus-
ing a transition from a given composite state ~&)
with four-momentum p to another composite state
~B) with four-momentum p' can be regarded as in-
stantaneous in the Breit frame [wherein p = (E„,p),
p' = (Es, -p), and q = (Es —E„,-2p) is the four-vec-
tor of momentum transfer]. A second assumption
is that a given matter distribution can be described
in each frame by a probability amplitude which is
a function of three vectors only, i.e., t=O, corre-
sponding to a single time formalism. If we place
an observer in each frame then they see the same
distribution but each would describe it in their
frame coordinates. Licht and Pagnamenta identify

(24)

In adopting Eq. (24) or a modified version of it
(see below) we deviate from I icht and Pagnamen-
ta" according to the suggestions of Mitra and Ku-
mari, "which correspond to the use of the factor
(M„/E„)~ ' rather than (M„/E„)" '. The impor-
tance of using such a factor is that asymptotically
Eq. (24) becomes

2 n-1
ERF(4~~'),

q
(25)

which obeys the asymptotic q
""" power laws ex-

pected from field-theory considerations" as well
as from experiment. ""

The replacement of q' by (M„/E„)'q' in the arg-
ument of F»(q2) is a direct result of the coordi-
nate relationship Eq. (21) being used to relate the
Breit-frame form factor to the rest-frame form
factor. The multiplicative factor (M„/E„)'" ' rep-
resents the Jacobian of the integration-volume
transformation between the two frames according
to the prescription of Mitra and Kumari. As
pointed out by previous workers"" these integra-
tion volume factors are needed because in the
Breit frame the overlap integrals are less (due to
the contraction in the Z direction) than in the rest
frame. It is very important to note that the mean
square radius is increased by these factors, i.e.,

cluster 4 would be appropriate if the multiquark
system behaved as a rigid body so that a momen-
tum transf er imparted to a given constituent auto-
matically is imparted to the entire cluster. How-
ever, the potential model considered here does not
yield a rigid system and it seems more appropri-
ate to regard each quark as having an effective
mass m'ff which is primarily due to the total in-
ternal momentum of the quark in the direction q.
The momentum imparted to a quark with effective
mass m"' is then regarded as being transmitted
to a cluster with effective mass ~A given by the
relativistic sum over the internal momentum given
by Eq. (23). The only important question remain-
ing within the framework of such an approach is
whether MA can be calculated from the rest-frame
states or not.

Presuming for the moment that ~A can be found,
then elastic form factors could be generated from
the rest-frame form factors of Sec. II using the
simple substitution law"

2 ~egg 2 jeff 2

for identical-mass quarks. This type of relation-
ship has been suggested by Brodsky and Chertok"
and appears to be more appealing than using the
physical cluster mass. The physical mass of

3(n —1)(&)=«)aF+
A

involves an extra term added to the rest-frame
value which depends upon the effective cluster
mass MA.

(26)
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with m, being the mass used in the rest-frame
Hamiltonian of Eq. (1).

With the operator form [Eq. (28)j for M„we can
no longer assume that the Jacobian factors in Eq.
(24) can be trivially factored from the matrix ele-
ments giving the rest-frame form factors. For
qq and q' systems we will be dealing with a typical
spatial matrix element

3[t»» (e') =(+»ale"' I&'o) (so)

by the substitution (we suppress the L index on the
states since I =0 is used)

« ezp[iq' r„(1+q'lqM„') ' 4„)

q
2 n-j.

RF1+ +»" sit»» (f ~

N" 4M~

(s1)

Equation (3],) leads to Eq. (24) only if M„ is put
equal to M„(=constant} because then the term (1

We now consider the evaluation of M„ for the
systems of interest. To achieve a reasonable def-
inition of M„we need to improve the earlier form-
ulations. In general the substitution law proposed
by Licht and Pagnamenta implies a "rigid" system
whereby M„=physical cluster mass, which im-
plies the internal motion of quarks is small. Since
in present quark models of light hadrons the in-
ternal momenta of quarks are large compared to
the rest mass it is more realistic to allow M„ to
be a mass operator which depends upon the n —1
internal momenta of the quarks, i.e.,

M„-M„(p23 p~, . . . , p„), (27)

wherein p, = -g", ,p, is the rest-frame constraint.
In changing from the rest frame to a moving

frame in the direction of p= ~ q we suggest the
effective mass associated with such a one-dimen-
sional transformation be related by a correspond-
ing relativistic mass increase

P n ~y/g
M„= M„(o)+p p, '/~ (28)

fal

wherein p„=p,. q is the momentum of the ith quark
in the direction of the momentum transfer or boost
direction. Since the virtual photon operates on a
single quark at a time we use the internal momen-
tum squared contributed by just one quark. This
is achieved in Eq. (28) by calculating the total
Q",.,p„' and dividing by the number of quarks.
The rest mass M„(0) is given by

M„(O)=g m,.' (29)

in which (p, ,') is the expectation value of p„' for
the rest-frame state of the system. For equal-
mass constituents we can find m„"' from

efgm~ =
~n

(s5)

Clearly the above treatment of effective masses
can be refined by allowing the masses in Eqs.
(32)-(34) to become basis-state dependent. Such
refinements are probably beyond the scope of the
present treatment and as indicated in Sec. IV they
only have small effects on the calculations of in-
terest here.

IV. RESULTS

A. P~o~ form fac

The pion form factor calculated from Eqs. (24)
and (8} with M, '= 2(m,"')'=0.407 GeV' is in rea-
sonable agreement with the photoproduction data"
(full curve of Fig. 1). The dashed curve is the
rest-frame form factor with no boost included
(M,'-=~), and as expected it is not a good descrip-
tion. of the data. The wave function 4, used to cal-
culate (p„') is the calculated eigenvector of the
Hamiltonian used to fit the entire meson spectrum
in our earlier work. ~ The value of (p„) is 0.292
GeV' which in turn yields the value of M,' from
Eq. (34) with M, '(0) =2m„'=2m~'=0. 115 GeV'. The
value of m„"' for the pion is 0.451 GeV which is
almost two times the rest mass m used in the
Hamiltonian.

We also investigated the possibility of using oth-
er boost prescriptions than that described in Sec.
III. All attempts using a physical pion mass m,

+q'/4M„')" ' factors out and we obtain only the
term N" =N due to orthogonality of the orbital
basis used.

In our applications in Sec. IV we assume diagon-
al matrix elements are given by

lm
4 1+, [ 4„) =(1+q'l4M ')' ", (32)

and off-diagonal elements (n =3 only) by

2

(21'»„~ (1+42['/4M„)
~

214») =~ 3 (1+cq /4M„)
A

(33)

in which c'=2 preserves the q~ scaling at large q~

and the leading term is correct for small q'. Such
off-diagonal terms occur only in the baryon case
due to the inclusion in our baryon basis of different
orbital symmetries. The mass M„ is calculated
from Eq. (28) using

n'
w y/g

M„= tM„(0)+ Q (p, ')/n (34)
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IO0

F„(q )

IP-I

G„(q') corresponding to the electric and magnetic
form factors, respectively. The best rest-frame
wave function of the nucleon is obtained by diagon-
alization of the three-quark Hamiltonian using up
to N =16 quanta. For our purposes here we have
used a simpler rest-frame solution which contains
the important ingredients of the more exact solu-
tion. This simpler wave function has the following
linear combination of its components:

4 (123)=a,@,+a,4, , (38)
IO

4 5 6
q (Ge'I/' /c j where omitting the overall color-singlet function

FIG. 1. Pion form factor ealeulated in the rest frame
(dashed line) and moving frame (solid line). The data
are from Ref. 18.

+,= R„(p)R„(&)Xl/2 1/2 ~ 1 Tg([3]) (s9)

=MA yield far too rapid a falloff at large q'. The
inclusion of vector-meson. propagators as used by
Licht and Pagnamenta leads to an even faster fall-
off.

B. Pion and kaon radii

and

+2 R21(p)R»(X) xl/2, 1/2 lyrg([21 —]) l (40)

42 = 2-'[R»(p) Rlo(&) R„(p) R«(X)] X,/2. ./2. .,Tz ([21+])

Using the wave functions of Ref. 1 we can easily
calculate the root-mean-square radius for the
charge distributions of the m and E mesons from
Eq. (26) and the calculated values of M, ' and Mr2.
We find (r')r'/' is a little smalle2. than (2 2),'/2,

l.e.)

(r ),'/ =0.569 fm,

(t' )2.'/'=0. 561 fm,
(s6)

C. Nucleon form factors

In the nucleon we are involved with two electro-
magnetic form factors denoted by Gz(q ) and

wherein we use ~,'= 0.407 GeV', Mz'= 0.497 GeV',
and (r')» taken from Egs. (10) and (11). These
results are to be compared with the experimental
values measured in m -e, E-e experiments' ' "

(2.2),'/2 = 0.56 + 0.04 fm, (37)
(z')~'/'=0. 53+0.05 fm,

which suggests that (2')~'/'& (r'), '/' is possibly
true. A more accurate determination of this re-
sult would be very useful as a test of the present
ideology. It is the larger effective mass of the
kaon which causes the moving-frame value for the
kaon charge radius to be less than the pion value
despite the fact that the opposite result holds in
their rest frame. Assuming m„'" is the same for
the pion and kaon allows us to extract a value for
m," in the kaon. We find m,'~'= 0.542 GeV which
is significantly larger than the rest mass m,
= 0.460 GeV used in the Hamiltonian.

and the R„(r) are the three-dimensional oscillator
solutions" with R«(p) being of the form e ""/'.
The spin-flavor solutions X2TTT ([f]) are con-
structed with definite permutation symmetry. The
fully symmetric state [3] was discussed above.
The other two of interest here are given by

A A
Xl/2~1/2y1 T2([ I]) (X2 Xl X~ Xl. ) l

2 (41)

Xl 2/yl 2/yl IgT([21 ]) (Xg Xl + Xg Xl )
2

The component 4', is the conventional space sym-
metry wave function used by early workers which
assigns the proton to the symmetric 56 spin-flavor
multiplet. Owing to our strong spin-spin interac-
tions we have allowed for the admixture of the or-
bital mixed symmetry states in 4. The coeffi-
cients a, and a, are chosen to represent the sign
and magnitude of the overall mixing between the
[3] and [21+] symmetries calculated in the more
exact solution. The oscillator strength parameter
is chosen in our simpler solution so that it yields
a rest-frame radius which is the same as the ex-
act solution. With this type of simplified solution
we can use the boost prescriptions given by Eqs.
(30)-(35). Detailed results for the nucleon form
factors are given in the Appendix.

The values of (p,,') in E11. (34) for the proton
and neutron are obtained using the simple wave
function of Eq. (39) with a, =0.9878, a2= -0.1560,
and v =0.45 GeV'. This yields
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and

Q (p), )/3=0.152 GeV,
gag

M =—M = 0.32' Geg,

m'«= 0.329 GeV.

(42)

10

10

Rest-frame form factors are calculated for the
electric and magnetic operators [Eqs. (17)-(19)]
using the wave functions of Egs. (38)-(40) with the
(electric, magnetic) results being shown by the
dashed curves in Figs. 2 and 3 for protons and in
Figs. 4 and 5 for neutrons. Applying Eqs. (30)-
(35) as the modification to Eq. (24) for the moving-
frame form factors we obtain the full curves shown
in Figs. 2-5. The effect of making the mass M~
state dependent was investigated. Only the neutron
electric form factors shows any sensitivity and
this arises because it is dominated by the N =0-N= 2 matrix element with a boost factor given
by Eq. (33).

All moving-frame nucleon form-factor calcula-
tions appear to provide a reasonably accurate de-
scription of the data" over a wide range of q'.
The rest-frame form factors are seen to be inade-
quate descriptions for all q' and at large q' the re-
sults are diverging exponentially from the data.
The magnetic form factors in the rest frame have
been normalized using experimental moments'
(i.e., for the proton p~ =2.79 and for the neutron
y.„=-1.91) rather than their calculated values
with g, = M/m, =M/(0. 24 GeV). The moving-frame
magnetic form factors on the other hand are norm-
alized according to their calculated magnetic mo-
ments using g, =M/m', "for each matrix element.
We obtained the values shown in Table I. These
values are in close agreement with the experi-
mental magnetic moments' whereas the calculated

IPO

102

10 10 15
2(G y2/ 2)

20 25

FIG. 3. The same as Fig. 2 except for the proton mag-
netic form factor.

rest-frame values with g, =~/(0. 24 GeV) are 40%
too large. Thus the effective-mass approach ap-
pears to provide a reliable estimate of the anoma-
lous magnetic moments of our quarks as well as a
boost mechanism for the form of the electromag-
netic form factors. The effective mass of a quark
in a nucleon is somewhat smaller than it is in a
pion.

At large q' the form of the q' dependence is
dominated by the q scaling behavior, i.e.,

G~ „-Cs „/ (43)

wherein the constants depend upon the fourth pow-
er of the boost mass as well as the value of the
rest-frame form factor at q'=4M~'. In view of the
sensitivity of C~ z to the value of M& it is gratify-
ing to find that the present prescription yields a
reasonable result. For baryons (as for pions) the
use of a physical nucleon mass for M„ leads to
moving-frame form factors which are inadequate
descriptions of the data particularly at large q'
where the falloff rate is too slow.
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FIG. 2. Proton electric form factor calculated in the
rest frame (dashed line) and moving frame (solid line).
The data are from Ref. 23.
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FIG. 4. The same as Fig. 2 except for the neutron
electric form factor.
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-IO larger changes in the neutron charge radius as
shown in Table I. Since these pion production cal-
culations are oversimplified we are satisfied to
note that the order-of-magnitude effects which
arise from such sources are not unreasonable.
A more detailed investigation of the role of more
complicated configurations is now in progress and
will be reported on at a later time. In the case of
baryons we also need to include spin-orbit and
tensor interactions, at which point a more precise
comparison with data will be appropriate.

-IO

GM«')

-ioo

-io' I

8
I I

4
q (Gev /c )

V. SUMMARY

The prescription adopted here allows the rest-
frame wave functions of quark models to be used
(without any new parameters being introduced) to
calculate moving-frame electromagnetic form fac-
tors. Using a pseudorelativistic Hamiltonian which
fits mesons and baryons, we find the boost pre-
scription to be remarkably successful in providing
accurate form factors for the pion, proton, and
neutron over a wide range of q'. The results given
here are limited to the case of elastic form fac-
tors. Extension of the present approach to inelas-
tic form factors should be feasible using analogous
extensions to the suggestions of Mitra and Kumari.
hnprovements of the present approach will involve
the use of more complicated configurations than
the simple "primitive" configurations adopted
here. However, it is clear that massive amounts
of meson clouds around nucleons are not needed
in the rest-frame wave functions. Small amounts
of wN and v6 configurations are expected (&5% in
magnitude) and appear to be necessary to provide
a complete explanation of the neutron charge radi-

us'~

In concluding we note two other points of current
interest. The first is the apparent discrepancy
between the size of a hadron observed in electron
scattering ( 0.8 fm) and the average transverse

FIG. 5. The same as Fig. 2 except for the neutron
magnetic form factor.

D. Proton and neutron radii

Results for the calculated squared charge radii
for both nucleons are compared with the measured
values' " in Table I. The results for the moving
frame are significantly larger than the rest-frame
results. These large increases arise because of
the boost terms such as those shown in Eg. (26)
and are needed to provide radii similar to the ex-
perimental values. This is particularly true in
the case of the neutron charge radius where the
off-diagonal term of Eg. (36) yields a boost term
in (r'), h of -1.41 GeV ' (-0.055 fm').

Additional corrections to the radii are expected
because we are only calculating results using
primitive" configurations (q'). The most im-

portant configurations which need to be studied
are (q') (qq) wherein the (qq) as a virtual pion is
expected to be dominant at large radii. A simple
but naive "cutoff" calculation of the self-energy
of a pion "cloud" which yields the correct nucleon
mass and the correct one-pion-exchange tail yields
small percentage changes in the proton radius but

TABLE I. Proton and neutron charge radii and magnetic moments.

Moving frame
including virtual

plons ExperimentMoving frameBest frame

(y~') (fm')
(~„') ~fm')

p& (eS/2M&c)
p„(eS/2M&c)

0.648 + 0.018
-0.116 + 0.002

2.793
—1.913

0.247
-0.011

2.79
-1.91

0.631
-0.066

2.807
-1.867

0.646
-0.097

2.824
-1.885

~Best-frame magnetic
is is the more commonly accepted value from Ref. 25. Note that Borkowski et al. (Bef.

2S) determined a.much larger value, (r& ) =0. 77+0. 05 fm, from their low-q data.
'Beference 23.

Reference 24.
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momentum squared derived" from large-mass
lepton-pair production in proton-proton or proton-
nucleus collisions. " According to our present ap-
proach the size of a hadron observed in electron
scattering is enhanced because of the Lorentz fac-
tors in the longitudinal components. Calculating
the average transverse momenta squared (p, ') for
our model Hamiltonian we obtain the values (all in
GeV') of 0.584, 0.456, and 0.304 for the pion,
kaon, and nucleon, respectively. These values
appear to be in good agreement with those derived
from experiment. %e also note that the contribu-
tion to (r') for the matter distribution of nucleons
arising from just the relative motion of quarks in
the rest frame is 2.51 GeV ', corresponding to
(r')'/2= 0.31 fm from this source. It is the finite
quark size and boost mechanism which leads to the
observed radius of 0.8 fm. Such a small intrinsic
size is what is needed to provide large enough
transverse momenta within hadrons.

The second point of interest is the importance of
moving-frame considerations for hadron-hadron
interactions. In particular, attempts"" to derive
the nucleon-nucleon interaction from quark models
will have to be improved because the quark-ex-
change mechanism involves moving frames. At-
tempts to calculate nucleon-nucleon interactions
including such effects are now under investigation
by us and preliminary results show that moving-
frame effects are important. Details of this latter
work will be reported upon in the near future.
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APPENDIX

For completeness we give algebraic forms for
the nucleon form factors arrived at using the wave
function given by Eqs. (38) and (39). The form fac-
tors are given by

Gn ( 2) a a [noP02+ 1nl(POO+P22)]

GP( 2) a 2[nop00+ nlP02]+ la 2nopP

la 2[nlP02+ ln0(POO+P22)]

Gn (q2) N~ {a 2[nOPOO~ nlP02] a 2nOP2~oft

QP (q2) N (a 2[nop00+nlP02] la 2nOPP
M

+~g & ~1 OR+&~0 00+ 22

+a,a, [n'p,'*+ ,'n'(p,"-+p,-)])
In these equations the Jacobian terms are given by

n'= (1+q2/4M„2),
2

, (1+cq'/4M„') ',
A

with c'= 2 as given by Eqs. (32) and (34). In terms
of the effective momentum transfer

q,
' = q'/(1 +q'/4M„'),

the internal-form-factor terms are given by

p00 -6 2/6vf ( 2)

2
p02 (2)1/2qp e-6 2/6vf (q 2)

V

2 ' 4
p.-" /'"f (q ')

3 Q 54 2 3

n';
(&

—- '
)& """f—(q ')

where the effective-size form factor as given by
Eq. (/) is

f,(q, ') =(1+P, 'q, ') '.
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