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Decays of weak vector bosons and t quarks into doubly charged Higgs scalars
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%'e evaluate the decays of 8'+ and Z bosons into g++, the doubly charged member
of the scalar triplet in the Gelmini-Roncadelli model in which spontaneously broken
8 —L symmetry gives Majorana masses to neutrinos. For M(P++) &28 GeV, the
branching fractions exceed 4% for 8'+ —+++++ and 2% for Z ~++++ . Sequential
p++~l l+l2+ leptonic decays could be substantially higher than previously recognized and
could be dominant. Decay distributions for leptons of this origin are calculated for pp
colliders. We also evaluate t~b+++P decay.

A possible origin of Majorana neutrino mass is
the spontaneous breakdown of 8 —I. global sym-
metry in the standard SU(2) && U(1) gauge model, as
proposed recently by Gelmini and Roncadelli'
(GR). This breakdown occurs via a Higgs scalar
triplet whose neutral member acquires a vacuum
expectation value vT much smaller than that of the
usual Higgs doublet va. In this model the physical
scalars and their masses are as follows': 7++ of
mass M ( & 15 GeV from e+e experiments), X+
of mass M/v 2, a hght X of mass m -v7 & 100
keV, a massless Nambu-Goldstone boson M, and
the usual Higgs scalar H of the standard model.
The 8'+- and Z have gauge couplings to bilinear
combinations of the new scalars, which may there-
fore appear as decay products. The new heavy
scalars themselves decay either by gauge couplings
or by their Yukawa couplings to leptons. For dou-

bly charged scalars, these lepton couplings provide
spectacular signatures for detection if the branch-

ing fractions are large enough. In calculating
branching fractions for the intial stages

8'+ —+7++7 or Z ~7++7, the only uncer-
tainty is the value of M. In the sequential decay
7++—+I

& lz, the branching fraction depends criti-
cally on the Yukawa coupling strengths to leptons,
for which some upper limits are known.

In the present work we evaluate branching frac-
tions for these two decay stages as functions of M
and the Yukawa coupling to leptons. %e find that
the 8'+~+++7 and Z ~7++7 modes are
of order several percent for a substantial allowed
range of M; the sequential 7++~1+~1+2 branching
fractions are larger than previously recognized, and

e readily measurable e+e+ p+p+ and e+p+
4

modes could give as much as —, of X++ decays
within present coupling limits. Finally, we calcu-
late some useful distributions of leptons from the
W(Z)~X++~l

& lz decay chain, for 8' and Z
produced at a pp collider with v s =2 TeV. We
also evaluate the widths for t~bX++X decay.

The gauge couplings of 8' and Z to the new
scalars of the GR model' are given by the Lagran-
gian

[(1—2x )X--a„X+++& X-a„X+—iX'a„M']Z„
coso gr

—ig[X+B„X +(2) 'r'(X —tM )B„X ]W„+,
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where g =4~2GFM~ and xa ——sin Hs. Beside
the standard model decay modes, new scalars give
rise to 8'+~7++7, 7+7, 7+M, and
Z —+7++7,7+1,7 M decays. The branch-
ing fractions for these new modes have been given
in Ref. 2 in the limit of light M only. We calcu-
late these branching fractions without approxima-
tion as functions of M, taking Mz ——92 GeV,
M~ ——82 GeV, sin 0~ ——0.21 and the usual three
generations of fermions (with t-quark mass of 20
GeV). The partial widths into X states are

r(W+~X++X )=I ~(1—3w +w /4) ~

r( w+ x+M') =r( w+ x+x')
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=-, I s(1—w /2)
(2)

r(Z X++X )=roz(1 —2x ) (1—4z )
~

I (Z~X+X ) =I zxw (1—2z )

r(z M'x') =r', ,

~here

r' /M '=r', /M, '=(6~)-'(G /~2)

and

Qgl!'[ l ( 1+75)l x
2 2

+l'(1 —yg)l'X ], (3)

w =M/Mw z =M/Mz
The results for branching fractions are shown in

Fig. 1; the phase-space suppression as M increases
is evident. Nevertheless, the branching fractions to
X++ are high enough to be interesting over a con-
siderable range of M, especially for M &28 GeV
for which 8(W+ —+X++X ) &4%%uo and
8(Z~X++X ) &2%.

The Yukawa couplings of the doubly charged
Higgs boson to leptons are given by

0
0
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FIG. 1. Predicted branching fractions for 8',Z de-

cays to scalars in the GR model is shown versus the
g++ mass M.

where superscript c denotes the charge-conjugate
lepton field. In Feynrnan amplitudes a combina-
torial factor of 2 usually occurs at the X++ vertex
with two leptons.

The P++ decays proceed partly by gauge cou-

plings through a virtual W boson X++—+X+(qq)+,
7+I+v, and partly by Yukawa couplings to leptons
X++~l+1'+. The branching fractions have been
estimated in Ref. 2, but their quoted width for
X++~X+J+ omits the very important effect of
the X+ mass on the phase space integral. The par-
tial width for a typical decay mode of the latter
kind is

r(X++ X+1+v)=(24m. ) 'G M' I ( —,—3x+x ) dx

=(24m ) 'Gp M (3/64)(161n2 —11)

=-5.7)&10 GF M (4)

neglecting lepton masses; the quark channels
J++—+7+ud and g++~J+cs each have about
three times this width. The variable x in Eq. (4) is
the invariant mass squared of the two fermions in

units of M2; the upper limit of x integration exhi-

bits the suppression of phase space by the X+
mass. The partial widths for pure leptonic modes

are given by
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I (X++~e+e+)=g„M/(16m), .

I (X++~e+p, +
) =g,q M/(Sn ),

I (X+ e+v)=(g )«M/(16M 2m)

with analogous results for other modes, neglecting
mI /M . Here g denotes the square of the matrix
g, so that (g )„=pi(g,~) .

The present upper limits on lepton couplings are

g„&10 3 (Ref. 2) or &10 (Ref. 5) PP decay,

g&„&[(g )&z]'~ &1.6)&10 (Ref. 3) K~p decay,

g„,&[(g )«]'~ &7X10 (Ref. 3) K~lv universality,

(6a)

(6b)

(6c)

and

"
& 4GF[B(p~eee )]'~ & 2 )& 10 GeV (6d)

&4GF[B(r~eee)/B(r~ev, v, )] &2X 10 GeV
M

(6e)

In the latter two entries a difference in the y ma-
trix traces of p~eee and p~evV and a combina-
torial factor in p~eee are taken into account. The
experimental branching-fraction limits

B(p~eee) & 1.9X10

and

B(r~eee ) & 4 X 10

have been used. For g,&
——g« ——10,Eq. (6d) re-

quires M &22 GeV.

If all couplings were approximately equal, two
of the three neutrino masses would be nearly zero.
With this coupling assumption the readily measur-
able e+e+, e+p+, and p+p+ modes together con-
tribute —, of the leptonic width; the branching frac-
tion for these combined modes is shown versus M
in Fig. 2 for the cases ga'=10 gII'=10, and

gII ——10 . The two-body leptonic modes are dom-
inant for M ~ 70 GeV with gg ——10

The quark subprocess cross sections for the pro-
duction of the 7++ in pp collisions are given by

d&(tj Qj
~8'+~X+'+X )=(24m') GF~Mw

I Utj I
s

I
Pw

I

k (1,M /s, , M /s)sin'8—d8,

d&(q;q; Z, y X++X )=(96rt) 'GF Mz Ftl Pz
l

(1 —4M /s) ~ sin 8d8,
(7)

where ~a s —Ma +~MaI a ~s a weak-boson propagator factor, I ~-I z -3.2 GeV~ Uip is the quark mix-
ing matrix, and

F=(1 2xw) + l(1—»w)(1 —41e llaw)+v2 le le GF 'Mz ~Pz/s l' ~

In these formulas, 8 is the c.m. angle of the X++ with respect to the quark q; and e~ is the quark charge.
The cross section for J++ production in pp collisions is obtained by folding the above subprocess cross sec-
tions with the probability distributions of the constituents in the initial hadrons. Figure 3 shows distribu-
tions of p+ and p+p+ resulting from X++ production and leptonic decay in pp collisions at v s =2 TeV.
The transverse momentum of the p+p+ has a prominent peak at 3S GeV which offers a clear signature of
this process. The distribution in the azimuthal angle between the two p+ in the plane perpendicular to the
beam direction has a distinctive peak near SS'.

The t quark has a decay mode t~bX++X if the X++ mass M is less than (2—v 2)(m, —mb). The dif-
ferential decay probability for this mode is

dI /dQ = (96nm) 'G A,
' . (1 Q /m m /m )A,

' (1 a/Q —P/Q )

X j [(m, —mb ) +(m, +mb )Q —2Q ]A(1,a/Q, —,P/Q )/(1 —Q /Mw )

+3[(m, —mb ) —(m, +mb )Q ](a——,p) /Q
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FIG. 2. Combined branching fractions of the g++
into e+e+, p+e+, p+p+ versus the g++ mass M, as-
suming equal couplings gII. The cases g&I ——10 ', 10
and 10 are illustrated.
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where Q~ is the square of the four-momentum
transferred to X++X by the W boson, and
a=p=M . The corresponding decay rate for the
summed modes t~bX+M and t~bX+X can be
obtained with a= —,M and p=0 in Eq. (8). Fig-
ure 4 shows the predicted branching fraction
versus the 7++ mass.

Other effects of the GR scalar bosons are ad-
dressed briefly below:

(i) Neutral current to c-harged c-ur-rent rati-o in
neutrino scattering Transition. s of weak bosons to
scalars give one-loop radiative corrections to 8' Z
masses. Using the formalism of Ref. 7, the devia-
tion from unity of p=NC/CC is

hp=G~M (1—ln2)/(v 2H) .

At the one-standard-deviation level of the experi-
mental value p=1.00+0.02, the bound on the
mass of X++ is M & 280 GeV.

(ii) Anomalous magnetic moment of muon. The
contribution of GR scalar bosons to a =(g —2)&
1s

a = —5(g )~qmq /(48&M ) .

The limit'

a,„z,—a&ED g —18&10—9

on the difference of QED and experimental values
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FIG. 3. Distributions in pp collisions at v s =2 TeV
of muons from p++ production and leptonic decay. (a)
Transverse momentum of p+ and p+p+. (b) Azimuthal
angle between the two p+ in the transverse plane. The
case M =20 GeV and g~I ——10 is illustrated.

to=g„g»(m, a )/(nM) . .

For g« ——
g&&

——10, the experimental limit'
co & 83 kHz only requires that M & 0.04 GeV.

(iv) Narrow X resonance in e e ~l 1

The total width of X is

I (keV) = 0.4(M/20)g(g; /10 ')

+0.022(M/20)',

where M is in GeV units. Taking all gii equal to
10, the width is only 3.6 keV if M is 20 GeV.
The integrated cross section over the 7 reso-

only requires that M & 0.14 GeV for grt =10, for
all /, I'.

(iii) Muonium (p+e ) antimuon—ium (p e+)
transition. The angular frequency of muonium-
antimuonium transitions" due to the g++ is
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FIG. 4. Predicted branching fraction for the t-quark
decay mode t ~bP++P versus the P++ mass.

For M =20 GeV and all gII ——10, d s cr=15
MeV-nb when summed over all l I' channels.
The cross section is about 10 to 20 nb for 1 MeV
energy resolution.

(U) Correction to QED in e+e ~p+p from
7++ exchange. The modifications to cross section
are orders of magnitude below the weak contribu-
tion and are thus unobservable.
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