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Numerical studies of Wilson loops in SU(3) gauge theory in four dimensions
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Monte Carlo simulations are used to calculate Wilson loops for pure SU(3) gauge theory on a
6" lattice. Previous measurements of the scale parameter Ao are improved.

The gauge group SU(3) has been examined in
several recent Monte Carlo studies. ' In Ref. 1 for
instance most of the data were generated on 4' lat-
tices with one data point generated on a 64 lattice.
Since SU(3) is the gauge group of quantum chromo-
dynamics (QCD), it is reasonable to improve our
data sample and hence make a more accurate deter-
mination of the Ao scale parameter. In the present
paper, we report Monte Carlo simulations on a 6 lat-
tice at 57 values of the inverse temperature and
determine all Wilson loops up to size 3 x 3.

We work in a hypercubical lattice in four Euclidean
dimensions. 4 s On the link {jf) joining nearest-
neighbor lattice sites signified by i and j sits an N x N
unitary-unimodular matrix Ull of the group SU(N),
with the condition that

measure in the above integral is the SU(N) normal-
ized invariant Haar measure. The action S is defined
as the sum over all unoriented plaquettes 0 such that

S[U] = gS& = g l ——Re Tr Uo
1

a a N

Here Up is the parallel transporter around a pla-
quette. Periodic boundary conditions were used
throughout our calculations and the lattice was put in
equilibrium by the method of Metropolis et al.
From now on we specialize to N =3.

We define the rectangular Wilson loops' by the ex-
pectation value

W(I,J) = —, (Re Tr Uc)

We define our partition function by

Z(p) = J QdU;, exp( —pS[U])
Il,j)

t

where p is the inverse temperature given by p
=2N/gc' with go the bare coupling constant. The

where the I by Jclosed rectangular contour is denot-
ed by C and Ut- is the parallel transporter or product
of link variables around C. The leading-order high-
temperature expansion for the Wilson loop is

while the leading-order low-temperature expansion
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FIG. 1. The average action per plaquette (E) for pure SU(3) gauge theory on a 64 lattice as a function of the inverse tempera-
ture P. The curves represent the leading-order high- and low-temperature expansions of Eqs. (1) and (2), respectively.
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FIG. 2. The evolution of the average action per plaquette (El for pure SU(3) gauge theory on a 6~ lattice as a function of the
number of iterations through the lattice for mixed-phase starting lattices for various values of the inverse temperature P.

for the average action per plaquette is

(E) =1 —W(1, 1) =2jp+O(p ')

For asymptotically large Wilson loops we expect

W —exp( —A —K x area —C x perimeter)

averaged over the next 100 iterations through the lat-
tice. We used disordered starting lattices for p ~5.5,
mixed-phase' starting lattices for 5.5 & p & 9.0, and
ordered starting lattices for p )9.0. Our results in

Fig. 1 agree well with the leading-order high- and
low-temperature expansions of Eqs. (1) and (2),

where for a given p, 2, K, and C are constants.
When the asymptotic behavior applies, we extract the
string tension E by evaluating the quantity
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The leading-order high-temperature expansion for
the string tension is given by

(3) IO

Asymptotic freedom determines how the lattice
spacing varies with bare coupling for a continuum
limit. This introduces a scale parameter Ap defined
by

Ao= lim —[gogo (a)] exp 2, (4)2 (—y)/2yp ) 1

a p a 2yo go'(~)

where, for SU(3), we have

11 51
+p

16m 2 128m4
and p) =

and a is the lattice spacing.
In Fig. 1 we show the average action per plaquette

(E) as a function of the inverse temperature on a 6'
lattice. In carrying out these calculations, we first
performed 200 iterations through the 64 lattice with
20 Monte Carlo updates per link. This resulted in
the space-time lattice being in equilibrium. We then
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FIG. 3. The Wilson loops 8'(I,J) for pure SU(3) gauge
therory on a 64 lattice as a function of the inverse tempera-
ture P. The upward triangles represent I =J=1, the solid
circles represent I =2, J=1, the crosses represent I =J =2,
the downward triangles represent I =3, J= 2, and the
squares represent I =J=3. The curves represent the
leading-order high-temperature expansion of Eq. (1).
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