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Supersymmetry breaking in a magnetic field
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The one-loop effective potential of an Abelian supersymmetric model in an environ-
ment provided by a constant external magnetic field is derived. It is shown that the mag-
netic field breaks supersymmetry and that the value of the resulting minimum potential is
lo~er than that of the tree level. This could be relevant to the question of possible res-
toration of the symmetry at higher loops.

I. INTRODUCTION

Mechanisms for breaking supersymmetry spon-
taneously have been proposed by Fayet and
Iliopoulos' who studied an Abelian supersymmetric
model and by Slavnov who applied his mechanism
to a non-Abelian model and succeeded in giving
different masses to all the particles involved. It is
well known that symmetries which are spontane-
ously broken may make transitions from the bro-
ken phase to the unbroken one either in a high-
temperature environment or in an environment

provided by a strong external magnetic field. To
investigate whether such transitions also occur in

temperature-dependent supersymmetric systems,
Das and Kaku considered the Fayet-Iliopoulos
model in such an environment and showed that
once supersymmetry is spontaneously broken it
cannot be restored at high temperatures at least in

the one-loop approximation. Girardello, Grisaru,
and Salomonson later showed that the result of
Das and Kaku was true not only at the one-loop
approximation but to all orders, that is, finite tem-

perature automatically breaks supersymmetry since
it describes excitations about a ground state which
is a statistical ensemble and such an ensemble
treats bosons and fermions differently by means of
Bose-Einstein and Fermi-Dirac distributions,
respectively.

In this paper we shall consider the effect of an

external magnetic field on a supersymmetric sys-

tem. It is not immediately obvious to us how the
method of Girardello et al. can be applied here
and so we shall follow the approach of Das and

Kaku by computing the one-loop quantum correc-
tions to the effective potential for systems placed
in a magnetic field H. Salam and Strathdee and,
more recently, Midorikawa and Shore studied

such problems in ordinary symmetries and it is our

purpose to do the same for supersymmetry.
In Sec. II we shall discuss the Abelian supersym-

metric model of Fayet. The one-loop quantum
corrections to the effective potential, including the
term proportional to H, are computed in Sec. III.
Section IV summarizes our conclusions.

II. FAYET'S U (1) MODEL

Let V and 4 denote the real Abelian superfield

and the left-handed matter superfield, respectively.
The component fields of V are C, X, M, N, A&, A, ,
and D, where C, M,N, and D are (pseudo}scalars, X
and 1, are Majorana spinors, and A„ is a photon
field. The component fields of 4 are represented

by fields A lit and F .' Using the Wess-

Zumino gauge some of the components of V van-

ish and the superfield can be expressed in the form

V(x,g) = , gi yqyggA—q (x)+ gggy5A (x}
2 2

+—„(88)D(x) . (2.1)

In this gauge the superfield strength is then given

by

+ —,g g+( —i QA, ) (2.2)

being the electromagnetic field strength.
The most general Lagrangian density compatible

with supersymmetry and gauge invariance of the

action 1s given by

1 1

$V++ ——exp( , 8+itt)8+—) &++ ~ (D+ i tTqvFpv}8+
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(2.3)~.,+H'+ Jd'&+d'& t+'exp(2«C -+OR,

where 8' =CR'++, g is a parity-violating parameter, and e, the coupling constant, will be assumed posi-
sitive. In the Wess-Zumino gauge this reduces to

F—„„—F&"+ Xg—A, + , D2—+i,P VP +(V~A ) (V&A )
2

+Ft F ie—v 2(g AA A—Ag )+eDA A +gD,
where V& is the covariant derivative V&P =(8& ie—A&)g . The classical potential of the system is thus
given by

Vi ——F F + —,D

(2.4)

(2.5)

where the auxiliary fields F and D are eliminated from the above Lagrangian by means of the equations of
motion

F =0, D+eA A +(=0.
On substituting these values into (2.4) and (2.5), the Lagrangian and the potential reduce to

,'F„„F»—+'XIX+—ig Vg +(V„4)'(V"0) ~e~~(4 ~4 &~&—) (&-+—'& &)
2

I'.i
= —,(k+eA)'

(2.6)

(2.7)

(2.8)

where, instead of3, we have used the usual nota-
tion P for the complex scalar field. This is the su-

persymmetric Higgs model proposed by Fayet.
Now from (2.8) we can draw a number of conclu-
sions. If (~0, then the minimum for the potential
occurs when the scalar field P has zero expectation
value; gauge invariance is conserved but supersym-
metry is spontaneously broken. The particle spec-
trum is found to be a vector A@, two left-handed
Dirac spinors tl'j, A, all massless, and a complex
scalar P of mass (ge)'~ . If g &0, then the
minimum for the potential occurs when

(P ) = —g/e; supersymmetry is conserved while

gauge invariance is broken. Thus the symmetry
breaking depends on the sign of the parameter g.

III. SUPERSYMMETRY AND MAGNETIC FIELD

The constant external magnetic field is intro-
duced by adding to the classical action the external

source term AzJ&"', where A&"' ————,F& x by an

appropriate choice of gauge. The potential at the
tree approximation therefore remains the same so
that for g& 0 supersymmetry remains broken.
Also for / &0, we note from the supersymmetry
transform ations that

(SX+)=~~~+@0 (3.1)

for H+0, e being a constant Majorana spinor
parameter. Therefore, supersymmetry is now bro-
ken in this case also.

To consider the effect of quantum corrections on
the system we have to evaluate at least the one-

loop contributions to the effective potential. Fol-
lowing Dolan and Jackiw, let us define a new field
P' such that P'=P —$0 with (P') =0 and $0 as-

sumed real. Expressing P' in terms of its real and

imaginary parts, P'=(1/v'2)(PI+i/~), and substi-

tuting it in Eq. (2.7) we can write the relevant con-
tributions to the shifted Lagrangian as

(3.2)
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where a gauge-fixing term has been added and

~;,~=eA&pz&p&+ , e—A„(pI+p'2 )+e ~2$+IA& +ep Ag +terms not involving A„,

=mf =2e $0 M$ =eg+3e $0, M2 =eg+e yp

(3.3)

(3.4)

On introducing the constant external field the effective action becomes a function of A@"' and $0 and the
one-loop contribution can be expanded around A„'"' =0 for fixed $0 to give

5 S|(A,P)
Si(A,P)=S, (0,$)+ —, f d xd4x', A„(x)A„(x')+ (3.5)

Aqx A„x

with the linear term vanishing because of translation invariance. The first term in Eq. (3.5), S|(0,$), is in-

dependent of the magnetic field and represents the radiative corrections, while the second term is the correc-
tion due to the presence of the external electromagnetic field. We compute these two terms separately.

Consider then the first term. The corresponding one-loop contribution to the effective potential is given

by

Vo=i ln f [dA&][dg][dg ][dP ][dX+][dA+]exp i fd x Wo

l 1= ——ln detA ——ln detA + —ln detS, (3.6)

where b, |i is the propagator for the p& field, S the propagator for the fermion field X(=1( +A+), and b, is
the 5)(5 matrix given by

(3.7)

r

pqp„[(a —1)(—p —M2 )+aM„]
I kp gp +

p (p M2 )+a—M„M2 +ie
I

p —M„+ie2 2

2( 2 M2)+ M2M2
i (p aM„)—

p (p Mz )+—aM2 M, +ie

with the various propagators given in momentum space to be

(3.8)

Substituting these in Eq. (3.6) yields the result

4
V ) ln @2+M 2 + ln @2+ 2 + ln g2+

+ —, ln( —K +M& ) —21n( K+mf )], — (3.9)

where I3& and P2 are the roots of the equation

x —xM2 +a3f2 M„=O. (3.10)

The integrals are evaluated using dimensional regularization to give

Vo= [—M„ ln(M, /A )+P& ln(P& /A )+Pz ln(P& /A )+M, ln(M& /A )],1
(3.11)
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where we have used the mass relation M, =mf and have introduced the arbitrary renormalization mass A.
Equation (3.11) represents the radiative correction to the effective potential.

The term corresponding to the second term in Eq. (3.5) is best computed using Feynman diagrams. The
graphs which will contribute in an arbitrary gauge are as shown in Fig. 1 where the external lines carry zero
momentum. The notations for the internal lines are summarized in Fig. 2. Since only gauge-invariant re-
sults are required not all the diagrams contribute. We shall also simplify the calculation of this contribution

by working in the Landau gauge; we thus need compute only the first three diagrams of Fig. 1 using the
propagators in Eq. (3.8). After some straightforward computation, we find the magnetic correction term to
the effective potential to be

F2
V, = — [ln(M& /A )+ln(Mz /A2)+21n(M„2/A2)+ —,F(M„2/M22)],

96
(3.12)

where

1 3 t 1 2 3
F(a)=-', f dy

y +-,' J dy
' —2y'

a+y ' o a '+y (3.13)

Combining Eqs. (3.11) and (3.12) with the classical potential (2.8), we thus obtain the effective potential of
the system up to the one-loop level in the presence of the constant external magnetic field to be

V ff = (g+—eP ) + [(M& ——e H )ln(M& /A ) + (Mq ——e H )ln(M2 /A )

(M„+—— 'H )1 (M, /A ) eH F(M—„ /M2 )] . (3.14)

The question of symmetry restoration can in
principle be considered by first finding the turning
points of the potential which should occur when

~ V.rr =2 =0.
ay a(y')

(3.1 5)

The resulting equation, however, is nonlinear and
can only be solved using numerical techniques.
Fortunately, for our purposes such a detailed
analysis of the equation may be avoided since qual-
itative features of V,~f should be sufficient to allow
us to draw the necessary conclusions.

As before we consider the two cases g & 0 and

g& 0. Now if g &0, then $0 is nonzero and M2
vanishes. While V,] and Vo vanish, V~ does not so
that the magnetic field does break supersymmetry
which is conserved at the tree level. The g & 0 case
is perhaps of more interest. Choosing the arbitrary
parameter A to be eg, we sketch in the same
graph the three functions V,~, Vo, and V& (see Fig.
3). From this graph, it is seen that for P small, V~

dominates, while for P large it is Vo which dom-
inates. Thus the effective potential V,ff has a
minimum value which is smaller than the classical
one. We can estimate the value P;„at which this
occurs by considering small values of P represent-

(a) (b) (c)

g -A transition
2

FIG. 1. The relevant one-loop diagrams in an arbi-

trary gauge. The external lines carry zero momentum. FIG. 2. Notations for the internal lines of Fig, 1.
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IV. CONCLUSION

FIG. 3. Sketches of the potentials V,~, Vo, and V~ as
a function of P2.

ing one-loop quantum correction to the classical
value ((t ) =0. Therefore, expanding V,&r around
/=0 and retaining terms up to P, we get

(3.16)
1 eH2

48~ k
Now as H increases, V,ff decreases and the po-

tential may cross the (t axis. The value of V,rr at
that point is lower than at the classical minimum;
this may indicate a tendency towards symmetry
restoration although for a more definitive state-
ment to be made one must solve Eq. (3.14) exactly
or consider the vacuum expectation values, up to
one loop, of 6t( and 5A, . It is nonetheless reason-
able to conclude from this qualitative analysis that
magnetic field breaks supersymmetry and that once
broken supersymmetry remains broken, irrespective
of the sign of the parameter g in agreement with

the result obtained for temperature-dependent su-

persymmetric systems. Also, in the presence of the
magnetic field, the classical minimum is reduced at
least up to the one-loop level.

We have examined the Fayet U(1) supersym-
metric model in a magnetic environment, obtaining
in the process the one-loop effective potential of
the system. The minimum value of this potential
is seen to be lower than that of the classical one.
We deduce, using qualitative arguments, that gen-
erally a spontaneously broken supersymmetry
remains broken in the presence of a magnetic field.
This supports the earlier works in Refs. 5 and 6
that finite temperature always breaks supersym-
metry. This may not be altogether a bad feature of
the symmetry for an unbroken supersymmetric
theory cannot be a candidate for describing
nature —there is no degeneracy in nature among
particles of different spin.

We have restricted ourselves in this paper to
Fayet's U(1) model because there is, as yet, no

satisfactory way of spontaneously breaking a non-

Abelian supersymmetric theory. The Slavnov
mechanism is generally considered as an explicit
symmetry breaker so that the present method can-

not be applied directly to it.
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