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It is explicitly demonstrated that, just as in the case of the four-point bosonic interac-

tion, the compositeness conditions by themselves do not ensure a complete equivalence of
the Yukawa interaction with the corresponding four-fermion interaction. We study the
corresponding situation in the context of the Lee model versus the separable-potential
model, with the X and 0 fields quantized as fermions and V as a boson. We find that the
spectrum of the Lee model consists of that of the separable potential together with some

other contributions. It is shown that in the limit in which the bare coupling constant of
the Yukawa theory becomes infinite, these additional contributions move to infinity. It is

further shown that the finite-energy wave functions calculated from the two theories coin-
cide in the strong-coupling limit (this limit ensures the compositeness condition). It is

demonstrated, in the same manner as for the bosonic case, that in order to make the two
theories essentially identical, in addition to taking the strong-coupling limit, all the spec-
tral contributions at infinity in the Yukawa theory have to be removed. It is, thus, sug-

gested that the proofs of equivalence of the four-fermion interaction and the Yukawa-

type interaction may need to be reexamined.

I. INTROl3UCTION

Ever since the possibility of a close connection
between the nonrenormalizable four-point interac-
tion and the renormalizable Yukawa interaction
was pointed out in the early sixties, ' there have
been several attempts to derive both Abelian and
non-Abelian gauge theories starting from one sin-

gle quartically self-coupled spinor field. The
modus operandi of all these authors is to directly
compare the forms of the renormalized Lagrangi-
ans for the four-fermion and Yukawa-type interac-
tions and demonstrate thereby that there is a one-
to-one correspondence between the Feynman
graphs of the two theories provided certain renor-
malization constants of the Yukawa theory van-
ish. If these compositeness conditions are satis-
fied, the two theories, these authors argue, are
equivalent; the gauge bosons of the Yukawa theory
are then regarded as composites of' the fermions.
Moreover, this alleged equivalence is used to fur-
ther argue that the four-fermion interaction is re-
normalizable.

This led us to investigate the corresponding si-
tuation for two soluble models, the Lee model

(Yukawa-type theory) and the separable-potential
model (four-point interaction), and study the sense
in which these two distinct theories could be re-

garded as equivalent. We proceeded by first show-

ing that it was possible to realize the compositeness
condition Z =0 in the strong-coupling (SC) limit,
defined by first introducing an ultraviolet cutoff on
the momentum integrals and then taking the bare
coupling to infinity. The cutoff could then be tak-
en to infinity. We found, however, that in the cut-
off theory the spectrum of the Lee model
developed additional spectral contributions beyond
the cutoff, which did not appear in the separable-
potential model. These moved to infinity in the
SC limit. Furthermore, we showed that the contri-
butions of these to the finite-energy scattering am-
plitudes and S matrix vanish in the SC limit, so
that in the SC limit the scattering amplitudes and
S matrix calculated from the Lee model and the
separable-potential model coincide at finite ener-

gies. We also demonstrated that if we explicitly
removed all contributions to the Hamiltonian ma-
trix elements from the part of the spectrum at in-

finity the Hamiltonians of the Lee model and the
separable-potential model become effectively the
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same in the SC limit. We emphasize, though, that
unless this is done the spectrum of the Lee model
differs from that of the separable-potential model,
and the two theories are clearly distinct. It is only
when the spectral contributions that occur in the
Lee model but not in the separable-potential model
are explicitly omitted that the Lee model is
transmuted into the model of the separable poten-
tial.

This demonstration led us to suggest that if the
same scenario prevails in the case of fully relativis-
tic field theories a mere demonstration of the coin-
cidence of all the Green's functions (or equivalent-

ly, the scattering amplitudes) of the four-fermion
and Yukawa-type theories is not sufficient to en-

sure their equivalence, at variance with what has
been implied by other authors. ' It may be ar-

gued, though, that the demonstration in Ref. 5 is
restricted to the case of Bose fields. To strengthen
the analogy between our model study and the real
case of interest, we are led to the comparison of
two theories of fermions, one in which fermions
interact by a contact interaction, and the other in

which the interaction is mediated by a boson, with

a view to study the situation when the composite-
ness conditions are satisfied, i.e., when the inter-
mediate boson is regarded as a composite of the
fermions.

To this end, we consider, once again, the com-
parison of the Lee model and the separable-

potential model, with the important difference in

that the N and 0 fields are quantized as fermions
and the V as a boson. We demonstrate that just as
in the case of the bosonic Lee model the compo-
siteness condition, by itself, does not ensure the
equivalence of the two theories. Once again, we

find that the Lee model develops additional spec-
tral contributions beyond the cutoff; as before, '
these do not affect the finite-energy scattering am-

plitudes or S-matrix elements in the SC limit. We
show, just as in the case of the bosonic Lee model,
that in the SC limit the two theories become effec-
tively identical if, and only if, all effects of those
states that have their origin in the cutoff are expli-

citly removed. Hence, the transmutation mechan-
ism discussed in Ref. 5 is not characteristic of
Bose fields.

The plan of this paper is as follows. In Sec. II
we show that the solutions of the fermionic
separable-potential model in the N0 sector are the
same as in the bosonic case. The effects of the al-

tered statistics of the particles, it is shown, mani-
fest themselves in the N00 sector. In Sec. III, we

discuss the solutions to the Lee model in the N0
and the N00 sectors. Once again, we find that the
solutions in the lower sector are unaltered from
those of the bosonic Lee model. In Sec. IV we
demonstrate the transmutation of the fermionic
Lee model to the fermionic separable potential.
On account of the simpler structure of the solu-
tions in the present case, this demonstration can be
done much more directly than in the case of the
Lee model for bosons. We conclude in Sec. V with
some general remarks. In Appendix A, we list the
important formulas used in deriving the results in
the text. In Appendix B, we explicitly show that
the physical states in the N00 sector of the Lee
model are, indeed, complete with respect to the
usual inner product. In Appendix C, we show that
the finite-energy wave functions of the Lee model
reduce to those of the separable-potential model in
the strong-coupling limit.

II. THE FERMIONIC SEPARABLE-POTENTIAL

MODEL

,. V~ ——N N . (2.2)

The lowest nontrivial sector is characterized by
f"z ——1 and. V~——1.

In what follows, we use the notation of Ref. 5.
Thus, the eigenstates of the free Hamiltonian are
denoted by

~

) whereas those of the total Hamil-
tonian are denoted by ~

))~, A, being the corre-
sponding eigenvalue. The phases of the states are

The system described by the separable-potential
model consists of two fields, associated with the N
and 0 particles, interacting via a four-point interac-
tion. In order to mimic the features of the fully
relativistic four-fermion interaction as closely as

possible, we quantize these fields as fermions. The
Hamiltonian for the system is given by

H= f d kka (k)a(k)

—f d k h(k)a (k)N f d 1h(1)Na(1) . (2.1)

As in Ref. 5, all integrals are assumed to be cut off
at ik/=L, .

Just as in the bosonic case, the theory decom-

poses into a countable number of disconnected sec-
tors labeled by the eigenvalues of the operators, / "6)

and, . I '& defined by

a= f d'k"a (k)a(k)

and
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defined so that

~
NO/, & =a'(k)N'

~
0&

and

.f z are conserved by the Hamiltonian, the eigen-
states in this sector can be expanded in terms of
the free eigenstates as

~
NOQO/) =a (k)a "(l)N

~
o) (2.3) ))/, = —, f d'k d'l:-/, (k, l)

~
NO/, O/) . (2.8)

In the XO sector, the equation of motion can be
written as

(A, —k)p/j(k) = —f h (k)h (l)pg(l)d l

with
~g(k, l)=/, ((NO

~

a(l)
~

))/ (2.9a)

As in Ref. 5, the functions =/, (k, l) are most con-
veniently evaluated in terms of the amplitudes

p, (k) =(NO„~ NO)), . (2.4)
and

Equation (2.4) is identical to its counterpart in the
case of the .bosonic separable-potential model.
Thus, at least in the NO sector, the separable-
potential model with fermions does not differ from
that with bosons. This is to be expected since in
this sector there is no possibility for identical-
particle effects to manifest themselves. The spec-
trum, therefore, consists of a continuum of scatter-
ing states for 0 & A, & L and a discrete state,

~
&))~, at the isolated point M &0. The corre-

sponding solutions can be written as

+p~(l)Qg(k) . (2.10)

By considering the action of the Hamiltonian on
the states a "(l)

~
NO))/, and a (1)

~

8))~, we find
that the amplitudes 0/j(k, l) and Q/(l) obey the
equations of motion

(2.9b)

From the completeness of physical states in the NO
sector, we obtain

:-/t(k, l) =f d p pz(l)Q~(p, k)

with

iNO))/I= f d kp/j(k) i NO/, ), (2.5a) (k —k —l)Qg( k, I )

= —h(l) f d'ph(p)Q/„(k, p) (2.11a)

(k) 5(~ k)
h(k)h(X) 1

A, —k+iE D+(g)

for the scattering states and

I
&»M f d'k pM«) lNOk &

with

p~(k) = [ —D'(M)) h k

(2.5b)

(2.6a)

(2.6b)

The function D(z) that appears in Eqs. (2.5) and

(2.6) is given by

D(z)=1+f d k3 h (k)
(2.7)

with

D-+(A, ) =D(A, +iE) .

We now turn to the solutions of the NOO sector
of the separable-potential model. Since. V~ and

and

(A, —M —l)Q/„(1)= —h(l) f d'p h(p)Q~(p) .

(2.11b)

It is amusing to note that these equtaions are the
same as those for the separable-potential model for
bosons. The important difference, of course, is
that in the present case we are looking for solu-
tions to =q(k, l) that are antisymmetric under the
interchange of k and l. As is clear from Eq. (2.8),
the symmetric solutions lead to null eigenvectors
on account of the fermionic nature of the O parti-
cles.

As in the case of the separable-potential model
with bosons, we find that the spectrum of the fer-
mion separable-potential model also admits NOO

and BO continuum eigenstates for 0 & I, & 2L and
M & k & M +L, respectively. The corresponding
solutions take the form

I

h (l)h (g2)
0/I ( k, l) =5( g2 —k )5( g, —I ) —5( g, —k )5( g2 —1 ) + 5(g/ —k)

(g2 —l)D+(g2)

h (l)h (g/)
5( 2

—k)
(g, l)D+(g,)— (2.12a)
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with

and

~=0i+0z

Qg(l) =0

for the NOO scattering states, and

(2.12b)

and

I4(1)=5( g —1 ) — (2 13b)
A, —M LD+—(g)

with

Qg(k, l)=—,5(g —k)
A, —k —l [ D'(M)]'~'

(2.13a)

for the BO scattering states.
Although the system of Eqs. (2.11) admits a

nontrivial solution for A, =2M, the corresponding
:-z~(k, l) is symmetric. ' ' As a result, we are led
to conclude that the fermionic separable potential
admits no bound state in the NOO sector. We will
subsequently show that in the SC limit the spec-
trurn and the wave functions of the Lee model at
finite energies reduce to those of the separable-
potential model.

We now turn our attention to the Hamiltonian
matrix elements in the NO and the NOO sectors.
From Eq. (2.1), these can be easily seen to be

(NHk ~H ~NHI) =k5(k —1)—h(k)h(l) (2.14)

(Neke/
~

H
~ Nepeq ) =(k +l)[5(k —p)5( 1 —q) —5( 1 —p)5(k —q)]

—[h (k)h (p)5( 1 —q) —(k~ 1 ) —(p++q)+(k~ 1 )(p++q)] . (2.15)

As expected, the Hamiltonian matrix element in the lower sector is unchanged from the Bose case, whereas
the effects of the statistics of the fermions clearly manifest themselves in the antisymmetric structure of the
matrix element in the NOO sector. We will show in Sec. IV that, in the SC limit, the Hamiltonian matrix
elements of the "transmuted" Lee model essentially reduce to those presented in Eqs. (3.14) and (3.15).

III. THE FERMIONIC LEE MODEL

In addition to the fields N and O, the Lee model involves yet another field V interacting with the N and O

fields via a Yukawa interaction. The Hamiltonian for the system is given by

H =mDV V+ f d k ka (k)a(k)+go I d k f(k)[V"Na(k)+a (k)N V] . (3.1)

We have, for simplicity, considered the O particle
to be massless and have, once again, ' ignored any
recoil of the N and the V particles. As discussed
in previous sections, the fields N and O are quan-
tized as fermions. In analogy with Yukawa field
theories, the field V which mediates the NO
scattering process is quantized as a boson. The
quantization rules are, therefore, written as and (3.3)

together with their Hermitian conjugates.
The fermionic Lee model also decomposes into a

countable number of disconnected sectors labeled

by the eigenvalues of the operators .V& and, .f"2 de-

fined by

[N, N }=[V,V ]=1,
[ a(k), a (l) } =5(k —1),
[ N, N }=[V, V]= I a (k),a (l) }=0,
[ N, a(k) }= [ N, a (k) } =[N, V]=[N, V'")

=[a (k), V]=[a (k), Vt]=0,

(3.2) with

.&'v ——V~V

The lowest nontrivial sector, the NO or V sector, is
characterized by ~&——~2 ——1 while the next sec-
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tor, the NOO or VO sector, is labeled by M& ——1,
A~2 ——2. In this section, we first show that the
lower-sector solutions are unchanged by the altered
statistics of the N and 0 particles. This is in keep-

ing with our earlier arguments. We now proceed
to study the spectrum and the solutions of the fer-
mionic Lee model in the VO sector.

The NO sector

In the NO sector, the equations of motion are

(A, —mp)ag ——gp I d k f(k)pg(k) (3.4a)

and

(A, —k)p~(k) =gpf (k)o~,

where

(3.4b)

(3.5a)

and

(3.5b)

1

a'(M;) ' (3.7a)

These equations are identical to the equations of
motion for the NO sector of the bosonic Lee
model. The spectrum consists of an NO continu-
um for 0& A, &I. and discrete states Vt )) and

~
V2)) at M~ and M2, respectively, with M~ & 0

and M2 y I.. In the notation of Ref. 5, the corre-
sponding solutions can be written as

~

V;))=~Z;
~

V)+ I d'kF'(k) ~NOk) (3.6a)

and

~No))g=gg
~

v)+ Id k Ggk ~No/, ), (3.6b)

where

&V~H
~

V)=mp,

&v ~H ~No„)=gpf(k),

&NO„H
~

NO, ) =kS(l —l ),

(3.8a)

(3.8b)

(3.8c)

differ from those of the separable-potential model
on account of the difference in the spectra of the
two theories. As in Ref. 5, in order to make the
two theories identical, in addition to taking the SC
limit so as to satisfy the compositeness condition,
all spectral contributions at infinity have to be re-

moved; then, exactly as in the case of the bosonic
Lee model, the fermionic Lee n1odel is transmuted
into the model of the fermionic separable potential.

We now consider the SC limit of these solutions,
with the proviso that M& remain fixed and finite:
we find, since the fermionic nature of the N and 0
particles is irrelevant in the NO sector, as before'
that the finite-energy eigenstates

~

V~ )) have no
contributions from the bare state

~

V) whereas the
state

~

V2)) which moves to infinity in the SC
limit becomes identical to

~

V). The composite-
ness condition Z& ——0 is satisfied in the SC limit;

~
V& )) may, therefore, be regarded as a composite

of the N and 0 particles. In fact, for the purpose
of comparison with the separable-potential model,

~
V~ )) is identified with the state B ))M in the

separable-potential model. The correspondence be-

tween the separable-potential model of fermions
and the fermionic Lee model is completed by not-

ing that the finite-energy scattering amplitudes and

S matrix calculated from the two theories coincide
in the SC limit. This follows since the solutions

for both the separable-potential model and the Lee
model, in the NO sector, are unaffected by the al-

tered statistics of the N and 0 particles.
We conclude the discussion of the lower sector

by pointing out that the Hamiltonian matrix ele-

ments in the bare state basis,

I."(k)=vZ, 'gp (k)
'M; —k

(3.7b)

with

and

gpf(k)
a+(k)

a(z)=z —pip —gp d k3 f'(k)
z —k

G g( k l )
gpgkf
k —I+i@

(3.7c)

(3.7d)

(3.7e)

The Ve (%80) sector

As we have discussed earlier, it is in this sector
that the effects of the fermionic character of the N
and 0 particles are expected to become evident.
We, therefore, solve this sector in son1e detail,
comparing and contrasting with the corresponding
situations for the bosonic Lee model. Again, since
.V& and, Vq defined by Eqs. (3.3) are conserved by
the Hamiltonian, the eigenstates in this sector can
be expanded in terms of the bare states as
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i » t =f d'k A(k)
I

VOI &

+ —, f d
kd'lpga(k,

l) ilVOI, OI ) . (3.9)

The equations of motion for the Kallen-Pauli corn-
ponents

For brevity of notation, we have suppressed the de-
generacy index on the N08 scattering states. The
equations of motion for these amplitudes can be
obtained by considering the action of the Hamil-
tonian on each element of the aforementioned over-
complete basis. These can be written in the form

(3.10a) (k —Mi —l)gg'(1) =g f(l)Xq', (3.13a)

are

(A, —mo —l)tlat(l)=go f d k f(k)g~(l, k) (3.11a)

(&—k —1)gg(k, 1)=g()f (1)Xg(k), (3.13b)

(~-M; —m, )X,'=g, f d'kf(k)y, '(k),

(3.13c)

(A, —k —l)gg(k, I) =gof (l)tl'jg(k)

(3.11b)

(A, —k —m„)Xq(k)=go f d'1 f(l)gq(k, l) .

(3.13d)

and

((V; i. (1)
i )),=y, '(1),

k((lVOi a(l)
i ))g=pg(k, l),

„«~Oi~tV
i

»„=X,(k).

(3.12a)

(3.12b)

(3.12c)

(3.12d)

The solution to this system is, once again, most
conveniently obtained by introducing an overcom-
plete set of basis vectors, a "(1)

i Vi )),
a'(1) ilVO))„, V'lV

i V, )), and V'lV ilVO&)„. We
define the amplitudes

Equations (3.13a) and (3.13b) are identical to their
counterparts for the bosonic Lee model, whereas
Eqs. (3.13c) and (3.13d) differ from the corre-
sponding equations for the bosonic case in that
only the first of the three driving terms [see Eqs.
(3.22c) and (3.22d) of Ref. 5(b)] that occur in the
boson case persist for the present case. This sim-
plicity of structure of these latter equations can be
directly traced to the fact that the fields X and V
obey opposite statistics.

The amplitudes X~', X~(k) can, as in the case of
the bosonic Lee model, be written in terms of the
amplitudes Pq'(1) and Pq(k, l) as

X~'= —f d'p F'(» X &~(l )~~, f d'p d'e I"—V»)g,*k(e,l ) (3.14a)

X~«)= —f d l G~& 2 ~&,kd(l») f d'S d'~—Gk, g,*d~(e,l») . (3.14b)

This follows since the vectors at(l)
i V;)) and

a (1)
i
NO))k form a(n) (oblique) basis. The full

content of the fermionic Lee model is realized by
solving the equations of motion (3.13), subject to
the constraints (3.14).

The solution to the system of equations (3.13) is,
as before, obtained by first eliminating the func-
tions Pq'(k) and Pq(k, l) using the first two equa-
tions, and then solving for the remaining functions
using the latter two. %e then check whether the
solutions thus obtained satisfy the constraint equa-
tions.

VO scattering states

gof (1)Xx'
r$g'(1)= 6(g; —1 )+-

(;—1+i@
(3.15a)

gpf (l)Xg(k)
48k 1)=-

A, —k —i+i@ (3.15b)

~e define g; =-k —M;. Then, from Eqs. (3.13a)
and (3.13b)
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From Eqs. (3.13c) and (3.13d) we readily obtain ing states can, therefore, be written as

and

~'(4 )X~'=gof(k; }

y, '(1)=O,

Xg(k) =g(, 5( gp —k )

(3.17a)

(3.17b)

The solutions can thus be written as —gg, 5(g) —k), (3.17c)

and

Xg(k) = —V Z ) 5( g )
—k )

—V Z,5(g, —1),

pz'(I) =6& I,

(3.16a)

(3.16b)

(3.16c)

and

Pg(k, l) =5(g) —1 )5(gp —k)

—5(g) —k)5((2 —1 )

go (l)
Xg(k) .

1,—k —I+i@
(3.17d)

gof (l}
Pg(k, l)=-

A, —k —I+is

X [V Z(5($) —k)+~Z25(g~ —k)]

The homogeneous terms in Eqs. (3.16) and (3.17}
have been adjusted so as to reproduce a 5-function
normalization (with unit coefficient) for the
scattering states.

with

gg gg 8(L —g;)&(——g;),

Gg t G&tg(L. ———g;)8, (g;) .

(3.16d)
Discrete states

gof (l)
(3.18a)

For a discrete state with eigenvalue A, it follows
from Eqs. (3.13a) and (3.13b) that

N88 scattering states

and

gof (1)Xp(k)
(3.18b)

We define A, =g, +(„0&(„g,&L. Then from
Eqs. (3.13a) and (3.13b) we have

gof(1»~'
Pg'(1}=

A, —M; —i+i@

and

(hg(k, l) =5(gi —1 )5((2—k)

—5(g, —1)5(g,—I )

gof (1)Xdk)+
A. —k —i+i@

Using Eqs. (3.13c) and (3.13d) we obtain

a(A. —M; )Xg' ——0

and

a+(1—k)Xz(k) =gof(gi)5( g2 —")
—gof(4}5(ki —I ) .

The solution to the system (3.10} for N88 scatter-

These, together with Eqs. (3.13c) and (3.13d),
readily yield

and

a(A —M; )Xp' ——0

a(A —k)X~(k) =0 .

(3.18c)

(3.18d)

Thus, from Eq. (3.18d), for a discrete point in the
spectrum we have

o=x„(k}=,«Ne~Ntv
~

&&,

f d'l G—a, 4~4» (3.19)

It is clear that Eq. (3.18c) admits nontrivial solu-
tions for A=2M&, 2M2, and M&+M2. As in the
bosonic case, we have to check that these satisfy
the constraint conditions. Equivalently, by writing
the Kallen-Pauli component 1(~(l) as

Qg(1) = gF'(1)X~' JGp(X—g(p), —
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we obtain from Eq. (3.19) using Eq. (A9) of Ap-
pendix A that any discrete state satisfies the condi-
tion

gV Z,X,1=0.
Vl&

M{ O M(+L

Iz

v,e/ I & Irl
2L M)+M@ Mp Mp+L

and

~M
) +M =~zp,

~M
) +M 2

= —~Z]

PM, +M, (l)=F (1),

Xp(k) =0,

(3.20a)

(3.20b)

(3.20c)

(3.20d)

(3.20e)

Pa(k, l) =0 . (3.20f)

The normalization in Eq. (3.20) has been fixed by
the requirement

((M, +M,
I
M, +M, )) =1 .

Thus if any Pz' ——0, a null solution results. We are
therefore led to conclude from Eq. (3.18c) that

there is a single discrete point in the spectrum at
A=Ml+M2. The solution to Eqs. (3.13) for this
state can be obtained by requiring the condition
obtained above be satisfied. We find

FIG. 1. The spectrum of the fermionic Lee model in
the %00 sector.

We see that, in the SC limit, the finite-energy
part of the Lee-model spectrum coincides with the
spectrum of the separable-potential model. Further-
more, we have explicitly demonstrated in Appendix
C that in the SC limit, the finite-energy wave func-
tions of the Lee model reduce to corresponding
ones of the separable-potential model. As a result,
in the SC limit, the scattering amplitudes and the
S matrix for the two theories arq the same at finite
energies, i.e., the agreement between the fermion
separable-potential model and the fermionic Lee
model persists even in the Vo sector where the ef-
fects of the fermionic nature of the particles mani-

fest themselves in a rather transparent way.
We now turn our attention to the matrix ele-

ments of the Hamiltonian of the fermionic Lee
model. Direct computation from Eq. (3.1) using

Eqs. (3.2) yields

By writing the Kallen-Pauli components in
terms of the overcomplete-basis components as

{VOl
I

8
I

VHl ) =(mo+l)5(k —1),
(V~ I+ IlV~ |) ) =go[f(q)5(p —k)

—f (p)5( q —k )],

(3.22a)

(3.22b)

and

g (l, k)=QFJ(k)ltd l(l)

(3.21a) {lV {9k|)I
I

lf
I
lV|,'9, & = ( k + l )[5( k —p )5( 1 —q )

—5(k —q)5(1 —p)] .

(3.22c)

+ dpG&k ~p, l (3.21b)

we can easily verify that our solutions satisfy the
equations of motion (3.11). Moreover, the solu-
tions also satisfy the constraint equations (3.14).

The spectrum of the fermionic Lee model in this
sector consists of (i) an F 80 scattering continuum
from A, =O to A, =2L, (ii) a VlO scattering continu-
um from A, =Ml to A, =Ml +L, (iii) a Vq9 scatter-
ing continuum from A, =Mq to A, =M2+L, and (iv)
a discrete state at A. =Ml+M2. ' (Note that at
least in the SC limit, Ml +M2 && 2L.) This spec-
trum is illustrated in Fig. 1.

Once again, these differ from those of the
separable-potential model. The reason for the
difference, of course, lies in the difference in the
spectra of the two theories. As with the bosonic
case, in order to make the fermionic separable-
potential model and the fermionic Lee model
identical, we shall see that the contributions to the
Lee-model Hamiltonian matrix elements that arise
from the

I
V28)) scattering state and the state

I
M&+M2)) (these are absent in the spectrum of

the separable-potential model) have to be explicitly
removed. This transmutation of the Lee model
into the separable-potential model forms the sub-

ject of Sec. IV.
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IV. THE TRANSMUTATION OF THE
FERMIONIC LEE MODEL

Dynamical rearrangement of the Hamiltonian

We denote the It allen-Pau1i basis vectors by
~

x )
and the eigenvectors of the total Hamiltonian by

~

z)). Then from the closure relations, we obtain

(x'iH ix)= g z(x'iz))((z ix),
(~&&

(4.1)

with z denoting the energy eigenvalue of the state

~

z )). The wave functions (x
~

z )) for the NO

sector arc thc same as for thc case of thc bosonic

Lee model and can readily be read off from Eqs.
(3.6). Those for the NBO sector differ from those

in Ref. 5 on account of the fermionic nature of the

particles. These have been explicitly written out in

Appendix B.
We have explicitly verified that the right-hand

side of Eq. (4.1) indeed reproduces the matrix ele-

ments in Eqs. (3.8) and (3.22) for the NO and NOO

sectors, respectively. This verification for the
lower sector is exactly identical to the calculation
in Ref. 5 since the wave functions are unchanged

from those of the bosonic Lee model in the same

sector.

In previous sections, we have shown that in the
SC limit, the finite-energy scattering amplitudes
and the S matrix calculated from the fermionic
Lee model and the fermionic separable-potential
model are essentially the same. The spectra of the
two theories, however, are quite distinct. The
difference comes from the fact that in the Lee
model, additional spectral contributions arise due
to the presence of an ultraviolet cutoff. Thus, as
with the bosonic case, the compositeness condition

Z& ——0 does not ensure a complete equivalence of
the two theories. In this section, we show that in

order to ensure the identity of the two theories, in

addition to satisfying the compositeness conditions,
all contributions to the Hamiltonian coming from
the part of the Lee-model spectrum at infinity
have to be removed. Then, as in Ref. 5, the Lee
model with the reduced spectrum becomes essen-

tially equivalent to the separable-potential model.

the Lee model. We now show that if we take the
SC limit and explicitly exclude from the sum in
Eq. (4.1) all contributions from those states that
move to infinity in the SC limit, the Lee-model
Hamiltonian essentially reduces to that of the
separable potential, again with the identification of
the form factors h (k) and gpf (k)/QMq. The
demonstration of this, for the case of the NO sec-
tor, proceeds exactly as in the case of the bosonic
Lee model. We merely present the results here,
referring the reader to Ref. 5 for details of the cal-
culation. In the SC limit, we can write

(V~H
~

V)=m —M +[M ],
( V ~H

~

NO„) =0+[g„f'(k)],
(4.2a)

(4.2b)

(NOk
i
H

i
NOI ) =k5(k —1 )—

M2

gp'f (k)f (I)
+ (4.2c)

(4.3)

In Eqs. (4.2), the terms in the square brackets
denote the contributions to Eq. (4.1) from the addi-
tional states that arise due to the presence of a cut-
off, i.e., from the single state

~
Vq)) in the NO

sector. We see from Eqs. (4.2) that if we omit the
spectral contributions from this state, the bare V
particle decouples from the V and the t9 particl s.
Moreover, also in the SC limit, the Hamiltonian
matrix elements with the

~
V2)) contributions re-

moved become identical to those of the separable-
potential model if the form factors h (k) and

gpf(k)/QM~ are identified. [See Eq. (2.8).]
Wc now turn to the transmutation of the fer-

mionic Lee model in the VO sector. To this end,
we calculate the contributions to the Hamiltonian
matrix elements in the Kallen-Pauli basis from the
states

~

Vq0)) and ~M~+M2)). We remind the
reader that these states arise due to the presence of
the cutoff and are responsible for the difference in
the spectra of the two theories. We first focus our
attention on the matrix element ( VOk

~

H
~

VO~ ).
We have

The transmutation of the Lee model

We have seen that the dynamical rearrangement
of the Hamiltonian does not alter the content of

where k runs over the complete spectrum. The
contribution to the

~

V20)) scattering states can be
written using our solution Eqs. (3.15) together with
Eqs. (3.21) as
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L

Jo d(2[~Z&G(2k —gg F (k)][~Z)G(21—gg F (l)](M2+g~) .

This can be evaluated using the compendium of integrals in Appendix A. In the SC limit, we find it
reduces to M2[5(k —1 ) —F'(klF'(I)]. The contribution of the discrete state

~
M~+M2)) to this matrix ele-

ment is, from Eqs. (3.20) and (3.21),

(M! +MR) ( VBk
l
M1+M2 )) ((Ml +M2

l
VOi )

=(Mt+Mr)[~ZOPF (k) —V&pF (k)][V&)F (l) ~ZOPF'(l)] =M25(k —1) .

Here = denotes equality in the SC limit. We see, therefore, that the contribution of the states
~

V28)) and

M&+M2)) to the matrix element ( VOk
~

H
~

VB~) is just Mq5(k —1 ) in the SC limit. In the notation in-
troduced earlier for the lower sector we can, therefore, write

( VOJ&
~

H
~

VB/ ) =(mo —M2)5( k —1 )+ [M26( k —1 )]

The contribution of the ~t~t~~
I V28 && and

I
Mi+M, )) to the ~~t~ix ~l~~e~t~ & VOk

I

H
I
NO~9~ & and

(NBkB~
~

H
~
NO&9& ) can be calculated in a similar manner; these can be written as

( VOk H
~

NO& B~ ) =0+ [gpf (q)5( p —k ) —gof (p)5( q —k ) ]

and

(4.4a)

(4.4b)

(NOqBt
~

H
~ NB~9~ ) =(k +l) [ 5(k —p)5( 1 —q) —5(k —q )5( 1 —p) ]

go'f (k)f V»
5( 1 —q) —(k~ 1 ) —(p~q)+(k~ 1 )(p~q ) .

M2

go f(k)f(p)
+ 5( 1 —q ) —( k~ 1 ) —( p~q )+ (k~1)(p~q)

M~
(4Ac)

We remind the reader that in Eqs. (4.4), the terms
in the square brackets are the contributions from
that part of the Lee-model spectrum that arises
due to the presence of the cutoff, i.e., from the

~

V28)) and
~
M&+M2)) states. We see, once

again, that it is only when these contributions are
removed that the bare V particle decouples from
the E and 0 particles and the Lee-model Hamil-
tonian essentially reduces to that of the separable
potential. We emphasize that unless this is done,
trit= two theories have distinct spectra and are,
therefore, inequivalent.

The role of the ultraviolet cutoff in the transmu-
tation of the fermionic Lee model into the fer-
mionic separable potential is the same as for the
corresponding bosonic case. Irrespective of the ex-
istence of any cutoff, the finite-energy scattering
amplitudes and S-matrix elements coincide when
the coupling constant moves to infinity. The
Hamiltonian matrix elements of the two theories
are, however, different. The two theories, there-
fore, are clearly distinct and there appears to be no
natural way of transforming one into the other.
The introduction of the cutoff, however, divides

the spectrum of the Yukawa theory into two parts,
one of which coincides with the spectrum of the
four-point interaction model, and the other consist-
ing exclusively of contributions that arise because
of the presence of the cutoff. The latter move to
infinity in the SC limit. By removing these contri-
butions, we are able to make the spectra of the two
theories identical, thereby ensuring an equivalence
of the theories when the compositeness conditions
are satisfied. We note here that the equivalence
proofs existing in the literature confine themselves
to the demonstration of the Green's functions (or
equivalently, the scattering amplitudes) without
any reference to the Hamiltonian. Hence, it is sug-
gested that these proofs should not be regarded as
complete.

To summarize, we have explicitly shown that the
compositeness condition, Z& ——0, by itself does not
ensure the equivalence of the fermionic Lee model
and the corresponding separable-potential model.
In order to see how the equivlance could be real-
ized, we introduced an ultraviolet cutoff on both
theories. As a result, there appeared additional
states in the spectrum of the Lee model but not in
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the separable-potential model. We showed that it
was when the spectral contributions of these states
were explicitly removed, that the two theories be-
come effectively identical in the SC limit. (This
limit was required to ensure the compositeness
condition Z&

——0.) Thus, the transmutation of a
Yukawa-type interaction to a four-point interaction
discussed in Ref. 5 can also be done for Fermi
fields, i.e., the transmutation mechanism is not
characteristic of Bose fields. Its role in fully rela-
tivistic field theories, however, merits further in-

vestigation.

V. CONCLUDING REMARKS

In the last few years, several authors" have sug-
gested the renormalizability of the four-fermion in-

teraction, basing their arguments on the alleged
equivalence of the four-fermion theory and the cor-
responding YUkawa theory. As discussed in Sec. I,
these "proofs" of equivalence are based on the
direct comparison of the renormalized Lagrangians
of the two theories and the demonstration that
there is a one-to-one correspondence between the
respective Feynman graphs (or equivalently,
scattering amplitudes) provided the compositeness
conditions are satisfied. This had led us to investi-

gate the corresponding situation for two soluble
models, the Lee model (Yukawa-type theory) and

the separable-potential model (four-point interac-
tion). We showed that if we considered the SC
limit of the Yukawa theory so that the composite-
ness condition Z& ——0 is satisfied, the finite-energy
wave functions, and hence the scattering ampli-
tudes calculated from the two theories, indeed be-

came numerically the same. The spectra of the
two theories, however, were quite distinct in the
presence of an ultraviolet cutoff. This reflected it-
self in the fact that the "bare-basis" Hamiltonian
matrix elements of the two theories were different.
We showed that in order to ensure essential identi-

ty of the two theories, in addition to satisfying the
compositeness conditions, all contributions from
the part of the Lee-model spectrum that were a
consequence of the cutoff (these are absent in the
separable-potential model) had to be explicitly re-

moved. Then the Lee model was tr'ansmuted into
the separable-potential model.

In order to strengthen the analogy with the al-

leged equivalence of the gauge interaction and the
four-fermion interaction, in this paper, we restu-

died the corresponding situation for the Lee model

and the separable-potential model, but this time
quantized the X and 9 particles as fermions and
the V particle as a boson. We found that the fer-
mionic separable potential indeed could give rise to
a collective bosonic state in the XO sector. In the
same sector, for the Lee model with a cutoff there
were two discrete states

~

V~)) and
~

Vz)). We
showed that the V~ particle could, in the strong-
coupling limit, be identified with the bosonic
bound state of the separable-potential model. In
this limit, the state

~
V2)) moved to infinity. We

showed that just as for the bosonic case, although
the finite-energy wave functions calculated from
the two theories were the same in the SC limit, in

order to make the Hamiltonians the same, the
spectral contributions due to the state

~

V2 )) had
to be explicitly removed. Then the Yukawa theory
was transmuted into the four-fermion theory. %'e
further checked this transmutation property for the
/00 sector of the models.

To conclude, our model study shows that al-

though the compositeness conditions ensure the
equivalence of the finite-energy scattering ampli-

tudes and the S matrix of the four-fermion and the
Yukawa-type theories, it does not follow that the
two theories are identical as implied by many au-

thors. ' In order to make the two theories
equivalent, the spectrum of the Yukawa theory has

to be truncated, i.e., the contributions from the
part of the spectrum of the Yukawa theory that is
not common with the spectrum of the four-
fermion theory have to be explicitly removed. The
truncated Yukawa theory is then equivalent to the
four-fermion theory. In conclusion, we state that
if a similar scenario persists in the case of fully re-

lativistic field theories, the present proofs of
equivalence and the conclusion that the four-
fermion interaction is renormalizable may need

further examination.
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APPENDIX A

In this appendix, we merely list some formulas
which are of use in deriving some of the results in
the text. The scattering states are normalized as
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I

(Nek INei)=5(k —1),
( Vek

I
Ve() =5(k —1 ),

(A 1)

(A2)

(Neke/
I
Ne e ) =5(k —p)5( 1 —q)

—5(k —q}5(1—p) . (A3)

M)
gf

Mp

The completeness relations take the form

I v)(vI+ f d'k INe, &(Ne,
I
=I

and

f d'k
I

vek&&vek
I

+-,' f d'kd'l INe, e, )&Ne„e,
I
=I,

(A4)

FIG. 2. Tne contour I that occurs in Eq. (A16) of
Appendix A.

f d'k G„,G„',(k+l)=(p+l)5(p —q}

—g (M; + l)F'(p)F'(q),

(A13)

(A6)

in the NH and V8 sectors, respectively.
We list below certain integrals which have been

extensively used in the text.

f d k F'(k)FJ(k) =51
—(Z;ZJ )'i

k gp =1—Z) —Z2 (A7)

f d k G k G'k =5( p —q ) —g g*, (AS)

f d k F'(k)Gqg —— ~Z;gp, (A9)

f d kgkGI~ —— ~Z&F'(p) ~ZOPF (p), (A10)

f d3k Gf~Gg, ——5(p —q) —F'(p)F'(q)

f d'k f'(k) = f dk f (k) (A15)

Finally, we note that many momentum integrals
occurring in the text can be written as contour in-

tegrals in the cut k plane as

f d'k
I g„ I'(k+l)= —g[(M;+l)Z ]+ma+i .

(A14)
The discontinuity of the function a(Z) defined in

Eq. (3.7) can be written as

a+(k) —a (k)=2mif (k),

where

—F'(p)F'(q),

f d'k gk Gyp
(k +1)= —g (M; ~ l)~Z;F'(p )

+gof (p}

(Al 1)

(A12) where I is the contour shown in Fig. 2.

(A16)

APPENDIX B

In this appendix we show that the physical states in the Ve sector of the Lee model form a complete set,

I.e.,

2 fdk I ve»g, .g, « ve I+- fdkidk IN88»g, g, gg, «N88 I+ IMt+Mz»«Mi+M2
I

=I

In terms of the Kallen-Pauli components defined in the text, Eq. (Bl) can be equivalently written as

SA, A(l)eA(l') =5( 1 —1'»

Sxfx(k, ling(k') =0,
and

Sxfx(k, l)fx(k', 1'}=5(k k')5( 1 —1—') —5(k —1')5( 1 —k') .

(81)

(82a)

(82b)

(82c)

In Eqs. (82), the symbol S~ denotes an integration over the continuum eigenstates with a proper weight [see

Eq. (Bl)] and a sum over the discrete eigenstates.
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The Kallen-Pauli components can be easily calculated using Eqs. (3.21) and the solutions in terms of the
overcomplete basis presented in the text. We have

A(1)=g [V Z;G„g,—F'(1)], (83a)

]]'jx(k, l) =g [F'(1)Gg k (k~—1 )] (83b)

for the
~

V;0)) eigenstates,

A(1) =g g, Gg, ]—g g, Gg, ]

Px(k, l) =Gg ]Gr k
—(k~ 1 )

for the
~

NOO)) g, ~ eigenstates, and

P,(l) =V Z, F'(1)—~Z,F](l),

1(x(k, l) =F (k)F'(1) —(k~1)

for the discrete state
~
M] +Mq )) .

We now proceed to demonstrate Eq. (82a). We have
L

Sxgx(l)]tg(l') =g f dg; [~Z;Gg] ggF'(l—)][~Z;Gg ]. g( F'(1')]—

+ —, I dk]d k(g g2Gg]] gr]Gg, ])(g—r.,Gr]] gr] Gg, ] )—

+[VZ]F (1) V&pF'(l)—][~Z,F (1') ~ZOPF](l')] .

(84a)

(84b)

(85a)

(85b)

The integrals can be easily worked out using Eqs. (A10) and (All) presented in the text. We then find

which is the required result. Equations (82b) and (82c) can be demonstrated in an identical fashion.

APPENDIX C

In this appendix, we show that the Kallen-Pauli wave functions for the states
~

V]0))~ and
~

NOO))],

reduce to the corresponding wave functions for the states
~

BO))x and
~

NOO))q of the separable-potential

model. To this end, we first compute the functions =x(k, l) for these states. From Eq. (3.10), and the solu-

tions presented in Sec. II, we find

h ((2)h (1) - - h (g])h (I)
:"x(k,1)=5( (p —1 )5( g] —k ) — 5( (]—k ) + 5( (2—k )

(g2 —1)D+(g2) (g] —l)D+(g )

h (k)h (1)h (g] )h (gp) —(k~1 )

(g] —1)(gp —k )D+ (g] )D+ (gp)

for the
~

NOO))z state and

:-x(k,1)= l

[—D(M)]'"
h (l)5( g —k) h (l)h (k)h (g)

(M —1)(g—k)D+(g)

for the ~BO))x state.
We proceed to show that the finite-energy Lee-model wave functions reduce to those of the separable po-

tential. We recall that in the SC limit,
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Gu-(go» g~ -— '" (1)-(go)
1 o 1 p

go go
'

for all finite k. It then follows from Eqs. (B3a) and (B4a) that 11~(l)=0 for the
~

V, O))q and the
~

N09))q
states.

We now turn our attention to the functions p~(k, l). For the
~

V, O))~ state, we have from Eq. (B3a)

gof(l) gogg, f k)
1('g(k, l) =V Z( 5(g) —k )+ —(k~1)

M] —l g) —k

I gof(1) - - go f(k)f (gl)
5(g) —k)+ —(k~1)

[a(M, )]'~ M) —1 a+(g, )(g, —k)

I gof (1) I - - go f(k)f (k&)
5(g, —k)—

[—D'(M, )]'" QM, M& 1 — M,D+(g, )(g, —k)
—(k~ I ), (C3)

where in the last step, we have used

a(z) = MqD(z) —.

Identification of the state
~

V& )) with the state
~
B))~ of the separable-potential model so that Mt ——M,

together with the identification of the form factors h (k) and gof (k)IQM2, leads us to conclude from Eqs.
(C2) and (C3) that

1lg(k, l) =':-g(k, l)

for the
~

V~ 8 ))~ state.
Simi1arly, from Eq. (84b), we have for the

~

N89)) q state of the Lee model

gg(k, l)=G(IG( k
—(k~1 )

goggf 1

5(g2- I )+
12—

gogq, f k)
5(g) —k)+ —(k~1 )

go f (02)f (1)
=5((p —I )5(g, —k) y 5(g) —k)

a+(g, )(g, —1)

go'f(k)f«) - - go'f(1)f(k)f(ki)f(k)+ + 5(g~ —I )+ —(k~ I )
(kl )(gl k) (k2 1)(kl k)a (02)a (01)

go f(P )f2(1) I=5((p —I )5(g) —k) — — 5(()—k)
M2D+((~) ((p —1)

go'f (0i)f«) I - — go'f (1)f(k)f (k)f (4)
5(g2 —I )+ —(k~1 ),M,D+(g, ) (g, —k) M, 'D+(g, )D+(g, ) (g, —l)(g, —k)

(C4)

where in the last step we have used the SC form of a(z). We see from (Cl) and (C4) that the identification
of the form factors once again leads to the result
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