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It is argued semiquantitatively that the magnetic instability of the perturbative QCD
vacuum leads to the formation of a Bose-Einstein condensate that locally can be described
as a J =0++ gluon color-singlet bound state or "glueball. " We also indicate how this
result might be obtained by a more rigorous field-theoretical treatment. A general discus-
sion of the global properties of the "glueball vacuum" is given, and as an illustration of
our ideas we construct a phenomenological model in which the bag constant is related to
the QCD scale A.

I. INTRODUCTION

Quark and gluon confinement is generally attri-
buted to a nonperturbative structure of the QCD
vacuum, which prevents the separation of color ex-

cept over regions of hadronic size. ' Such a picture
is the basis of the MIT bag model where hadrons
are "bubbles" of perturbative vacuum immersed in
a nonperturbative physical vacuum. ' In the bag
model one does not attempt to give a microscopic
description of the nonperturbative phase, but
characterizes it with only one bulk property, name-

ly the difference in energy density between the
"perturbative" (i.e., "empty") and the physical vac-
uum. This difference is the bag constant 8.

Here we shall try to argue that the perturbative
vacuum is unstable against the formation of "con-
stituent" gluon bound states hereafter referred to
as glueballs. The vacuum state may then be
described as a Bose-Einstein condensed liquid of
such glueballs, together with the standard short-
wavelength Auctuations present in the ordinary
perturbative vacuum. The size of the "consti-
tuent" gluon wave functions which describe the
condensed glueballs will be comparable to the dis-
tance between them. There will also be an effec-
tive strong short-distance repulsion between the
glueballs which inhibits the overlap of their consti-
tuent gluon wave functions. Since there is no con-
servation law to prevent the spontaneous creation
of negative-energy glueballs, they will fill up all
space, and form a liquidlike state.

We are at present not able to rigorously derive

the above picture of the ground state from the
equations of QCD. Instead we shall argue semi-

quantitatively that the instability mentioned above
occurs, and that consequently such a glueball "con-
densate" should be formed. We will construct a
simple model for the condensate, which enables us

to estimate the bag constant in terms of the QCD
coupling strength A. It is also indicated how a
more rigorous treatment based on field theory
might be achieved by explicitly constructing a trial
wave functional for the QCD vacuum. The basic
idea here is to find a complete set of functions in

which the ground-state wave functional has a sim-

ple expansion, and we shall argue that the so-called
Wannier functions known from solid-state physics
may provide such a set.

The paper is organized as follows. In the next
section we first discuss the nature of the instability
of the perturbative vacuum and then argue that it
is connected to the strong color-magnetic forces be-
tween localized gluons. Next we give a general
discussion of localized gluons in the context of
quantum field theory and consider the validity of
approximations used later. In Secs. II C and II D
rough estimates based on a bag-model approach
are used to show that the perturbative vacuum is
unstable against formation of 0++ glueballs and
that these glueballs stabilize themselves at a size
—1/A because of asymptotic freedom. The sec-
tion ends with a description of the expected global
properties of the QCD vacuum and its phenomeno-
logical consequences. In Sec. III we construct a
simple mean-field model to give a semiquantitative
illustration of the previous discussion.
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II. THE @CD VACUUM AS A GLUEBALL
CONDENSATE

A. The instability of the perturbative vacaum

In QCD the quarks are color triplets and the
gluons color octets. Hence, one would expect that
the dominant effects should be associated with the
gluon-gluon interactions since their color charge is
the largest. Since QCD is a theory of "charged"
spinning particles, one mould also expect that mag-
netic effects related to their intrinsic magnetic mo-

ments to be very important. The spin of the
gluons is twice that of the quarks so this should
also tend to enhance the importance of the gluon-

gluon interaction. We shall therefore omit the
quarks and consider the gluons only.

Recently, a simple physical picture of the origin
of the asymptotic freedom of QCD has been

given. This picture at the same time helps to ex-

plain the nature of the instability of the perturba-
tive ground state. For clarity, let us use the exam-

ple of electrodynamics. Anything we say can be
immediately generalized to any non-Abelian gauge
theory. We shall investigate how the vacuum

responds to the application of an external elec-

tromagnetic field. To do this, let us view the per-
turbative vacuum of any charge field as a medium

of charged particles (i.e., the "particles" which oc-
cur in the zero motion associated with each mode
of the field). We shall for simplicity always as-

sume the particles to be massless. In the case of
fermions, we have the Dirac sea of negative-energy

particles, and in the Bose case a "one-half" sea of
positive-energy particles. The vacuum can now be
considered as a polarizable medium with the very

special property of looking the same in all Lorentz
frames. Thus, the product of the electric permea-
bility e, and the magnetic susceptibility p, is one;
op=1, i.e., we have either e g 1, "screening" and

p & 1, diamagnetism, or e g 1, "antiscreening" and

p & 1, paramagnetism.
The particles carry both electric charge and in-

trinsic magnetic moments. It is, however, simplest
to study the polarization properties by considering
what happens in an external magnetic field, rather
than in an electric one. A calculation of the mag-
netic susceptibility valid for any medium of free
charged particles with spin S and gyromagnetic ra-
tio g yields (@=I+X)

dg=e ITr[(25, ) ——,]) I
where (2$, ) is the contribution from spin

1

paramagnetism and the ——,
'

is the contribution
from Landau diamagnetism, with F. =

~ p ~

for bo-
sons and E= —

~ p ~

for fermions. The integral in

Eq. (1) diverges in both the ultraviolet and in-

frared. The regularization of the UV divergence
leads in the standard way to the introduction of a
scale and a running coupling constant, while the
IR divergence is regulated by the magnetic field.

For spin-zero particles the medium is diamag-
netic due to the Landau diamagnetism associated
with the quantized orbits. This corresponds to the
standard intuitive picture associated with charge
screening in the case of an applied electric field.
In contrast, although it would appear that fer-
mions (g =2) should be paramagnetic because of
their intrinsic magnetic moment, this is not so,
since the medium carries negative energy. Thus
spin-zero and spin-one-half charged particles both
give rise to a diamagnetic vacuum which screens
electric charges but for totally different reasons.
The first possibility to have a paramagnetic vacu-
um is with spin-one particles (g =2). That is,

p g 1 and hence e g 1 in the case of pure Yang-
Mills theories is a simple consequence of the spin
of the vector bosons and the positive energy carried
by the vacuum "medium. " Here we must mention
the existence of the "unstable mode" —that is, be-

cause of the sign of the magnetic susceptibility, the
effective potential becomes complex in a back-
ground magnetic field (this is analogous to the ef-
fective potential being complex in a background
electric fidd in ordinary spin-one-half electro-
dynamics).

Since the perturbative vacuum filled with free
vector particles is paramagnetic, it is possible for it
to gain energy by spontaneous magnetization in

which case it is unstable. To describe this
phenomenon by mean-field theory (as in the
"Copenhagen vacuum" ), one must be careful in

handling the "unstable mode. " Furthermore if the

system can lower its energy by spontaneous mag-
netization, the question might be raised as to
whether enough quanta wi11 be present locally to
define semiclassical color-magnetic fields. Certain-

ly QCD could stabilize itself in this way because of
the repulsive A term in the Lagrangian. However,
we shall argue below that there is a possible QCD
ground state which is stabilized at the quantum
level, that is, with a few field quanta present in the
volume 1 jA' where A is the basic scale of QCD
defined by the short-distance perturbative region of
the vacuum wave functiona1. In this case we do
not expect the fluctuations around the ground state
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to include any "long-wavelength gluons" so the
system may not be troubled with any unstable
modes. We shall not be able to establish even
qualitatively that such a quantum vacuum has a
lower energy than a possible competing semiclassi-
cal state. However, a "shallow" vacuum seems to
be indicated by the success of phenomenological
models such as the MIT bag model. Here, the bag
constant 8=55 MeV/fm is the energy density in
the condensed phase (the "outside vacuum"). In
terms of the conventional QCD scale A where A is
in the range 100 to 500 MeV, 8'~ /A is between
0.3 and 1.5. If we express this in terms of a
"number" of gluons with negative energy -A, per
volume 1/A, 8-nA" or n' -8' /A. Thus, n

is not expected to be a very large number. Hence,
we shall in the following sections study the "local"
stability of the perturbative vacuum by adding a
few localized gluons to it.

Hamiltonian is

H= —, Jd x(E, +8, )

with

[~."(x),—&b(Y)1 i~ ~ b&'(X —y)

and

G, (x)=V E, +gfgb, Eb A, ,

so

and

[H, G, (x)]=0

[G,(x),Gb(y)]=i5 (x —y)f,b, G, (x) .

B,=V XA, +gfgb, Ab XA, .

The generator of local (time-independent) gauge
transformations is

(4)

B. Properties of localized gluons

Since the gluons are massless, they can not sim-

ply be put in a Lorentz rest frame, so we must
make precise what is meant by a localized gluon.
In Hamiltonian quantum field theory, a one-gluon
state is defined in terms of a complete set [A ] of
orthonormal wave functions, i.e, the field operator
is expanded as

A= +[A (x)a +h.c.],
where e represents all quantum numbers necessary
for identifying the state. A one-particle state

is localized if the corresponding wave function A
is localized. Note that these states will in general
not be eigenstates of the Hamiltonian. However, if
any "constituent" model for the QCD ground state
(and nearby low-lying states) is approximately
correct, then a relatively simple description of the
vacuum in terms of such a set of wave functions
should be possible. The "constituent" gluons will

be the particles which occupy the "modes" charac-
terized by the wave functions A . We shall now

propose a systematic way of handling the QCD
vacuum along these lines. The fields will be ex-

panded in terms of localized wave functions cen-
tered on the sites of a periodic spatial lattice.

To be explicit, let us describe the gauge field
theory in the 2 =0 or "temporal" gauge where the

The "physical" states we are interested in are local-

ly gauge invariant,

G, (x) ~S)=0. (10)

A- „(x)= ga„(x—xs)exp(iq xs),
s

where E is the number of cells in the lattice and

We now introduce a periodic lattice in space,
and thereby forfeit at the start any hope of a very
simple description of the Lorentz group —or even

the translation and rotation groups. Hopefully, the
long-range spatial order, associated with the regu-
larity of the lattice, and which destroys these sym-

metries, is an artifact. The localization of the
wave functions over distances of order 1/A, which
will be defined using the lattice scale, should how-

ever be a real effect. That is, we shall expect that
the physical cell size is of order 1/A. Further, we

hope that the energy cost associated with the artifi-
cial long-range order is small in comparison with
the energy gain which we shall obtain from the lo-
calization.

To construct a complete orthogonal set of local-
ized wave functions centered around the lattice
points, we use the following procedure due to
Kohn. Start with a complete and normalized (but
not necessarily orthogonal) set of localized func-
tions a„(x), n =1,2, . . ., . From these one can
construct a set of Bloch functions A- „(x)having

the translational symmetry of the lattice
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xs is a lattice vector. These functions are corn-

plete but in general not orthogonal. It is not diffi-
cult, however, to take linear combinations which
form a new complete set of Bloch functions 2

q

which are orthogonal. Because of the periodicity,
these satisfy the Bloch condition

A "- „(x +xs )=exp(i q x s )A "- „(x ), (12)

and from the completeness of the functions a„(x )

we get the completeness relation for the Bloch
functions

f gA- „(x)A- „(y)=6 '5'(x —y) .
n

(13)

Here the integral over the reciprocal lattice vector

q goes over the first Brillouin zone with volume V.
We are now ready to define the localized Wannier
functions As „by

3

As, n(x)= f exp( i q xs—)A- „(x)

(For the construction of such a set in 2+1 dimen-
sions, see Appendix A.) It will then be true that

f d'xa„A,"„(x)=0, (19)

these functions, we get a systematic way of' con-
structing "physical" trial states, i.e., states fulfil-
ling the condition Eq. (10). To do this, separate
the local gauge invariance into a "coarse-grained"
gauge invariance associated with the lattice scale,
and a "fine-grained" one related to local transfor-
mation on distance scales short in comparison with
the lattice spacing. First consider the coarse-
grained transformations defined by

Gs ——f d xG'(x),

where the integration takes place over one cell of
the lattice. Let us use the freedom to define the
set As „(x ) of Wannier functions to make

f d»bAs, (x)= f d xnkAs„(x)=0.

(18)

which satisfies the completeness relation

+As"„(x)As'„(y)=5"'d(x —y) . (15)

where S' is any other cell. (This is most easily
proved by using the unitarily related Bloch func-
tions. ) In this case there will never be any net elec-
tric flux from any cell S':

S,n
, d x V.E, x =0. (20)

Here S labels a cell of the lattice, and n the "band"
which we may think of as characterized by the
number of nodes in As „(x)over a distance of the
order of the lattice scale. As n ~~, renormaliza-
bility and asymptotic freedom should allow us to
use perturbative methods. Over the long-distance
scales associated with the momenta

~ q ~

& I/A we

hope to use variational methods.
The Bloch and Wannier functions are unitarily

equivalent. However, it is the localization associat-
ed with the Wannier functions which we believe
will be most useful, rather than the lattice periodi-
city of the Bloch functions.

The functions As „(x) is a set of the type re-
ferred to in the beginning of this section and in the
3 =0 gauge the expansion corresponding to Eq.
(2) is

A."(x)= g q„'sA„"s(x),
n, S

E,(x)= —gp„'sA„"s(x) .
n, S

From the above it is clear that there is an enor-
mous freedom in our choice of A„"s(x). We now

show, that by imposing an additional condition on

Gs'= f d'x[gf"Eb(x) A, (x)]

so the condition for "coarse-grained" local gauge
invariance is that there be no net "global" color
carried by the fields in any cell of the lattice. If
we describe our states in terms of operators corre-
sponding to a set As „ fulfilling Eq. (18), this re-
quirement is simply that no net color is carried in
these modes. There is of course still the require-
ment of fine-grained gauge invariance, namely that
Eq. (10) should be satisfied over short-distance
scales; this can be achieved by using perturbation

(21)

One might worry about the compatability of the
completeness Eq. (15) and the boundary conditions
Eq. (18). If we expand functions A„(x ) which do
not obey the boundary condition in terms of the set

2„& the expansion will not converge uniformly on
the boundary surfaces, that is, many modes will
contribute to represent such a field. However, if
the true vacuum is such that these configurations
are unprobable, then our expansion will be reason-
able.

Because of Eq. (20) the operator Gs takes the
form
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theory. The ordinary IR divergences will now be
cut off by the lattice scale.

The degree of localization, and scale size associ-
ated with the lattice are some of the remaining
parameters in the complete set. It is our hope that
these will be fixed by variational principles applied
to specific proposals for the ground state, and that
we can then fix the lattice scale in terms of the
QCD scale A. In the following sections we shall

argue semiquantitatively that when expressed in
such a local basis, the ground state of QCD is a
state in which the cells will contain occupied
modes; that is, we shall argue that there can be a
condensed phase of gluon "quasiparticles" present
in the vacuum.

The program just outlined is obviously very am-
bitious. In the rest of the paper we shall use a
much simpler and cruder way to construct the lo-
calized functions As „(x). We shall also not at-
tempt to construct an explicit field-theoretical trial
state for the vacuum, but instead study the quan-
tum mechanics of the "constituent" gluons.

A very simple way to construct a complete,
orthogonal, localized set As „(x) is to divide space
into cells and then solve the Maxwell equations
with suitable boundary conditions in each cell.
The resulting set of "cavity modes" is complete
and orthonormal (ON) in each cell. A complete
set for a11 space is then trivially the set of all such
sets in all cells. The price one pays for this simple
recipe is the presence of discontinuities in the wave
functions and their derivatives (and corresponding
singularities in, e.g., the energy) at the cell walls.
The obvious way to bypass this difficulty is to
smoothen the walls and thus also the wave func-
tions. This causes the functions defined in dif-
ferent cells to overlap and we are led to the Wan-
nier functions discussed above. If, however, as
suggested in the previous section, the vacuum sta-
bilizes locally by excitation of a few localized
gluon modes, the effect of this overlap should not
be too important. Hence, we shall for an approxi-
mation use cavity modes to describe the localized
gluons, and simply ignore the discontinuities intro-
duced by the sharp cell walls. From the previous
discussion it is clear that we want to impose a lo-
cal boundary condition on the surface of the cells,
which ensures that the global condition Eq. (20) is
satisfied. Still there is a large freedom in the
choice of boundary conditions and cell shape
which defines the cavity modes. Since our preju-
dice is that the important phenomenon of vacuum
instability is a local one we shall try to locally keep

where n& ——(0, n) is the spacelike normal to the cell
surface. Written in terms of the E and 8 fields,
Eq. (22) reads

n.Ea =0
n.B,=0 (23b)

so Eq. (20) is trivially fulfilled and we of course
recognize Eqs. (23) as the usual bag boundary con-
ditions.

C. The 0++ glueball instability

We have been led to study color-singlet states
built from spherical-cavity gluon modes defined by
the boundary condition Eq. (23). These states are
of course the "glueballs" of the bag model, which
have been extensively studied in the literature.
Let us briefly review the properties of these states.

The different modes of a gluon in a spherical
cavity satisfying Eq. (23) can be classified as trans-
verse electric (TE) or transverse magnetic (TM).
The lowest TE and TM modes have energies
2.741'R and 4.49/R and parities P = —( —1)' and
P =( —1), respectively. The lowest-lying two-

gluon glueballs are thus formed by two TE modes
and has J =0++,2++.

It is well known from hadron spectroscopy, that
the chromomagnetic spin-spin interactions are cru-
cial for understanding the mass differences in the
low-lying hadron multiplets as, e.g., E-E* and p-A.
One would naively expect these chromomagnetic
forces to be even more important for gluons than
for quarks since the gluons both have larger spin
(1) and higher color charge (8) than the quarks.
The chromomagnetic energy shift is however only
one part of the lowest-order interaction shown in

Fig. 1. The full interaction Hamiltonian between
two gluons 1 and 2 in color spin space to order a,
is given by

es
H&2

——— [aAi A2Si S2
R

+b A i A2Ti2+2ci A i A2

+c2(A| +As )], (24)

as much as possible of the symmetry of the full

theory. Thus we take a spherical cavity to keep
rotational invariance and the gauge-invariant boun-

dary condition

(22)
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where A and S are the usual color and spin gen-
erators and the tensor T&z is

+]p —2[(S] Sp)' —1]+S] (25)

The first three terms in Eq. (24) come entirely
from the interaction diagrams 1(a) and 1(b) while
the last one is the self-energies of the gluons [Fig.
1(c)]. Both the "magnetic" term a and the "elec-
tric" term b are separately independent of gauge,
while for the last two terms only their sum is
gauge independent. The coefficients a and b have
been calculated to be' '

a =0.26,

b = —0.04 .
(26)

An alternative way of expressing this result is

H]~= —
I (a+b)A] ApS] Sg

+2b[(S] Sq) ——,]

+2(c,i —,b) A, A,

(c)
FIG. 1. Lowest-order two-gluon interaction diagrams

(a),(b) and gluon self-energy diagrams (c).

the extraction of the ultraviolet divergent parts.
There is, however, a possibility that the effect of
the two last terms is small compared with the
magnetic energy. Namely, if c~-cq, then we get
for color singlets

2c] A] Ap+cp(A] +Ay )=c](A]+A~)~=0 .

(28)

Since b is small compared to a it does not matter
much whether we use Eq. (24) or Eq. (27) in the
calculations.

In the following we shall mainly concern our-
selves with the effect of the magnetic interaction
energy only. This is reasonable if the self-energy
terms really are small. Everything we will say will
hold true even for large self-energies as long as
they are negative, and in Appendix 8 we argue
that this might be the case. If on the other side
the self-energies turn out to be large and positive,
our whole picture will be seriously questioned.
Needless to say, an explicit calculation of the dia-

grams 1(c) is of great importance.
Let us now consider the magnitude of the mag-

netic term in the various possible color and spin
states for a single gluon pair. The relative values
of the strength of this interaction energy as given

by the eigenvalues of the operator

n= ——,
' gA, A, S, S, (29)i'

are (for ij =1,2) shown in Table I. The states are
listed in order of decreasing strength of attraction.
We see that there are four states with negative
color-magnetic energy. Since the coupling becomes
large for large distances, all these configurations
are potentially unstable. We now discuss the
several possibilities.

The paramagnetic instability of the perturbative
vacuum discussed earlier occurs in the state in

TABLE I. Eigenvalues of the operator 0 in two-

gluon states of definite color and spin.

+c,(A]'+ AP) ], (27)

where the second term is an "induced"
quadrupole-quadrupole interaction present in the
electric energy shift.

We see from Eq. (26) that the electric energy is
small compared to the magnetic one. The coeffi-
cients c~ and cz have not yet been calculated be-
cause of the computational difficulties related to

Spin Color

1

8s
8g

27
10,10
27

8s

1

0=—Ai AzSi S
—6
—3

3

2

—1

0
+2

3+—
2

+3
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which the pair forms a color-octet vector state,
3

where 0=——,. If we were to use mean-field

theory to describe the global state in this case, we
would be at the starting point of the Copenhagen
group. We see a stronger attraction in the color-
octect, spin-singlet channel. In this case, a mean-
field treatment of the pair bound state would lead
to a Higgs-type spontaneous breakdown of color
symmetry. However, the attraction is strongest in
the color-singlet, spin-singlet state, and hence we
shall focus here on the possibility that the global
state will correspond to a Bose condensed system
of spinless and colorless gluon pairs. ' In the next
section, we mill argue that such a condensate can
be locally stable due to a balance between kinetic
and interaction energy.

Up to now me have only considered spherically
symmetric glueballs. One might worry that there
are other shapes with even stronger attraction. To
study this problem carefully one really should have
to describe the shape with a set of parameters, and
then minimize the vacuum energy density with
respect to these. In the following sections we shall
assume a spherical shape, and keep only R as a
variational parameter. The reason for this is that
for color singlets the interaction in the spin-zero
state is strongly attractive while the five spin-two
states are strongly repulsive. Thus we expect that
any change of the spherical shape will mix in
spin-two components in the wave function and
hence rapidly increase the energy. So we conclude
that the spherical shape is locally stable, but can
not exclude other stable shapes corresponding to,
e.g., long tubes or thin pancakes. " The presence
of such configurations however would introduce a
dimensionless number in the description of the
vacuum, and that seems to us to be somewhat un-

natural.

D. Local stabilization

by gluon pair condensation

of the bound state and A the basic @CD scale
parameter. The renormalization group tells us how

a, behaves for small R, i.e., for AR «1,
2m —1

lim as(R) =
o 9 lnAR

(30)

In order to connect the A parameter of this formu-
la to, e.g., AMs measured in deep-inelastic scatter-

ing, one has to evaluate the one-loop corrections to
the interaction diagrams 1(a) and 1(b). Such a cal-
culation is on the same level of complication as
that of the self-energies mentioned earlier, and has
not yet been carried out. It is to be stressed, how-
ever, that nothing in principle prevents this calcu-
lation from being done, and in that way eliminates
the need for a free scale parameter.

As a consequence of Eq. (30), the total energy of
the gluon pair becomes

a, (AR )
E(R)=El, (R) —6(0.26)

R
(31)

where p&+ p2+ +pz ——p is the total momen-
tum of the N-gluon state. Since they are all in the
same spatial state,

'2

To be realistic, the estimate of the kinetic energy
caused by localizing the pair, Ek ——2(2.74/R), is
considerably too high. To see this, consider the
general case of localizing N gluons (in the lowest
energy mode) in a sphere of radius R. The naive
value for the kinetic energy is Ek =N(2. 74/R).
This estimate, however, includes not only the cost
of the relative localization of the particles, which is
all that is necessary for them to benefit from the
strong attractive coupling, but also a contribution
for localizing all the particles in a fixed region of
space (center-of-"mass" energy). This effect may
be simply estimated by using the relation

Etrue + &(pi+ p2+ ' + piv ) ) =Enaive

(32)

We shall now qualitatively show how, as a
consequence of asymptotic freedom, the color- and
spin-singlet two-gluon state becomes locally stable
and acquires a negative total energy.

The local two-gluon state just mentioned should,
of course, except for the "valence" gluons, also
contain the medium" of the perturbative vacuum
(or at least the high-momentum parts of it). The
"medium" modifies the interaction between the
"valence" gluons and causes the coupling constant
to "run" as a function of AR where R is the radius

and therefore

Ek""'-[N(N —1)]'~
R

Thus, we find for a localized gluon pair,

E „„=vs 2.74

(33)

(34)

(35!
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2.74
R

1.6ag(R)

R
2.74

R

2

(36)

which becomes negative for n, g 1.0. The presence
of such a tachyonic state is the signal of an insta-
bility of the perturbative ground state. The differ-
ence between this and the above estimate of the
"critical" a,'"'

(2 4 vs 1.0) needed for the instability
to occur gives an idea about the uncertainties in-

volved in these calculations.
One might be worried that the rather high value

of e, in these estimates indicates that a perturba-
tive treatment is not to be trusted. Although noth-

ing can be said with certainty, one should
remember that in the bag model, good fits to the
low-lying hadron spectrum are obtained using
first-order perturbation theory with a, =2.2 (see
Refs. 3, and 16).' Also, if we include the self-

energies of the gluons as estimated in Appendix B,
a,'"' drops to -0.5 —1.0.

E. Stability against addition of extra gluons

Before we focus on the global form of the
ground state, we must study the local state to see
whether it is energetically profitable to add more
than two gluons locally to the perturbative vacu-
um. Since gluons are bosons, it is by no means ob-
vious that two gluons will be the most likely con-
figuration locally present in the ground state.

In analogy to Eqs. (35) to (36) we have for X
gluons

2 74 n'~'0. Z6a, (AR )E~-&N (X—1) +
R R

(37)

Because a, runs, we see that E reaches a
minimum for E & 0, and becomes negative for a
value of R where a, g2.4. Note that the stabiliza-
tion can take place because of asymptotic freedom
as reflected in the running coupling constant

a, (AR ), and that the size of the stabilized state
will be of order 1/A.

A perhaps slightly more convincing way to han-

dle the localization energy would be to apply Eq.
(32) directly to the total rather than to only the ki-

netic energy. In that case, since the energy con-
nected with localization is subtracted, E is simply
m for the bound state. For %=2 we get

m =Enaive (p
2

2.74m~- N
R

n'~'0. 26m, (R)
+

2

2.74
R

'2

(38)

where 0' ' is the expectation value of the operator
0 in the N-gluon color- and spin-singlet state. A
very rough criterion for the relative importance of
different X would be the vaIue of the "critical"
coupling constant u,'"' at which E& or m& be-

comes negative. The strongest instability should be
related to the shortest distance and hence to the
lowest a,'"'. We can clearly not investigate all

values of E but shall consider the two limiting
cases of X small (X =3 and 4), and N large.

When N becomes large, it is easily shown that
for any even number of gluons in the same spatial
state

lim n', „'=—XV (39)

which corresponds to a critical coupling a,'"'=3.5
as compared to u,' '=1.0—2.4 in the case of two
gluons [the two numbers shown here and below
come from using Eqs. (38) and (37), respectively].

For X =3 each pair of gluons forms a color-
octet spin-one state, so trivially,

(40)

which gives a,'"' 3.0—5.7. In the case of four
gluons, it is shown in Appendix C that there are
four possible spin- and color-singlet configurations
having 0' '= —16, —4, —3, and + 7.8, respective-
ly. (The state with maximum attraction may be
compared to the large-N estimate —3X = —12
given earlier. } For the most attractive state
(0' '= —16) we get a,'"'=1.3—2.3.

From these estimates' one could be tempted to
exclude N =3 and X = Oo, and say that N =2 and
E =4 are equally favored. Such a conclusion
would, however, be very dangerous for two
reasons. First, we omitted the self-energies which
could be important. Second, to find the most
stable global configuration we should minimize the
energy density E/V, and not the energy of the one
glueball state. We postpone the problem of self-
energies, and try to estimate the energy density.

For this we shall have to anticipate some results
from Sec. III, and use the following relation for
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the energy density [Eq. (51)]:

( —m~ )
2 1/2

E/V-—
R

From Eqs. (38) and (39) it follows that in the
large-N limit, m~ becomes negative for

a, (R) )3.5
3.5

N 1/2

(4l)

(42)

This means that large N implies large a,'"' and
consequently large R. Since EiV-R a
moderate change in R gives a rather large change
in the energy density. Thus, it seems likely that
the few-gluon configurations are favored over the
many-gluon states, although it should be remem-
bered that this whole discussion is based on a very
simple model for the condensate.

For the few-gluon states the situation is more
complicated. The N =3 case is certainly unfavor-
able because of the rather large a,'"', but for N =4
the values of a,'"' are comparable to those in the
two-gluon case. In Sec. III we shall show that, us-

ing identical parameters, the two-gluon condensate
is slightly favored over the four-gluon one, but the
difference is clearly within the error of the calcula-
tion.

We shall now comment on the possible effects of
including self-energies. As before, a large positive
self-energy could destroy our whole picture, so we
will consider a contribution of type —Na, c/R
where c y0. The effect of such a term in the
large-X limit will simply be to change Eq. (42) to

a, (R) &
2.74

0.78+c
1— 1

N 1/2 (43)

so the conclusions following Eq. (42) are still valid.
If the self-energies are large, it could very well

happen that the glueballs in the condensate are al-
most pure two-gluon states.

It is clear that from these considerations nothing
can be said for sure about the number of gluons.
A reasonable guess would be a state dominated by
N =2 but with a (perhaps sizable) admixture of
N =4. Our main point, however, is that the num-

ber of gluons should be fairly small, and that
seems to be indicated by all of the above estimates.

F. Global structure of the glueba11 vacuum

In what follows we shall assume that the ener-

getically most favorable state in QCD is one which

locally is a two-gluon 0++ color-singlet glueball.
Given this, we are naturally led to the picture of

the QCD vacuum as globally being a zero-
momentum Bose condensate of 0++ glueballs. We
now proceed to a qualitative discussion of the
properties of such a condensate.

First, if a glueball condensate is formed at all, it
must be formed everywhere, i.e., the vacuum is
densely filled with the glueballs. The reason for
this is that the instability is a local phenomenon,
so no region of perturbative vacuum of size g
(size of a glueball) can be stable against the
creation of a glueball, Second, one could argue
that even if the most attractive state of four gluons
is close in energy to that of two gluon pairs, there
would not be much admixture of this four-gluon
component in the two-gluon states. This is because
if we form a wave function of two pairs, and let
them interact in an S wave at small separation,
they will most of the time find themselves in a
state which is much higher in energy than the one
where they are separated. The reason for this is
that the probability of finding a spin-color-singlet
pair in the four-gluon state with the maximum at-
traction 0= —16 has been calculated to be only
-0.21. This is the overlap of the two-gluon-pair
state with the most attractive of the color-spin-
singlet four-gluon states mentioned in the previous
section. In all the other states, the effective in-

teraction between the two pairs is very repulsive at
short distances. Of course, we cannot from this
kind of naive static consideration conclude too
much about the obviously very complicated
dynamics of the glueball "liquid. " Consequently it
is an assumption that in a global state densely
filled with glueballs, there will be an effective
strong repulsion between them to prevent any siz-
able overlap. Another way to express this is to say
that the Bose condensate of glueballs is of liquid-
helium type. The above discussion has, it is hoped,
made this assumption somewhat plausible.

A condensate of the type just described will not
break any symmetry since it carries vacuum quan-
tum numbers. ' This is consistent with the belief
that color is not spontaneously broken in QCD.
(Conversely, any scheme based on condensation in
color-nonsinglet channels must find a mechanism
to effectively restore the color symmetry. One
mechanism of this kind proposed in the context of
the "Copenhagen vacuum" is the formation of ran-
dom colored domains. )

Presumably, the presence of the glueball conden-
sate will strongly modify the effective long-
distance interaction between colored particles. The
hope of course is that it will give rise to confine-
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ment; that is, all excited states are to be color sing-
lets. In the absence of quarks this means that the
only excitations are physical glueballs. Further-
more, since there experimentally are no light glue-
balls, the spectrum must show a mass gap.

At present we cannot prove that colored excita-
tions are absent in our vacuum, although if we be-
lieve that the two-gluon 0++ state is the energeti-
cally favored one, it is natural to think that addi-
tion of a free (i.e., plane-wave) gluon will tend to
"destroy" this 0++ color-singlet configuration over
a large region, and thus be pushed high up in ener-

gy. The way to prove this would be to construct
an explicit trial wave functional and calculate the
expectation value of a large Wilson loop. An area
law (i.e., confinement) is expected if the vacuum is
disordered, i.e., if correlation functions fall ex-
ponentially at large distances. This could very well

happen since, because of the glueballs, our model
has a domain structure, which is usually a signal
of disorder.

Now we shall argue that there are no low-lying
excitations connected to the presence of the con-
densate. The similarity between the glueball con-
densate and liquid helium II has already been
pointed out. We can then by analogy use an argu-
ment due to Feynman to show that the only possi-
ble low-lying excitations of the condensate are
"phonons" or density waves. The presence of
phonons in liquid helium is, however, related to
the incompressibility of the liquid, or equivalently,
to the conservation of the number of particles.
The glueball vacuum has no such conservation law.
The glueball density is set by the scale of the insta-
bility and remains constant. Any attempt to
"push" the condensate, e.g., with an electric field,
will only modify the state locally. Hence we do
not expect any low-lying excitations of the conden-
sate at all.

So far we have completely ignored the quarks,
assuming that they can be added perturbatively. If
this is done, what will happen~ Because of the
quark-gluon coupling the glueballs in the conden-
sate will acquire a qq component, and further-
more the whole Dirac sea will be changed due to
the presence of the condensate. Both these ef-
fects are calculable and will give a value for the
chiral-breaking parameter (qq ) which is related to
the pion decay constant f .

G. Phenomenological consequences

Without working out any details, we shall now
mention several consequences of having a QCD

vacuum of the type proposed here. At this stage,
we cannot directly compute, e.g., the excitation
spectrum but on a less ambitious level we can ask
what our model for the QCD vacuum can tell us
about existing hadron phenomenology.

First we discuss the relevance for bag-model cal-
culations. Except for the obviously appealing pos-
sibility of calculating the bag constant in terms of
say A~, one can get a better qualitative under-

standing of several features of previous calcula-
tions. If we picture a hadron as an excited state of
one of the 0++ glueballs making up the vacuum
condensate, it is natural that a description of had-
rons purely in terms of valence quarks (or gluons)
works very well. The reason is that there is a large
overlap between the vacuum and a "hadron" state
where the valence particles have been removed (by
e.g., a weak or electromagnetic decay). Another set
of predictions concerns the (physical) glueball spec-
trum. In the original bag model, spherical glue-
balls were not stable, since a vector field can never

give rise to a spherically symmetric pressure. In
our picture, however, the approximately spherical
shape of low-lying hadrons is "built" into the vac-
uum so spherical (or almost spherical) glueballs

might very well be allowed. '

Another type of possible phenomenological ap-
plication of our model would be in the estimate of
different condensate densities associated with the
vacuum itself. One such quantity has already been

mentioned, namely, (q(x)q(x) ) which is directly
related to observables. Another is

(G„„(x)G "(x)) which will be discussed in Sec.
III. This and other expectation values of more
complicated local operators characterizing the
QCD vacuum, have been used by Shifman et al. to
calculate masses and widths of hadrons using
dispersion relations and moment sum rules. If
we manage to construct a reasonable trial wave
functional along the lines of Sec. II B we could
clearly use that to calculate the various expectation
values that go into the approach of Shifman et al.
(A very rough estimate of (G„,G"") is given at
the end of Sec. III.)

III. A MEAN-FIELD MODEL FOR
THE QCD VACUUM

We shall now use a simple model to illustrate
the ideas about the QCD vacuum described in the
earlier sections. Since the glueballs have a size R,
set by the coupling strength, their self-interaction
should be softened by form-factor effects. This
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will suppress loop diagrams and suggests a classi-
cal (or tree-diagram) treatment of an effective
theory of interacting glueballs.

Instead of attempting a microscopic derivation
of such a theory we shall simply postulate that the
QCD ground state is a dense gas or liquid of in-

teracting glueballs, and try to describe this "con-
densate" with conventional mean-field methods.
The analogy with superconductivity or liquid heli-

um is obvious and we shall use a relativistic ver-

sion of the usual Ginzburg-Landau Lagrangian,
i.e., a scalar field with self-coupling,

2

(44)

where P represents the scalar glueball condensate.
The form of the interaction term is of course quite
arbitrary, but according to the discussion in the
previous sections it has to be short range and
repulsive at small distances. The form suggested
above is the simplest one having these properties.
For small values of P Eq. (44) describes a nonin-

teracting dilute gas of particles of mass m, so we

identify the parameter m with the bag-model
value for 0++ glueballs given by Eq. (36). Since
m becomes negative for large enough R, we get a
vacuum expectation value Po by minimizing the
classical potential with respect to P. This gives

or, expressed in terms of the bag constant B,

B=——,m (R)go )0.
To actually compute B we need to know a, (R)

and A, . For a, we shall use the parametrization

a, (R)= ln 1+2&n 1

9 (AR )"

This form is consistent with asymptotic freedom
for small R and becomes large for large R. The
parameter n reflects our lack of knowledge about
the large-R behavior of a„and clearly other
parametrizations consistent with asymptotic free-
dom could be given. Qualitatively, however, our
results should not be too dependent on the
parametrization since we believe the model only if
the vacuum stabilizes at an R where AR=1.
Below we show that a change of n does change the
parameters but not the nature of our results.

Rather than try to estimate the strength of the
interaction X and use Eq. (45) to calculate Po, we
shall use as input that the vacuum is densely filled

by the glueballs to get Po directly. To do this we

take the classical field to be the expectation value
of the field operator in a coherent state of zero
momentum. In such a state, the number density p
1S2S

0

. '1/2—m (R)

Connected with this "condensate" is a negative
vacuum energy density

E/V= —,m (R)go

(45)

(46)

p=
2

4o' (49)

(50)

This is strictly true for a free field, but we shall

use this relation also in the interacting case. The
requirement that the vacuum is dense gives

TABLE II. Results for the glueball radius R in GeV ', the bag constant B' in MeV,
the effective coupling a, (AR ), and the quantity G in GeV for different values of the
parameters A and n.

A=150 MeV

R =7.7
B'~ =80
a, =1.1

G =0.0005

A =200 MeV
n=1

R =5.8
B""=105
a, =1.1

G =0.002
n =2

A=300 MeV

R =3.9
B'~ =160
a, =1.1

G =0.007

R =4.5
B'/ =145
a, =1.2

G =0.004

R =3.3
B'~'=190

as ——1.2
G =0.01

R =2.2
B'~ =290
a, =1.2
G =0.08
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Q)

O
O

LQ

I I I
1 I I 1 I

1
I I four-gluon 0++ glueball condensate. As men-

tioned in the last section, the minimum is slightly
above the one found in the two-gluon case using
the same parameters.

In this model we can also make a crude estimate
of the renormalization-group-invariant quantity G
defined by

G =a, (0
i G„,G""

i
0) =2o., (0 i

8 —E
i
0) .

(52)

It is natural to estimate this density by first com-
puting the expectation value of the operator n, G
in one glueball, and then average over its volume,
s.e.,

G=, ~,(AR)(0++
i
G'i 0++},4' (53)

where V=4mR /3 is the volume of one glueball.
Combining Eqs. (46), (49), and (50) gives the vacu-
um energy density as a function of R and m (R)
only,

F. 3( —m )'

V 8~R'
(51)

%e can now determine both the bag constant and
the radius of the glueballs in the condensate by
minimizing this expression with respect to the ra-
dius R. Figure 2 shows the typical dependence of
E!Von R, and in Table II we have compiled the
results for R, B, and a, for various values of A
and the parameter n in Eq. (48).

From the table we see that although the values
of R, 8, and o., are quite dependent on the details
of the parametrization, we indeed have solutions
with small A= few 100 MeV, R 3 —4 GeV, and
reasonably small a, (R). Since we do not know
the relation between our A and, e.g., AMs, nothing

conclusive can be said about the numerical results.
It is, however, satisfying that the glueballs get
small (i.e., & size of hadron) using a relatively
small scale A and small coupling a, (R).

The dashed curve in Fig. 2 shows E/V as a
function of R for the case of the lowest-energy

l s i i t I g ) i i l

4 5 6
R(Gev 'j

FIG. 2. Energy density as a function of the glueball
radius 8, for A=150 MeV and n =2. The solid and
dashed curves correspond to two- and four-gluon glue-
balls, respectively.

where R is the radius of the glueballs in the con-
densate. To zeroth order in o.„(0++

~

G
~

0++ )
=0 due to the E-8 symmetry. To O(o., ) this sym-

metry is broken by the non-Abelian interactions,
and we can relate G to the energy shift (see Appen-
dix 8),

3a, 1.5a, (AR )
45E=

4+R R
(54)

where we neglected self-energy terms. Note that
since in our model a, (AR ) is almost independent
of A and R, the quantity G is a very sensitive mea-
sure of the size of the glueballs. The values of G
listed in Table II range from 0.0005 to 0.09 and
are to be compared to the phenomenological value
G=0.04 extracted from QCD sum rules. ' Al-

though, as above, nothing conclusive can be said
about the numerics, it is pleasing to note that the
phenomenological value is within the range of our
estimates, and corresponds to a small glueball ra-
dius.

In this context, we shall also comment on a pro-
posed mean-field-theory (or phenomenological La-
grangian) model based on treating G ( x) as a local
composite scalar glueball operator in some approxi-
mation. A local description may be justified if
the "size" of the glueball is small in comparison to
the density in the condensed phase. %e imagine
that the size is comparable to the spacing in which
case using a local mean-field theory may not be
possible. Our treatment is based upon a dynamical
picture in which locally we can discuss pure QCD
in terms of a well-defined number of "constituent"
gluons in the same way that the conventional had-
rons are characterized as being composed of a
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well-defined number of "constituent" quarks. In
this picture the "structure" of the composite parti-
cles which condense is of crucial importance in ob-

taining a value for the energy density in the con-
densed phase.

In conclusion, we have shown that a simple
model with reasonable values for the coupling
strength shows many of the features we expect
from the QCD vacuum. One might even hope that
eventually there will be a microscopic derivation
from QCD of such an effective theory, much in

the same way as the Ginzburg-Landau model of
superconductivity is derived from the BCS theory.

IV. SUMMARY AND OUTLOOK
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In this paper we have argued that the magnetic
instability of the perturbative QCD vacuum makes
it unstable against creation of 0++ color-singlet
glueballs. The glueballs will then form a Bose con-
densate with negative-energy density. In a qualita-
tive discussion we have tried to show that such a
condensate might have many of the properties ex-

pected from the QCD ground state, and using a
mean-field model we obtained reasonable numerical
relations between the energy density, the size of the
glueballs and the QCD scale A.

Obviously much remains to be done. The most
promising way to proceed is presumably to con-

struct trial wave functionals along the lines

described in Sec. II 8. Concerning the cruder ap-

proximations discussed in this work, it is of impor-

tance to calculate the self-energies of confined

gluons and quarks and to understand how a, (AR )

runs at the one-loop level.
Once we get a good model for the vacuum a

number of interesting possibilities arise, such as
understanding the low-lying excitations (the hadron

spectrum) and the finite-T behavior.
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APPENDIX A

Here we shall give an explicit recipe for the con-
struction of a complete set of potentials A;(x)
which satisfy the flux constraint Eq. (18). For
simplicity, we shall do this for a square lattice in

two dimensions. The potentials A; can be separat-
ed into mutually orthogonal and longitudinal parts.
The flux constraint only applies to the longitudinal
potentials which we write as

2,. -= —8;[P-(x)], (Al)

where the scalar functions P- obey the Bloch con-
q

dition P-(x+xs)=exp(iq x&)P-(x), and the

orthonormality requirement

f d xP-(x)*[—V P-„(x)]=5 (A2)

It is convenient to use the Bloch functions for
the present construction. Since, however, the flux
constraint is linear, the corresponding Wannier
functions can be obtained immediately using Eq.
(14).

The conditions Eqs. (Al) and (A2) are most gen-
erally met by the functions

P-(x)=e'q'" g
n, m

2
2n K 2fPl 7T

9'x+ + 9y+a a

r

x(a
~

U
~

nm )exp i2nn +m. —
a a

-2 1/2 (A3)
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where n, m =0,+1,+2, . . . , a is the lattice spacing,
and (a

l
U

I
nm ) an aribtrary unitary matrix,

g (a ~. U
~

nm )(a'
~

U
~

nm )*=5

(o
l Gp.G.A l

0) =const(g p g.k g—I k g. »

which immediately gives

(81)

The potentials A,. -„constructed from these P- will

be continuous if (a
~

U
~

nm ) falls at least like
0(lj nm ) for n, m, ~ oo. The additional con-
straint imposed by the flux condition

(0
~
B;

~

0) = —(0
~

E;
~

0) =const . (82)

Now remember that the electric and magnetic en-

ergy shifts in any state are

I d'xa'A, . -, =0

then takes the form

(A5)
bE,s

————,(B ) .

So for the vacuum we expect

(83a)

(83b)

g(a
~

U ~nm)
nm 2n~

Vx+ a
2m~

q„+

=0.

Because the "vector"

2
2nm 2' 7T

9'x+ + Qy+a a

2 1/2

(A6)

gE»~ gE~~c+ gE»~ 2gE»~ (84)

Since the interaction diagrams in Figs. 1(a) and

1(b) give a large magnetic and small electric contri-
bution, one might conclude from Eq. (84) that
there is an electric contribution of the same size
and sign in the self-energy. Thus one would esti-
mate the total energy shift for the 0++ color-
singlet state to be twice the one in the text, i.e.,

'2
2nm 2m&

Qx+ + gy+a a

2 1/2 3 2As
AE ++=— (85)

2n7T
Vx+

a
2m'

qy+ a

is non-normalizable, the condition Eq. (A6) is not
necessarily in conflict with the unitarity (or com-
pleteness) requirement Eq. (A4). However,
(a

~

U
~

nm ) certainly must be such that the sum in

Eq. (A6) does not converge uniformly in the row
labeled a. [Otherwise we could multiply Eq. (A6)
on the left by (a

~

U
~

n'm')* sum on a and then

interchange the a and n, m sums. This would pro-
duce a contradiction. ] It is not difficult to give a
simple example of (a

~

U
~

nm ) which satisfies the
requirements Eqs. (A4) and (A6). The correspond-

ing potentials are however not differentiable across
the cell walls, and they give Wannier functions
which only fall off like a power. We do not have
an explicit example which meets all requirements.

Using this estimate will change nothing of the dis-

cussion in the text. The only difference is that the
simple mean-field model in Sec. III allows for
smaller values of A-100—150 MeV, correspond-
ing to a change in the effective coupling a(R).
For the spectrum of physical glueballs, no relation
like (84) holds and the spectrum depends crucially
on the estimate of the self-energy terms.

One obvious objection against applying Eq. (84)
to our vacuum state is that it is in fact not Lorentz
invariant. This criticism is certainly valid, but it is
interesting to note that in the case of the zero
point energy for a sphere, an explicit calculation
shows that for a large region (E —B )=0 as ex-
pected from Lorentz invariance. Since we have
the same geometry a similar "effective restoration"
of Lorentz invariance might take place.

APPENDIX C

APPENDIX 8

In this appendix we shall make an estimate of
the self-energy diagrams [Fig. 1(c)] which is rather
different from the one in the text. We note that
for the true vacuum state Lorentz invariance alone
requires

There are four possible color-spin configurations
for four gluons which are symmetric in spin and
color. To use a compact notation we shall
represent the spin wave function of a gluon by a
traceless Hermitian 2&(2 matrix, S. The color
wave function will be a traceless Hermitian n X n

matrix [in SU(n) ], we may then form the sym-
metric configurations
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a = [Tr(S&Sz )Tr(S3S4)+Tr(S&S3)Tr(SzS&)+Tr(S&S4}Tr(SzS3)]

X [Tr(C& Cz)Tr(C3C4)+perms],

P= [Tr(S~Sz)Tr(S3S4)+perms][Tr(C& CzC3C4)+perms],

y= [2Tr(S&Sz )Tr(S3S4 }—Tr(S& S3 )Tr(S&S4)—Tr(SS4)Tr(S&S3 ) ]

X [2Tr(C, C, )Tr(C, C4) —Tr(C, C, )Tr(C, C4) —Tr(C, C4)Tr(C, C, )]+perms,

5= [2 Tr(S
& Sz )Tr(S3S4)—Tr(S~ S3 )Tr(S&S4 ) —Tr(S

& S& )Tr(SzS3 ) ]

X [2Tr(C& CzC3C&)+ 2Tr(C& CzC&C3) —Tr(C& C3C~C4) —Tr(C, C3C4C~)

—Tr(C& C4CzC3) —Tr(C4C3CzC& )]+perms .

(C1a)

(Clb)

(C1c)

(Cjd)

For n =2 the set is over complete and the relatively trivial computation must be done separately. If n )3
this set is complete but not orthonormal In t.his space of (a, . . .) the color-spin matrix
Q=(A~ AqS~ Sq+ .

) is a 4X4 matrix which by elementary means can be calculated:

4n

3

4n

3

8n 0

10n

9

10
3

271

3

—Sn

9
(C2)

—24 —4n 0
Sn

3

The characteristic polynomial for 0 is then found to be

1600(n/3) [(n/3) —1 +(4n/3 —A, )

V=a)a+a~P+a, y+a45, (C4)

For the case of interest, SU(3), where n =3, the
roots of Eq. (C3) are A, = 15.97, 4.000, 2.872, and
—7.847. In the n ~ oo limit the roots take the
forms, A, =4n, 3n, 0, and —2n.

If we write the (not normalized) eigenvectors in

the form

exp=A, ,

a3 ———,( A. —5n /3)(A, —4n /3)

——, [(n /3) —1],

a4 —— (A/4n —)(A, —, 4n /3),

(C5b)

(C5c)

(C5d)

then

—nA/3+2[(n /3) —1], (Csa)

a&
—— (A, —2n /3)(A4n/3)(A, —5n /3), —3

20n

where A, is the appropriate eigenvalue of A.
Using the above expressions it is algebraically

tedious but straightforward to calculate the proba-
bility p that a pair in the states V is a color singlet,

spin singlet.
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