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We continue our study of the effect of light fermions on the charge degree of freedom
of magnetic monopoles. Even though the gauge coupling is weak, the Fermi vacuum is
strongly perturbed by its coupling to the charge degree of freedom of the monopole. To
obtain a correct picture of the vacuum we concentrate on the lowest partial wave of the
Fermi field about the monopole core. We find that this simplified system can be
transformed to an equivalent one-dimensional scalar field theory in which the original
fermions appear as sine-Gordon solitons and the monopole charge is determined by the
expectation value of the scalar field at spatial infinity. The scalar theory, though not
soluble, is sufficiently transparent for us to extract the qualitative physics of monopole
charge in the presence of light fermions: the Witten formula for the dependence of
monopole charge on vacuum angle, @, =e(n —6/21r), is true no matter how small the
Fermi mass m; the fractional charge is spread through the Fermi vacuum over a region
size m ~! and the excitation energy of a charged state is of order m; the existence of vacu-
um structure on such a small energy scale means that certain exotic fermion-monopole
scattering processes have very large cross sections. In particular it appears that in grand
unification theories monopoles will catalyze baryon decay at typical strong-interaction

rates.

I. INTRODUCTION

In a recent paper' we gave arguments that the
existence of light fermions should have a major
qualitative effect on the charge, or “dyon,” degree
of freedom? of gauge-theory magnetic monopoles.’
We were able to give a detailed analysis of the
zero-fermion-mass case, finding that the dyon elec-
tric field is completely screened and that the
monopole is surrounded by an extended “halo” of
chiral-symmetry-breaking condensate. The effect
on this picture of nonzero fermion mass was not
clear but we argued that, since quarks and leptons
are in fact quite light, the zero-mass results should
be closer to reality than the conventional picture
based on pure gauge theory. Since Wilczek has re-
cently presented general arguments that the total
dyon charge is independent of the fermion mass*
(and therefore presumably does not vanish in the
zero-mass limit) it has become important to ex-
plore the precise nature of the transition between
zero and finite fermion mass.

In this paper we shall show how to take explicit
account of finite fermion mass. In a nutshell, our
previous method was to reduce the fermion physics
to that of a Schwinger model by discarding
“inessential” degrees of freedom and then to ex-
ploit the fact that the massless Schwinger model

can be solved exactly. The massive fermion theory
similarly reduces to a massive Schwinger model
which, however, cannot be solved. Instead, we use
a variant of the “bosonization” trick® to convert it
to an equivalent boson theory which is very much
like the sine-Gordon model. Although this boson
theory is also not soluble, its qualitative behavior is
clear enough for us to draw conclusions about the
true phenomenology of monopoles in theories with
finite-mass fermions.

We find, in agreement with Wilczek, that the al-
lowed net charge of the dyon is unaffected by the
value of the fermion mass. In the simplest model
the charge always satisfies Witten’s relation
Q,=(n—06/2m)e (Ref. 6) (where 0 is the vacuum
angle). On the other hand, the charge is spread
out through the Fermi vacuum over a region of ra-
dius ~m ~! (where m is the Fermi mass) and the
excitation energies of charged states are ~m. (In
other words, the fermion vacuum carries fractional
charge—that this is possible is a reflection of the
chiral anomaly.) Because of this, the charge densi-
ty and electric field at any fixed distance from the
monopole core go to zero as the fermion mass goes
to zero. It is this spatial nonuniformity of the
zero-fermion-mass limit which reconciles the
mass-independent dyon charge claimed here with
the chargeless dyons of the strictly massless theory.
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We also find that the allowed dyon charge de-
pends on how the fermions get their mass. In par-
ticular if we adopt the Peccei-Quinn mechanism’
(which is designed to produce a massive fermion
but no “strong” CP violation) we can show that
the dyon charges are strictly integral or half-
integral (unless there is explicit weak CP violation
in the theory, in which case calculable fractional
dyon charge reappears). If the fermions get their
mass through a coupling to the same Higgs field as
breaks the gauge symmetry, Jackiw and Rebbi®
found that there is a zero-energy eigenvalue of the
Dirac equation and that the monopole is doubly
degenerate, the two states being assigned fermionic
charge i-;—. We not only find the same degeneracy
but also find that these “half-fermion” states carry
half the charge that an elementary fermion would
carry.

Our most interesting results concern the scatter-
ing of fermions from the monopole. It has been
realized for some time that external particles can
exchange charge with the dyon degree of freedom’
of the monopole and that, in grand unification
theories, reactions in which a quark turns into a
lepton (or vice versa) are possible. Tt has also
been assumed that the cross section for such
charge-exchange processes is geometrical in nature
and therefore, given the small physical size of
gauge-theory monopoles, negligibly small.

Since in our treatment asymptotic fermions are
just sine-Gordon solitons, it is rather easy to study
their scattering from the monopole. We find that
the relevant cross sections are not determined by
the geometrical size of the monopole core and are
in fact quite large. The most naive extension of
our results to a phenomenologically “realistic”
model suggests that under certain conditions a
monopole will catalyze baryon decay at typical
strong-interaction rates. The detailed phenomenol-
ogy of this fascinating class of processes is at the
moment obscured by uncertainties concerning the
color and confinement properties of grand-
unification monopoles.

Some of the above-mentioned issues are dis-
cussed in a recent paper by Wilczek.* He does not
try to solve the problem of fermion vacuum
dynamics directly, but relies on general kinematic
arguments to reach conclusions about broad quali-
tative features of dyon physics. Where there is
overlap, we are in rough agreement (except perhaps
on the question of the rate of monopole-catalyzed
baryon decay). Wilczek also discusses some in-
teresting questions concerning the statistics of frac-
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tionally charged dyons that we did not think to
ask. We have recently learned that Rubakov'! has
also proposed that the monopole can catalyze
baryon decay at a large rate. We feel that the vir-
tue of our treatment is that by dealing directly
with the dynamics of the Fermi vacuum, we can
make these suggestions of exotic physics more con-
crete and quantitative and can explore in greater
detail the range of phenomena to be expected in
different models of weak-interaction physics.

II. THE MODEL AND AN APPROXIMATION

To keep things simple we shall study the mono-
pole of the Georgi-Glashow model.’> This model
has an O(3) gauge field A, interacting with an
I=1 Higgs field ¢ through the Lagrangian

LYM=‘21_2‘2<1?,W>2+§2<D“$’>2—V($-$’> :
e
(2.1)

V is adjusted to produce a nonzero vacuum ex-
pectation value of ¢ ({$ >)=d,?) which breaks the
gauge symmetry down to U(1) and gives the
charged vector meson a mass m,>=e’p,’. The
well-known monopole solution is

1 ~ 1
Aia: ;é‘ainj7A(r) N

A8=0, (2.2)
¢*=X,H(r)d, ,

where a =1,2,3 is the isospin index and both 4 and
H vanish at the monopole center and rapidly ap-
proach 1 for r >m,, ! (i.e., outside the monopole
core).

The dyon degree of freedom arises in the
Ao=0 gauge (which we adopt) as follows. The
minimum-energy gauge field configuration is not
unique, but is parametrized by all possible gauge
rotations which leave the Higgs field invariant:

AP=U4,U, " iUV, U T (2.3)

where U, =exp] i[?»(x,t)y’c‘-’_f]}, A;=A{T,, and
T,=7,/2. Because of the underlying spherical
symmetry of the problem we will restrict our at-
tention to gauge functions, A, which depend only
on the radial coordinate. Motions of the system in
this configuration space produce radial electric
fields

E,=%,E°=—\(rt) 2.4



2060 CURTIS G. CALLAN, JR. 26

(the electric direction in isospin space is defined by
the Higgs-field direction; the dot and the prime
refer to differentiation with respect to ¢ and 7).
The action for such motions, including the effect
of a 6 (or vacuum angle) term, is easily read off
from that part of the gauge field action which in-
volves E:

1 - 6 -
L,=— | dtd’x E*+—= [ dtd’x E‘B
A 292 f + 87T2 f

— i [ amrariope - far [ Caric

(2.5)

But for the geometrical factor of 4772 in the
Coulomb energy term, this is the action for a one-
dimensional electric field. Alternatively, we can
think of this as a one-dimensional Coulomb
action with a position-dependent coupling,
g(r)=e /(4mr?)'/2. Quantization of this action
leads to the usual spectrum of dyon states? with
Coulomb electric fields corresponding to charges
Q,=(n —6/2m)e (Ref. 6) concentrated on the
monopole core.

If light charged fermions are added to the sys-
tem the space of low-energy configurations is en-
larged and the problem must be rethought. We
will couple an I = Dirac fermion, having the
simplest possible mass term, to the gauge field sys-
tem just described:

Ly=9(iy,D}—m)} ,
Dhy=(3,—iA, T .

(2.6)

We shall eventually consider two other options for
giving the fermion a mass: (a) Yukawa coupling to
the Higgs field, (b) Yukawa coupling to a new
complex scalar field whose potential supports an
extra U(1) symmetry (the Peccei-Quinn mechan-
ism’ for eliminating strong CP violation).

The fermions now satisfy a Dirac equation
which has been analyzed by Jackiw and Rebbi.?
Because of the underlying spherical symmetry, an
angular momentum J =L+S+T is conserved and
may be used to do a partial-wave analysis. The
J =0 partial wave is the only one for which the
fermions are not kept away from the monopole
core by a centrifugal barrier, and the higher partial
waves presumably decouple from the physics of the
low-lying eigenstates of the monopole-fermion sys-
tem. In what follows, then, we discard all but the
J =0 part of the fermion field. Apart from the ar-
guments already given in favor of this approxima-
tion, we can also point out that the chiral anomaly

turns out to play a crucial role in this problem,
and the anomaly is saturated by the J =0 partial
wave. The connection between the anomaly and
the J =0 fermion partial waves has been em-
phasized by Blaer, Christ, and Tang!® who have
also examined many aspects of the monopole plus
the J =0 fermion system.

The mechanics of this reduction of the Fermi
field have been worked out in our previous paper
on this problem' and we will simply state the
essential results. For each helicity we may write
the J =0 piece of the Dirac field in terms of two
radial functions g and p,

(+) _ +
vr=o=lax, | @7

1 g
Xi=m;(gi+pix'r)7'2,

where + refer to helicity, X is a 2 X2 matrix, one
index describing spin and the other isospin, and fi-
nally, g and p depend only on r and ¢. We can for-
get about the monopole core and let g and p be de-
fined on 0 <7 < « if we impose the boundary con-
dition p (r =0)=0 at the origin. If we define a
two-component field for each helicity by

gi(r,t)

XaenD=1 15 (n)

(2.8)

the J =0 part of the full four-dimensional Fermi
action may be written in the suggestive form

L,p:fdtfowdr[)7+)7“(iaa—Aa)X+
+X i3+ A X _

+m(X X_+X_X,)], (2.9)
where a=0,1; 0p=3,, 3;=09,; A, =08p,A'/2;
7°=—r;, 7'=i7; and X =X*7". This is the action
for two flavors of one-dimensional fermion living
on the half line, interacting with an Abelian vector
potential (representing the dyon electric field) and
having a flavor-off-diagonal mass term. Note also
that X and X _ interact with 4, with opposite
charges. (Since we now have one-dimensional Fer-
mi fields in the game, we will have frequent oc-
casion to use the 2 X2 Dirac matrices 7,; they are
to be distinguished from the 4 X 4 matrices y,,.)

Our approximation to the monopole-fermion
system is then defined by the action
Lyp=Lj+Ly. This is very nearly a conventional
massive Schwinger model. The key differences are
the boundary condition at » =0 and the 7-
dependent coupling constant &(r) in the Coulomb
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action. Even though the massive Schwinger model
is not soluble, much is known about it and it is a
convenient starting point for a discussion of the
physics of our system.

We would now like to explain a peculiar feature
of the J =0 fermion world which plays an impor-
tant role in what follows. In Ref. 1 we gave ex-
pressions for fermion bilinears in terms of the
equivalent one-dimensional Dirac fields. In this
paper we will need the reduction of the following
current density operators to their equivalent J =0,
one-dimensional forms:

- 1 = o
Jo:le'T’}/o‘lllE—7(X+'}/[X+—X_'}/1X_) s

Ty =92 TR V= — (X+7/0X+“X YoX ),
(2.10)
= 1 = _ = -
Jo=vyors=——— X FoX 4 —X _ToX_)
8mrr
We shall also need the reduction of two operators
which appear as mass terms in our Lagrangians:

1

W=t WX+ X,

(2.11)
23 w_

The expression for the radial electric-charge
current density J, contains a remarkable result.
Since X7oX =X*X is positive definite, the flow of
charge for each kind of particle (+ or — helicity;
particle or antiparticle) will have a definite sign.
This in turn means that the charge of each such
particle type will depend on whether the particle is
moving toward or away from the monopole
corei]2 13 despite the fact that the fermions have

=+ and therefore would be expected to have fwo
charge states (+e /2) for any kinematical configu-
ration. The available charge states are summarized
in Table L

X+7’5X +X_ysX ) .

TABLE I. A list of the charge helicity and motion
states available to J =0 massless fermions.

Helicity Fermion No. Motion Charge
+ + out —e/2
+ + in +e/2
— + out +e/2
— + in —e/2
+ — out +e/2
+ - in —e/2
— — out —e/2
— — in +e/2

According to this table, there is no way to
scatter a fermion from the monopole and conserve
both charge and helicity. If helicity is to be con-
served, the charge carried by the fermion must
change by one unit; if the charge carried by the
fermion is to be conserved, then helicity must
change. Neither alternative is impossible. In the
first case, we make use of the dyon degree of free-
dom of the monopole to absorb the charge lost by
the fermion. In the second case we recall that the
existence of the dyon degree of freedom means that
E-B need not be zero and that chirality may there-
fore fail to be conserved because of the anomaly.
(We are implicitly talking about the case that the
fermion mass is so small that we can neglect expli-
cit chirality violation through the mass term.)
Which of the two scenarios is realized can only be
decided on the basis of a real dynamical argument
such as will be given in the following sections.
The point to bear in mind now is that the peculiar
charge structure of the J =0 fermions is intimately
bound up with the chiral anomaly on the one hand
and the dynamics of the dyon on the other.

III. BOSONIZATION

We now want to “solve” the system described by
Lygp. We will use a variant of the “bosonization”
trick which has proven so useful in studies of one-
dimensional fermion theories. The first step is to
establish a connection between fermion and boson
fields at the level of free massless field theory (that
this is possible at all is a peculiar feature of the
one-dimension case). Because our fermions live on
the half line and satisfy a boundary condition at
r =0, the method of Mandelstam,’ which applies
to fermions living on the whole line, does not
work. By dint of some experimentation, however,
one can establish that the following connection
does work:

[0~ [las b0 ]|
6.1

X, (r,t)=exp |iVT

X (r,t)=iexp iV |d(r,t)+ fords :}S(s,t)H ,
where
Xy
X= X,

is our one-dimensional Fermi field in a 75=7%,7,
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diagonal representation and ¢ is a free massless

scalar field, living on the half line and satisfying
the boundary condition ¢’ (r =0)=0. [Warning:
the one-dimensional ¥ matrices defined after Eq.

(2.9) are not in the ys-diagonal representation, so a
|

transformation has to be carried out to make use
of the above correspondence.] The correspondence
“works” in the following sense. The free scalar
field with the specified boundary condition has the
propagator

Alrt;r't')= —Il{{ In[(r —r'—(t —t')?]+In[(r +7' ) —(t —t")*]} . 3.2)

The correspondence of Eq. (3.1) then implies that
X has the propagator (the propagator of the ex-
ponential of a Gaussian, or free, field is always cal-
culable)

S(r,t;r't")=So(rt;r't")+So(rt;—r't Vg
(3.3)

1 [Pt —t)+71(r —r')]

T (t—t')V—(r—r')
But this is the propagator for a free massless Fer-
mi field satisfying the “bag” boundary condition at
r =0 described in Sec. II. Certain purely algebraic
factors, needed to guarantee the proper anticom-
mutation of field components,'* but which play no
role in our problem, have been dropped from Eq.
(3.1). Mandelstam’s correspondence is similar to
ours, but there is no boundary condition on either

Solrt;r't’)

T
the scalar or the Fermi field. It is, we think, re-
markable that imposing a boundary condition on
the Fermi field preserves the correspondence at the
price of a simple boundary condition on the scalar
field.

The next step is to write the various bilinear
Fermi operators appearing in the fermion Hamil-
tonian as functions of the corresponding boson
fields and so to construct an equivalent boson
Hamiltonian. Since we have two one-dimensional
Fermi fields X ; and X _ we will need two boson
fields ¢ and ¢_. The essential operator
correspondences for the currents are

= _ 1
Xiyuxi:ﬁaﬂ(ﬁi . (3.4)

The correspondences relevant to mass terms are

X X _=u: exp[iVm(d_ —¢ . )]cosV'm fords[ci;+(s,t)+¢;_(s,t)] ,

(3.5)

X vsX_=ip: exp[iV7 (¢_ —¢ . )]sinV7 fo'ds[qé+(s,t)+q5_<s,1>] :

The various mass terms follow from Eq. (3.2) by
straightforward algebra. (This sort of structure
was first studied by Halpern.!*) The normal-
ordering instruction cures an ultraviolet divergence
and p is the mass with respect to which normal or-
dering is done. Although p is needed to give the
right dimensionality to the mass term, it is arbi-
trary and cancels out of any physical answer. The
line of argument that leads to the much simpler
vector-current correspondence is the conventional
one given by Mandelstam [although in his case the
right-hand side 9,¢ is replaced by €,,0"¢ because
the underlying Fermi-boson correspondence is not
quite the same as in Eq. (3.1)].

The dynamical system Ly describes the vari-
ables X ., X_, and A’. We now know how to re-
place X ;. by equivalent boson variables and to com-
plete our program we have only to eliminate the
gauge variables A’. The terms in Ly involving A
are

f

A _____1_7 2 1 1\2 i A
L= 5 [didmr’dr(VP+ 5 [ dedri

+fdtfdr%()?+yo)(+—)7_yox_) )
(3.6)
Using the replacement
— — 1 . .
Xy —X_yoX o= T=(¢, —¢_)

and integrating the third term in L}{AF by parts in
time we get

1 .
Lip= gfdtfhrrzdr(k’)z
0 .
-i—'é;fdtdrk

)\'I
+ [drdro=(6, ). (3.7
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Since A now appears only as a quadratic in A, we
may eliminate it from the system by solving the
classical equation for A’. We obtain an expression
for the radial electric field in terms of the boson
fields:

2

el

which, substituted back in L gives the “boson-
ized” interaction energy

E,=\= (3.8)

2
L

b, —d_— (3.9)

mt fdr32 2,2

To get the full boson effective Hamiltonian we
just append the free massless boson term and the
boson equivalent of the fermion mass term:

Heff': fdr

%w+2+%(¢;>2+~

6
¢+ ¢_—\/_7r.

3222

Vg, —d_

+ mpu:cos

X cos\/v_rfords[77+(s)+7r_(s)]:

(3.10)

We have rewritten ¢ everywhere it occurs as 7
since we are constructing the Hamiltonian. As an
aside, we remark that if we had used the Higgs-
mechanism mass term the cosines in H . would
simply have been replaced by sines.

It is clear why the zero-fermion-mass case is so
simple: if m =0, H ¢ is a quadratic, soluble Ham-
iltonian. It is easy to verify that all of our previ-
ous results on the zero-fermion-mass case can be
reproduced in this way. In particular, it is obvious
that all dependence on 6 can be shifted away and
that the expectation of E, must therefore vanish
(since (E, ) is the 0 derivative of the ground-state
energy). If m=£0, H looks rather a mess, but it
is clear that physics will now depend on 8 with
periodicity 2.

To make some sense of the finite-mass case, we
carry out the canonical transformation

1

=g, —4_) if’ds[m ($)+7_(9)],
Q=5 —¢ fds T () +7_(5)),
1 (3.11)
II= 7(7T+'—7T 7(¢++¢_) ’
P=F(my—m_)— (s +¢_)

obtaining the much more transparent system

Hee= [ "dr | 5104 5(@)2 4+ 3P2+ 5

+—n—12}icos(2\/5¢)

+ —’%“—cosz\/?rQ (3.12)

So, despite an initial appearance of extreme com-
plexity, the system boils down to two sine-Gordon
systems coupled by the Coulomb interaction term
and, secretly, by the boundary conditions at » =0
which have been scrambled by the canonical
transformation. The boundary conditions which
guarantee that Eq. (3.12) describes the same phys-
ics as the original fermion theory are

d(r=0)=Q(r=0),
P'(r=0)=—-Q'(r=

As a first-order check that the new boson theory
is equivalent to the original fermion theory we will
verify that the right number and kind of particle
states are present. Far from the monopole the
theory reduces to two decoupled sine-Gordon
models whose excitations are the usual sine-
Gordon solitons. There are eight possible soliton
“states” (field ® or Q, soliton or antisoliton, mov-
ing in or moving out) and they should correspond
to the eight possible J =0 fermion states (helicity
+ or —, particle or antiparticle, moving in or out)
described in Sec. II. To establish the correspon-
dence, one has only to calculate the electric charge
and axial charge (or helicity) of each soliton via
the relations

1 o , '
Q=2—\7—7;f0 dr(¢}, —¢”_)
1 ®©
— dr(®'+ Q') ,
i (3.13)
1 ©
Q5:E\/—7‘Tfo dr(m, —m_)
1 0 . .
777_[0 dr(<I>+Q) ,

which in turn follow from Egs. (2.10) and (3.4).
The results are summarized in Table II, and they
of course tell us that the soliton states are exactly
of the right number and kind to match the J=0
states of the original fermion theory. Since asymp-
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TABLE II. A list of the possible asymptotic soliton states of the equivalent boson theory
and their correspondence with the possible J =0 fermion states.

Boson Fermion
Field Type Motion Charge Helicity Fermion No.
L] soliton in +e/2 + +
o] soliton out +e/2 — +
(o] antisoliton in —e/2 + -
(o] antisoliton out —e/2 - —
Q soliton in +e/2 — —
Q soliton out +e/2 + —
Q antisoliton in —e/2 — +
Q antisoliton out —e/2 + +

totic fermion states are just sine-Gordon solitons, it
will be possible to study scattering of fermions
from the monopole by rather straightforward soli-
ton methods, once the monopole ground state is
properly understood.

IV. THE MONOPOLE GROUND STATE

We would now like to establish the properties
(charge, charge distribution, mass,. . .) of the
monopole ground state and their dependence on
the free parameters of the theory, e, m, and 6. We
will simply do a classical analysis of the bosonized
Hamiltonian, derived in the previous section. This
is potentially dangerous since the coupling constant
of the sine-Gordon part of the theory is not partic-
ularly weak. General one-dimensional experience
suggests, however, that this procedure should not
lead us astray as far as qualitative properties are
concerned.

The electric charge of the system is just
47r’E, /e, evaluated at large r. According to Egs.
(3.8) and (3.11) this may be expressed in terms of
the boson fields as

e 0
q= DYV br—d_— Vo .
e 0
= — | D ——= 4.1
s (oo || @1

But a finite-energy state of the effective Hamiltoni-
an, Eq. (3.12), is obviously characterized by asymp-
totic values of ® and Q lying at minima of the
mass term: @y =V'7N, Qy =V 7M with N, M be-
ing positive or negative integers. The allowed
values of monopole charge are therefore

N+tM_ 6

5 0 | (4.2)

qNn.m =€

This is perfectly consistent with the presence of a
monopole obeying the “standard” monopole charge
formula of Witten

N0

o, (4.3)

gy =¢

plus some number of charge +e /2 fermion excita-
tions. In short, the charge quantization rules for
the monopole are mass independent: as long as the
system lives in an infinite volume, any mass, no
matter how small, imposes the same quantization
rules. The 8 dependence of this total charge does
not vanish smoothly as the fermion mass goes to
Zero.

To understand more clearly what is going on, we
must find the energy and charge distribution asso-
ciated with these states. The classical ground state
of the effective Hamiltonian is characterized by
I[1=P =0 and @, Q equal to some functions of »
which minimize the total energy. We have already
argued that we must have ®( 0 )=V'7N, and
Q( 0 )=V7M in order for the total energy not to
blow up at large . At the same time, it would
seem that we must have

®(0)+0(0)— L

= |=0 (4.4)

in order for the Coulomb energy not to blow up at
r=0. (There is a physical subtlety here: we have
taken the monopole core radius to be zero while in
fact it is of order my; ', where my, is the vector bo-
son mass; our conclusions therefore apply to the
limit m /my <<1.) This means that any electric
charge must be located outside the core, in the Fer-
mi vacuum.

If 6=0, a consistent solution for the ground
state is ®(r)=Q (r)=0: no charge, charge density
or energy density. If 6=40 this solution is no
longer possible—the total charge, as we have just
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pointed out, must be 6/27 and this charge must be
distributed through the vacuum in some fashion.
An examination of the energy density suggests that
a plausible solution is ®(r)=Q (r)=F(r) with
F()=0 and F(0)=6/2Vm, and with the spatial
scale of variation of F being set by m, the only
mass parameter in the theory (the renormalization
scale u is, as we have explained, a fake parameter).
The energy of such a state, as compared to the
0=0 ground-state energy, will inevitably be of or-
der m. We can always add charge in units of
+e/2 at energy cost m by adding asymptotic soli-
tons, representing the basic fermions, to our sys-
tem. Whether or not there will exist higher charge
states stable against decay to fermions is a detailed
energetic question which we will not try to answer
here since our analysis is only approximate.

The key point is that when 6540, the fractional
charge e6/2m of the monopole ground state is
present as a “vacuum polarization” cloud of size
1/m in the fermion vacuum. [This follows from
the fact that radial charge density is ®'(r)4Q'(r)
and from the proposed r dependence of ® and Q.]
In the limit m —0, this polarization cloud main-
tains its net charge, but spreads out over larger and
larger spatial regions. The electric field and charge
density at a fixed distance from the core of course
go to zero as m vanishes. It is this spatial nonuni-
formity of the zero-mass limit which reconciles the
apparent contradiction between the results on dyon
charge obtained here and those of our work on the
strictly massless theory. The basic physical point
is that the monopole becomes a truly extended ob-
ject when coupled to light fermions.

In the conventional picture of the monopole, all
the charge is on the core. How do we reach that
limit? We alluded earlier to the fact that the core
radius is small, but not actually zero. This means
that the Coulomb energy is approximately

E o ~e2[P(0)+Q(0)—68/V7Pmy .

If the fermion mass is large compared to e’m w, it
will be energetically unfavorable to move ® and Q
away from the minima of the fermion mass terms
in order to reduce the Coulomb energy, and we
will have ®(r)=Q(r)=0. The total charge will
again be e6/2m, but all of that fractional charge
will be concentrated on the monopole core and the
energy will be approximately emy (6/27)%. This
is the conventional picture, and it is reassuring to
recover it in the limit of large m.

Finally we would like to say a few words about
the peculiar ability of the Fermi vacuum to carry

fractional charge. This is perhaps even less intui-
tive than the original discovery that the charge ro-
tator degree of freedom of the monopole can be
quantized to give fractional charge. After all, the
charge rotator is a dynamical object which could
reasonably have eigenvalues depending continuous-
ly on a quantization phase, while one is used to the
notion that the charge carried by the Dirac sea
must come in units of the basic fermion charge,
which is definitely not variable. However, one can
use a slightly unfamiliar version of the chiral
anomaly to show that in the presence of a magnet-
ic monopole the charge of the Fermi vacuum itself
is continuously variable. The point is that in a
static magnetic monopole background field the
chiral charge and electric charge densities for a
Fermi field do not commute: although their
canonical commutators vanish, there is an
anomalous c-number Schwinger term in the pres-
ence of a background magnetic field." In the
language we have been using, the J =0 pieces of
the radial chiral and electric charge densities may
be expressed in terms of our “one-dimensional”
Fermi fields as

Jo=X 7 X —X_7X_,
Jo=X_ FoX =X _TVoX _ .

These densities may in turn be expressed in terms
of the equivalent scalar fields as

1 , '
JO_WZ\/E(QSJ"(L) )

(4.5)
Jy= *—1—(# —7_)
I R
Consequently the densities have the anomalous
equal-time commutator
[Jo(r),J3(F)]===8'(r —r') . (4.6)
2

That this commutator fails to vanish is a direct re-
flection of the presence of the monopole magnetic
field. The total charge then fails to commute with
a local chiral rotation'® parametrized by a function
Alr):

[05,0]=[M o) —A0)] /27,

where
0= ["driyr,
ot = [ "dr Mr i) .

If we carry out the transformation exp(iQé‘) on
the conventional charge-zero vacuum, we will get a

4.7)
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“vacuum” state with a total charge,

[A{ 00 )—A(0)]/2m, which can be anything we
want. The energy of this state will depend on the
functional form of A(r). To get the lowest energy
state in a given charge sector one must minimize
the energy with respect to A(r), keeping
[Aloo)—A(0)] fixed. The analysis done earlier in
this section amounts to carrying out this minimiza-
tion in a simple approximation.

V. MISCELLANEOUS APPLICATIONS

We would now like to use these methods to dis-
cuss some of the physics questions raised in the in-
troductory sections. First of all, let us study what
happens when the fermion gets its mass from a
Yukawa coupling to the Higgs field:

Ln,=g [d*¥¢-Ty. (5.1)

Jackiw and Rebbi showed that in this theory the
fermion moving in the monopole field has a strict-
ly zero-energy eigenvalue® and that the monopole
ground state is two-fold degenerate since this state
can be filled or unfilled. Further, because a zero-
energy state is neither particle nor antiparticle, it
turns out to be necessary to assign fermionic
charge i% to the ground states. We are naturally
led to ask what charge is carried by these half-
fermion monopoles: given that fermions carry
charge +e/2, should “half” fermions carry charge
+e /4?7

The Higgs-mass term, when reexpressed in terms
of the J =0 Fermi variables, takes the form

Ly=m [drdt(X ,yX +X_ysX,) . (5.2)

This in turn can be reexpressed in terms of the
equivalent scalar fields, ® and Q, as

Lmzluz—mfdr dt[cos2V r® —cos2V7Q] .

(5.3)
To compare with the Jackiw and Rebbi treatment
we must set 6=0. The various conditions at the
origin then imply that ®(r =0)=Q (r =0)=0. At
r= oo the system must sit at a minimum of the
mass term: D(co)=(N+3)V7,Q(e0)=MV7. A
simple energy argument shows that the lowest-
energy option for satisfying the boundary condi-
tions at r =0 and 7 =« corresponds to Q(r)=0,
®( 0 )=+1/2V7 (by an obvious symmetry, these
two possibilities are degenerate in energy). Accord-
ing to Eq. (4.1) the allowed charges of the two de-
generate states are +e /4. So our method does re-
cover the degeneracy structure of the ground state
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and, furthermore, informs us that these states actu-
ally carry the charges that one would expect of
“half fermions.” Since we have learned that the
monopole charge is a complex collective effect of
the Fermi vacuum, we should not be surprised that
the original treatment of Jackiw and Rebbi,® which
works in the “naive” Fermi vacuum, does not
show it.

Next we will study what happens when the fer-
mion mass is produced by a Peccei-Quinn— type
mechanism.” This mechanism was invented to ex-
orcise “strong CP violation” (6 dependence) from
gauge theories and we want to understand whether
and how it eliminates 6-dependent monopole
charge. We adopt a cartoon version of this
mechanism:

Ln=g [d*x[¢¥(1+y)¥+H.e.], (5.4)

where ¢ is a complex I =0 scalar having a poten-
tial ¥V (¢*¢) which has a symmetry-breaking
minimum at |¢ | =, If we write ¢ =dge’?, the
field @ is a Goldstone boson (the axion'’) which
couples to ordinary matter through the fermion
mass term and must be included in the minimiza-
tion procedure to find the ground state. The effec-
tive Hamiltonian for the scalar fields Q,  may be
computed as before. If we define gdo=m, the
pieces of the fermionic Hamiltonian which depend
on a and 6 can be written as

2

2
+ﬂ2‘licos(2\/5<l>+a)

e
32722

6
P+O—7~

+m2/icos(2v}Q t+a). (5.5)

Because of anomalous chiral-symmetry breaking
associated with instantons, « is only a would-be
Goldstone boson: instanton effects generate an ef-
fective potential for a of the form

Vgr=M*a+6)*, (5.6)

where 6 is the same vacuum angle as always and
M is a mass scale which will depend on the precise
nature of the axion couplings. Taking Egs. (5.5)
and (5.6) together, we see that it is possible to elim-
inate 8 from the problem altogether by making the
shifts

a—sa—0,
dD+6/2VT, (5.7)
Q0—0+6/2V7.

This means that the allowed charges of the mono-
pole are integral multiples of e /2, as required to
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satisfy CP invariance.

Things are slightly different if the weak interac-
tions carry explicit CP violation. Then the
instanton-generated effective potential for a will be

Vae=M*a—0—0,), (5.8)

where 6, is a small calculable phase which reflects
the effect of explicit CP violation. Now when we
carry out the shifts of Eq. (5.7) we will be left with
an effective potential for ® and Q which has the
same physics as Eq. (3.12) with 8 replaced by 8,,.
In other words, explicit weak-interaction CP viola-
tion shows up in the physics of the monopole sys-
tem as a small determinate effective 6 parameter

having all the effects discussed in previous sections.

Finally, we wish to discuss the scattering of fer-
mions from the monopole. In our model asymp-
totic fermions are described by solitons of two
decoupled sine-Gordon theories for fields @ and Q.
At finite distances from the monopole, these fields
are coupled by a Coulomb interaction term [Eq.
(3.12)]. Consider a “® soliton” heading in toward
the uncharged core of a 6=0 monopole. If this
soliton has low energy, it will simply reflect from
the Coulomb barrier of its own Coulomb self-
energy at a large distance from the monopole core
and head back out to spatial infinity as an outgo-
ing @ soliton. In this scattering event the charge
of the scattering soliton does not change, and nei-
ther does the charge of the monopole. According
to Table II the only thing that changes is the heli-
city of the scattering particle and the scattering
event can be summarized as

gr+M—q +M (5.9)

(where gr and g; stand for the helicity + %, I =%

fermions of the basic model). In other words, the
system chooses to scatter by conserving charge (of
both the fermion and the monopole) and not con-
serving chirality. The amplitude for this process is
essentially independent of the explicit fermion
mass and the helicity nonconservation must be a
reflection of the chiral anomaly. In fact, in our
previous discussion of the massless fermion case,
we pointed out that there is a large vacuum expec-
tation value of the chiral noninvariant quantity

Y =1g; + ¥, g in the neighborhood of the
monopole and the scattering event just described
can be thought of as a scattering of the fermion
from this chiral condensate. Note that although
the anomalous nonconservation of chirality is a
nonperturbative effect, it occurs here with none of
the usual e —877/¢* nonperturbative suppression fac-
tors. Also, since m,, plays no role in this analysis,
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the cross section for the process of Eq. (5.9) must
have no weak-interaction suppression factors of in-
verse powers of m,,. In other words, the cross sec-
tion must be roughly o=c X E ~? where E is the
fermion energy and c is constant “of order unity.”
Needless to say, this cross section can be large.

It should be pointed out that this sort of “di-
mensionless” cross section is characteristic of the
scattering of spin-% particles on a monopole. In
the J =0 partial wave certain charge or helicity
states exist only as ingoing or outgoing waves, so
that conservation of probability requires certain
J =0 quantum-number-flip amplitudes not to van-
ish even in the limit of zero monopole size. The
basic phenomenon has been observed before'® al-
though it seems not to have been explicitly realized
that it implies a large cross section for quantum-
number exchange between monopoles and external
fermions.

Rather than attempting to obtain a quantitative
estimate of this cross section we would like to dis-
cuss how the same scattering mechanism would
work in a theory with a more phenomenologically
realistic structure. Suppose we have not one, but
two I = Dirac Fermi fields (1, and ¢,). Then
the chiral anomaly should lead to a vacuum expec-
tation value of the four-Fermi operator
Y1r¥1.¥or Yo in the vicinity of the monopole, and
the scattering process analogous to Eq. (5.9) is

GiR+Gr+M—q i +q +M . (5.10)

The previous charge-flow analysis for the J =0
partial wave works for ¢, and 1, independently
and we again conclude that there is no change in
the charge carried by the fermions or by the mono-
pole.

The SUjs theory with one fermion 5+ 10 genera-
tion has in fact precisely this structure: the SUj5
monopole lives in an SU(2) subgroup'® which
mixes color and weak isospin and the fermions fill
out two Dirac SU(2) doublets plus a number of
SU, singlets (which play no role in the vacuum
dynamics of this monopole). We can display the
particle identification of the components of the
SU(2) doublets, using the notation of the previous
paragraph, as follows:

- i
Y= %3 , L= uz ,
(5.11)
3 o
Pop = ot |’ Yy = w, |

where u’, d" stand for the color components of the
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nonstrange quarks. Our discussion of charge flow
in the J =0 partial wave translates into the state-
ment that only the lower components of the L
fields and only the upper components of the R
fields can appear as ingoing waves and vice versa
for outgoing waves. The reaction of Eq. (5.10),
with SUj particle identification supplied therefore
reads

u1L+u2L+M—>J3R+eE+M . (5.12)

This conserves SU; and ordinary charge but
violates baryon number. It is reminiscent of the
baryon decay found by ’t Hooft!® to be caused by
SU, X U, instantons and the associated chiral
anomaly. It is also very similar to the process

uj +up —dp +e;” which occurs via X-boson ex-
change. The difference is that, for the reasons dis-
cussed in the previous paragraphs, the monopole-
catalyzed version of baryon decay has a large cross
section: its amplitude contains no inverse powers of
my and no factors of e ~7/8°. Exactly how this
process manifests itself phenomenologically is not
completely clear to us. Since the monopole can
carry color charge, the confining effects of the or-
dinary QCD vacuum will presumably play an im-
portant role in determining rates and selection
rules. We hope, by means of the methods dis-
cussed in this paper, to soon be able to give a
quantitative calculation of the rate of monopole-
catalyzed baryon decay. The potential cosmologi-

cal importance of this phenomenon is quite obvious.

We would also like to remark that these and
similar nonelectromagnetic processes ought to be
major contributors to the energy loss of monopoles
passing through matter. This, too, could be of

cosmological importance and deserves further
study.

VI. CONCLUSIONS

The holes in this treatment of the dynamics of
the monopole-fermion system are numerous. Our
aim has been to show that by making use of the
available arsenal of field-theory tricks, it is possible
to make progress in a direct attack on the ap-
parently very complicated dynamics of this system.
We believe that we have added weight to the
claims of Rubakov, Wilczek, and ourselves that
some rather remarkable baryon-decay catalysis ef-
fects would occur in the presence of a monopole.
An urgent problem, which we hope to be able to
attack with an extension of these methods, is the
semiquantitative computation of the corresponding
rates. ’

Note added. 1 have been informed by V. Ru-
bakov that the reference to his original suggestion
of monopole catalysis of baryon decay is Pis’'ma
Zh. Eksp. Teor. Fiz. 33, 658 (1981) [JETP Lett.
33, 644 (1981)], and that he has also solved the
J =0 massless fermion-monopole system by boson-
ization methods essentially identical to those of our
Ref. 2.
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