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Renormalization-prescription ambiguity in perturbative quantum chromodynamics:
Has Stevenson found the solution' ?
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Stevenson has claimed to resolve the renormalization-prescription ambiguity inherent in

a truncated perturbative expansion by a principle of minimal sensitivity. This is shown to

define an o., such that its coefficients in the perturbative expansion are in the ratio of the

corresponding coefficients of the P function, regardless of the physical quantity calculat-

ed. Stevenson's principle is then only relevant when the expansion of the P function for

the optimal a, makes sense and is then negligibly different from the commonly assumed

criterion of fastest apparent convergence, with no greater claim to "optimality. "

I. INTRODUCTION

One of the ambiguities inherent in perturbative
QCD is the question of what is the most sensible
expansion parameter to use, an ambiguity that
would be of little import if a, were 0(10 ).
However, at present momenta we are far from this
happy situation. Yet we still wish to apply pertur-
bation theory and hopefully obtain meaningful re-
sults. This ambiguity arises because we are free to
remove the infinities in the theory in any way we
choose. ' Though we take care of the freedom to
scale the momenta for our renormalization,
through a simple subset of the general
renormalization-group equations, ' we are still free
to prescribe how much of the finite parts are left
behind on taking the infinities away. This is the
so-called renormalization-prescription ambigui-

ty. Clearly any physical quantity does not
depend on the renormalization scheme in which we
choose to work and so the choice of scheme is
merely a matter of convenience, provided we can
calculate to all orders in perturbation theory.
However, in some schemes we may have to calcu-
late many terms to obtain a good approximation,
while in others just the first few terms may be suf-
ficient. It is particularly important in perturbative
QCD to find such schemes, because we have little
hope of calculating beyond the first few terms in
the QCD perturbative expansion.

In perturbative QED, the choice of scheme is of
minor consequence, because, for any reasonable
choice of expansion parameter, the first few terms
in the series are always a good approximation.
Rather remarkably, moreover we have a natural
choice of renormalization prescription in QED—

the physical or on-shell scheme. In this scheme,
the low-energy limit of the differential cross sec-
tion for Compton scattering is proportional to o.

to all orders. This o. is just the fine-structure con-
1

stant, i.e
&37

%e can, of course, use any other

(running) coupling a(Q ) in any scheme as dis-

cussed by Coquereaux. ' In QCD, because the
gluon, unlike the photon, is not physical on-shell,
we have no such "physical" definition of the cou-
pling.

So how do we attempt to find an optimal
scheme in perturbative QCD? Since the expansion
is likely neither convergent nor probably even an

asymptotic series, this "optimality" may be only a
temporary phenomenon applicable to the first few

orders of perturbation theory. Nonetheless, it is
important for applications of perturbative QCD to
have some reasonable consistent criterion for decid-
ing when we feel perturbation theory makes sense.
In one school of thought it is believed we should
ensure that the higher-order terms do not contri-
bute more than the lowest order" by making a jud-
icious choice of our expansion parameter. This
idea we call the "fastest apparent convergence cri-
terion" (FACC).

For example, consider the calculation of the ra-
tio

9t =o(e+e ~ hadrons)/o. (e+e ~p+p ),
then"

2
a MS

7T 'ij
I

where a(MS) is defined in 't Hooft's minimal-
subtraction scheme, ' and the Q dependence of A~
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and a is implicit'" (and the numerics are for five
flavors). As seen, the leading-order correction to
the parton-model result (%=3+e; ) is not the
dominant one until a(MS) is very small. In fact,
the next-to-leading term is only less than a third of
the leading-order correction if a(MS) & 0.2, i.e.,

~ Q /A~s
~

& 400. However, in contrast, if we ex-

pand in terms of n, defined in the MS scheme, ' in
which the arbitrary (ln4m. —yE) factors of dimen-
sional regularization have been removed, then

(3g 2) 1
G(MS)

'2

II. RENORMALIZATION-SCHEME
DEPENDENCE

To illustrate how we shall treat the dependence
of a truncated perturbative expansion on an un-

physical parameter, let us first consider the well-

known calculation of the running coupling
a(Q, R) itself. In the leading-logarithm approxi-
mation, in any scheme,

2

a(Q, R ) =a(gp, R ) — a(gp, R )ln
4~ Qp2

2

a(gp', R )'ln'

a(MS)
(2)

The next-to-leading correction is then smaller than
a third of the leading one if a(MS) &0.7, i.e., when

~ Q /A~~
~

y6. Thus, according to FACC,
a(MS) is a much more satisfactory expansion
parameter for this process, as is also a, defined in
the momentum subtraction scheme, in which'

a(MOM)
7T

2
a(MOM)

7T

with similarly rapid apparent convergence.
Of course, although the FAC criterion tells us

the expansion for 8' in terms of a(MS) or
a(MOM) is more sensible than a(MS), at least to
this order, we do not know that Eq. (1), with

a(MS), is not the whole story with all the still

higher-order terms negligible, while in terms of
a(MS) or a(MOM) these would be very large. We

obviously have to calculate these higher terms to
be certain. Since this is currently impossible, we

must either hope that fastest apparent convergence
is meaningful, and this is just not supposed to hap-

pen, or think of a surer criterion. Stevenson' has

proposed such a condition —the principle of
minimal sensitivity (PMS), which he claims pro-
vides an optimal approximation. The aim of this

paper is to test this claim and explore whether
PMS really tells us anything different, or more
believable, than FACC. In Sec. II, we detail what
renormalization-prescription dependence of the
perturbative expansion means. In Sec. III, we

compare FACC and PMS, and in Sec. IV give our
conclusions.

where Qp is some arbitrary momentum at which
we have chosen to fix the coupling to be o, (gp2, R).
The renormalization-group equation resulting from
a rescaling of Q gives

4' ' —= —/3pa(Q, R )
a~(g', R)

a lug'

to leading order. This can be integrated, summing
the series of Eq. (4), to give

a(gp, R)
a(Q, R)=

1+(Pp/4~)a(gp, R )In(Q'/Qp )

It is, of course, essential to use this result, which is

exact to all orders in the leading logarithm, if we

want to study the behavior of a(Q, R ) as Q ~ ao.

However, in the neighborhood of some finite
momentum Qp, the approximation given by Eq. (4)

is equally good, provided a(gp, R)ln(Q /Qp )

« l. In fact, the approximate form Eq. (4) differs
from the exact expression [Eq. (6)] by less than 1%
for a(gp, R)ln(Q /Qp ) &0.3. By adding more
and more terms to the expansion and including the
higher P-function coefficients P&,P2, etc. , we can
obtain an expansion which is correct to yet higher
orders. Although the use of a form like Eq. (4)
appears to give some special role to the choice of
Qp, this is illusory. In any practical situation, we
know the region of interest and Qp is just some
convenient momentum in this range.

In a closely analogous manner, we study the
scheme dependence by expanding a(Q, R), for ex-

ample, about some scheme R0, labeled by 0, as a
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series in a(Q, O). Although any physical quantity
is invariant to a change of Ro, it is convenient
when studying small changes of scheme to expand
about some suitable Ro. This will not only be
equal to the exact, Ro-independent result to the
order of perturbation theory we consider, but will
also be negligibly different numerically, provided
a(Q, O)bR « 1 [just as with Eqs. (4) and (6)].

In this spirit, consider some physical quantity H,
which we calculate perturbatively as a series in the
parameter a(0) defined in any renormalization
scheme Ro..

11= Ilp+a(0}11](0)+a(0)'II2(0)

+a(0) II3(0)+ . . .

Since it is with the scheme dependence that we are
concerned, we ignore the kinematic variables on
which II, a(0), and the coefficients II„(0)depend,
as these will take care of themselves. Now if in-

stead we choose to work in some other renorma1i-

zation scheme labeled R, then

II = 110+a(R)II](R)+a(R)2112(R)
C

+a(R) II3(R)+ .

Of course, the physical quantity II does not depend

on the scheme we choose, although the individual

terms in the expansion do. Thus, as a(0) is
changed to a(R), so the coefficients II„(0)change

appropriately to ensure the renormalization-group
equation

where, most importantly, the coefficients Pp, P] are
independent of the scheme and are given by' '

pp —— 11—3Nf—

P] —— 102——,Xf 4',
(12)

It is straightforward to show, by substituting Eq.
(10) into Eq. (11) and noting that a(0) obviously
satisfies Eq. (11) with coefficients P;(0), that

I ] P2(R) —P2(0}
P2=P] + P]+

0 0

3P]
2 2P2(R ) —P2(0)

P3 P]P2+ Pl + P]

P3(R ) —P3(0)
+

0
(14)

I 1 1 2 Pl
P4= ]p]P3 P3+ 3P2 +2 PIP2

0 0

4P2(R ) —3P2(0) P] 3 P2(R )
+

3P P2+3PP]+' P
Pl

5P3(R) —2P3(0) P4(R ) P4(0)—
300 300

where Xf is the number of fiavors. p2 has only
been calculated in the MS scheme and is found to
be even more strongly varying with Nf.

arrraR =0 (9) (15)

is satisfied for all schemes R.
How this happens is determined by how a(R)

changes from scheme to scheme. R is the set of
parameters [ p],p2, . . . I, which specify a(R) in
terms of a(0):

a(R)=a(0)[ 1+pla(0)+p2a(0) +p3a(0)'+ . ] .

(10)

The parameters p; are in turn specified by the
coefficients P;(R) of the P function, which define
the running coupling' a(R) by

4n —=P(a(R))Ba(R)
8 lnQ

11,(R)=11,(0)= II, ,

11,(R)= II,(0)—p]ll], (17)

II3(R)= II3(0)—2p]II2(0) —(p2 —2p] )II], (18)

II (R) —II (0) 3p]II3(O) —(2p, —5P, ')rl2(0)

Incidentally, the subset of scheme changes in
which the coefficients of the P function do not
vary can always be absorbed into a scaling of the
momentum argument of a [Eq. (11)]
Q ~Q exp( 4vrp]IP0) w—ith the scheme fixed.

It is equally simple to show that the scheme in-
dependence of the physical quantity II means

= —a(R) [ pp+]t3]a(R)
—(p, —5p,p +5p, }II, , (19)

+l32(R)a(R)'+ . ],
(11)

etc.
In practice, when we compare any expression

[Eq. (7)] with data, we truncate the expansion at
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some order and then compare. In doing this we
have explicitly set the higher-order terms to zero
and implicitly fixed the renormalization scheme to
be the one that minimizes the effect of higher or-
ders. ' This is not an arbitrary scheme, but is to-
tally fixed by the approximation made. This is
most easily described by illustration.

In Fig. 1, we show successive approximations to
a quantity H, given by

II' '(R)= g II„(R)a' '(R)"
n=0

(20)

'3 4

and labeled by N. The approximation a' '(R) sa-
tisfies Eq. (11) with the P function having coeffi-
cients Pz and beyond zero. As an example, we as-
sume Ii (Ref. 22) to be given by

2
aoH= 1+ +1.5

the reference scheme (p=—0) as expected from Eq.
(21).

The fastest apparent convergence criterion, of
course, always makes the leading-order QCD
correction the dominant one, and so it may appear
at first sight that higher-order calculations are ir-
relevant. However, this is not the case, the
higher-order contributions must be calculated to
know in which scheme, i.e., for which choice of
expansion parameter a„ the leading-order term is
dominant. This is essential if we are to make test-
able predictions for different processes.

While in deep-inelastic scattering, whether on a
nucleon ' ' or a photon or in e+e annihila-

tion, ' a(MOM) does seem most satisfactory for
the FACC, this is not always so. For example,
in quarkonium decays, the higher-order correc-

tions, though smaller in momentum subtraction,
are still large. In fact, in the minimal-subtraction

scheme,

—1.5 +1.5—
.7r 77

(21) r(qq~gg)
r(re 1'r)

2
2 a(MS)

9e& &@ED

with ao ———,. To allow just a two-dimensional plot
to be drawn, we restrict attention to the class of
schemes in which the P functions [Eq. (11)] are
identical to O(a ), so the set R depends only on

p( =p&), a single parameter measuring the change
from the reference scheme in which ao ———, and

Eq. (21) holds.
From Fig. 1, we see that as X increases, the suc-

cessive approximations II' '(p) become more weak-

ly dependent on p, for a bigger and bigger range of
p, just as they should. Indeed, when E~ ao, II' '

will be independent of p, Eq. (9). Of course, we do
not actually know the value of II=limz „II' ',
which we call II„h„„but we can guess from Fig. 1

that it must be around 1.12.
When we approximate the data by a truncated

series, e.g., II'"(R), we explicitly fix the scheme to
be the one for which II"'(R)=II„h„, (see Fig. 1). A

priori, we have no idea which scheme this is,
though we do know it is the scheme that mini-
mizes the effect of higher orders. Moreover, we
know such a scheme must exist because provided
II&h„, is not far from the zeroth-order result (of the
parton model, for example) —here 1, II'" takes all
values in the neighborhood of 1. We can gain
some idea of which scheme this is by asking which
prescription has the smallest next-to-leading
corrections, i.e., the scheme for which
II'"(R)=II' '(R). In Fig. 1, this is arrowed as
"fastest convergence (FC)&." This is not far from

a(MS)
(22)

and the next-to-leading-order term changes the
leading-order result by a factor of 3. According to

NS2 FC2

1.15— ~e
~0

I-

~~

1.10- ~
r

r IK

1.05-

~0

~~
~ H

~O
V~ ~ ~ —~—~ ~

~O
~O Qw

~0

~0

e~
~O

~
e~

~O

~O

~+

~0
I I

FIG. 1. Successive approximants II' ' [Eq. (20)] la-

beled by N = I, . . . , IV, are shown as a function of the
scheme parameter p. When p=0, the H' ' are given by
Eq. (21). As N increases, note that the II' ' become less

dependent on p. (FC) ~ marks where the N =I,II ap-
proximants intersect and (FC)2 the nearby intersection
of the N =II,III approximants. (MS) ~ 2 are the neigh-

boring turning points of the N =II,III approximants,
respectively, The (FC);, (MS); scheme are picked out

by the fastest-convergence and minimal-sensitivity con-
ditions, respectively.
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aH( '

=0
z =PMs

(23)

This result is, of course, true, when N~ oo, for all
schemes R as a general consequence of renormal-
ization-group invariance [Eq. (9)].'

In contrast, what is meant by fastest apparent
convergence is not so precise. The equality of suc-
cessive approximations H' '=H' +" is really only
meant in an approximate way. Rather, we mean

by FACC

the FACC, this is a quite unsatisfactory applica-
tion of perturbative QCD with a, defined in the
standard schemes, ' ' ' as much discussed. '

Of course, this need not be the case. It could
well be argued that the expression Eq. (22) with

a(MS) could give the whole answer with no further
higher-order corrections, while in other schemes
with smaller next-to-leading terms the still higher
orders may be very large. It is clear we have no

way of checking that this is incorrect. However,
we can ask whether there is some other "reason-
able" criterion which may make this possible.

Halliday, Suranyi, and Caswell have studied
the problem of perturbative solutions to the anhar-
monic oscillator and shown that one can obtain a
good approximation to a solution H by expanding
perturbatively in terms of a parameter itself depen-
dent on an unphysical parameter (R) and then fix-
ing this unphysical parameter by the requirement
that BH/M =0, to the order to which one works.
Stevenson' has proposed this same idea in pertur-
bative QCD to fix the renormalization scheme "op-
timally" for a given process to a given order. This
he calls the "principle of minimal sensitivity"
(PMS), with its eponymous acronym. The justifi-
cation that this is sensible, beyond noting that it
works in the numerically checkable and explicitly
convergent example of Halliday and Suranyi, is
the belief that when one has made an optimal
choice of scheme, at some order, the result should

by only minimally sensitive to changes about this
optimal scheme. Thus, there the approximation
II' '(R) [Eq. (20)] should have a turning point, and
so

pie of Eqs. (20) and (21) shown in Fig. 1. At
second order, FACC allows 0(p ( 1, where
II' '=II'" fixes p=0. 6 (labeled FC&), while PMS
requires aII' '/ap=0, which occurs at p-0. 5 (ar-

rowed MSt) defining a scheme rather close by with

almost the same value of H. A similar result oc-
curs at the next order too (see FC2 and MS2 in Fig.
1), again with very similar values for II. ' Let us

ask how general this is.

III. PMS AND FACC: IS THERE A DIFFERENCE?

Let us consider the simplest example

II' I(R) =no+a(R)n)+a(R) np(R),

where a(R) =a' '(R). To this order, where

a(R) —a(0)=p&a(0) +p2a(0)'+

a, has the P function [Eq. (11)]

P=Poa, '+Pea. '

and so only depends on p~ [see Eqs. (13)—(15)].
The Stevenson principle then requires p] to be
fixed by aII' '(p&)/ap& ——0, i.e.,

aa(p~)
n, +2a(p, )n, (p, )

BP1

(25)

(26)

, an, «, &

+a(p)) =0 . (27)
BP1

For small changes in scheme about Ro, it is con-
venient to treat this equation perturbatively, in
terms of its Taylor series. Though Stevenson' in-

sists that -this assigns a special role to Ro, out of
keeping with renormalization-group invariance,
this treatment will, as discussed at the beginning of
Sec. II, nevertheless be equivalent to the exact re-
sult to the order we consider and furthermore will

be negligibly different numerically to all orders, for
the small scheme changes we study when

a(0) && 1. To ameliorate Stevenson's objection we

may regard Ro as his optimal scheme. Equation
(17) tells us an2/ap& ———n~, and Eqs. (26) and (13)
give

+s HN+1

HN

H(N+1) H(N)

H —H(N) (N 1) (24) aa(p, )

C)P1

Pi=a(0) 1 + 2pi +
Po

a(0)+

for some range of e. But how different is this
from the requirement of minimal sensitivity with
its clear mathematical definition~

To gain some feeling, let us consider our exam-
Substituting in Eq. (27) and working to O(a3), we

easily find
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1II (PMS)= —— H, .
2 0

(28)

a(PMS) IIi .
2 0

(29)

The coefficient of the next-to-leading-order contri-
bution H2 is wholly determined by the leading ord-

er. Nevertheless, H2 has to be calculated in some
(reference) scheme (p) =0) so that we know in

which scheme this optimal form occurs. Thus
from Eqs. (13), (17) and (28), we note

np(0) pi
a(PMS) = a(0)+ + ~(0)~

n, 2p,

H2(0) 2pi II2(0)

II) P() II,

3P 2

+ 1

2
tt(0)'+

0
(30)

Thus the form for H in the "optimal" scheme is to
this order

H = Ho+a(PMS)ni

PMS fixes

II2(PMS) =— 1

d+1 po

of which Eq. (28) is the case with d =1. In deep-
inelastic scattering, where H is a moment, each has
a different power d and so PMS fixes a different
"optimal" scheme for each. For the quarkonium
decays we discussed above, for which d =2, PMS
does not allow the large terms of the minimal-
subtraction scheme [Eq. (22}] anymore than FACC
does. Indeed, it is even more restrictive, and, to
this order [Eq. (22)] forces an optimal a(PMS) far
from a(MS) or even a(MOM) [see the analog of
Eq. (30)].

From Eq. (28), we see the Stevenson principle
fixes H2/II) in terms of the ratio of the
corresponding coefficients in the p function, viz.

pi/po. This appears to be a quite general result,
which can best be illustrated by considering as
complicated an example as we are likely to meet in

practice. %e work to order u, so that

II' '(R)= HO+a(R)H)+a(R) II2(R)

How does this differ from FACC? FACC
would require

~

n, (R)/n,
i
(1.

where

a(R)=a' '(R)

+a(R)'n, (R)+~(R)'n, (R }, (33)

PMS fixes II2(R), so that

II (PMS) 1 pi (306—38XF)

II( 2 p() 8ir(33 —2' )
(31)

(4)(0) 1+ (4)(())

+p a(")(0)'+ ~ ~ (34)

(3+ i) 1
a(PMS)

r 2
harp) a(pMS)
2po n.(32)

which equals 0.20 for Nf ——5, a value quite in
keeping with fastest apparent convergence. This
can be illustrated by applying PMS, Eq. (29), to
the ratio A for e+e annihilation, discussed in the
Introduction. PMS fixes

aH'"

Bp3

(iu(R) II(+2a(R}H2(R)+ .
dp3

has the Callan-Symanzik function [Eq. (11)] with
coefficients p;(R) (i =2,3) scheme dependent.
PMS requires Bn( )(R)/BR =0, so we have to
choose how to specify R—there are several possi-
bilities for independent variables, e.g.,
R = j p),p2, p& ] or R = I p„Pz(R),P&(R) j. As it
matters not which we use, we choose [ p),p2, )()3

and set BH'"'/Bpi ——0, considering i =3,2, 1 in turn:
(a)

With the coefficient of (a/ir) equal to —0.63 for
five flavors very close to the value in Eq. (3), we
see a(PMS) is almost that of the momentum sub-
traction scheme as FACC would also want.

%e can generalize the result to this order by
easily calculating that if

II'2'(R) =[a(R)] [II,+a(R)H2(R)],

, an, (R)
+a(R}

Bp3

Substituting Eqs. (13)—(15) in Eq. (34),

a~(R) =a(0) 1+ 4p, —— a(0)+ ' '

Bp3 3 po

(35)

(36)
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Then, using Eq. (19) and working to 0 (a') in Eq.
(35), we easily find

1 a

II2(PMS) =— II i6

rather similar to Eq. (28) for the more restrictive

form, Eq. (25).

(b) Similarly,

with

Ba(R) 3 2= a(0) 1+Ta{0) Sp2 —14p&
2

Bp2

Pi 1 Pz(0)
+

P Pi+2 + 0 4 ~

I}H Biz(R)
'

H +2 {R)H (R)
Qp2 Bp2

+ 3a(R) H3(R)+

, i}H3(R),BH4(R)+a(R)' +a(R)' =0 (38)
Bp2 Bp2

(39)

Again using Eqs. (13)—{15)in Eq. (34) and keep-
ing «rm»n Eq (38) to 0 (a ), straightforward
algebra yields, on recalling Eq. (37),

1 p2(PMS)
H, (PMS)= —— H, .

9

(c) Next

gg(4j

Bp&

with

aa{R} H&+2a(R)H2(R) +3a(R) H3(R} + 4a{R) Hq{R) +z(R)22 ~H2(R) BH,(R)
Bp& Bp~ Qp~

+a(R) =0 (41)~ BH4(R)

Bp)

~&(R) Pi 4p (o) 3p (o)=&(0)' 1+ 3a(0)' 6p, —28pip&+ p2+28p& —— pi+
~Pi 0 0 0

+ o e ~ (42)

from Eqs. (13)—(15). Once again substituting Eqs.
(13)—(15) into Eq. (34), keeping terms to O(a ) in

Eq. (41), tedious algebra yields on using our previ-

ous results of Eqs. (37)—(40)

1 p3(PMS)
II (PMS)= —— IIi .4 4 p

(43)

The optimal form for II of Eq. (33) is then

H'"'= H +a(PMS)H, +— a(PMS) II,
1 Pi

1 p2(PMS)
a(PMS) IIi

9 0

1 P,(PMS}
a(PMS) IIi . (44)

We see a general pattern emerging in the Stevenson
scheme with

H' '=H + g A,„a(PMS)" II, , (45)
P„ i(PMS)

where the A,; depend on the order at which we
truncate (except, by definition, A,

&

=—1).
[Note added: This pattern, shown in Eq. (45), is

confirmed by further study and the general form
of A,„ for any order of truncation N is deduced to
be

1 N —2n+1
n N —1

This succintly summarizes Eq. (29) for N =2 and
Eq. (44) for N =4.] Most importantly, the form
Eq. (45) is quite independent of the particular phy-
sical quantity we consider. However, the scheme
in which each a(PMS) appropriately truncated is
defined does depend on the process, for we must
know what the corresponding II2(0), H3(0), . . .
are, as well as pz(0), p3(0), . . . , in some (arbitrary
reference) scheme. Equations (10), (13)—(19) then
fix a(PMS) in terms of a(0) and determine
p2(PMS), p2(PMS), . . . that appear in Eq (45). .
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p2(pMs) 3 p, (o) n, (0)
+

Po 2 Po II)
n, (o)

'
H)

piII2(0)

pon )

For example, with E =3 in the PMS optimal
scheme,

while truncating with E =4,

p2(PMS) 9 p2(0) H (0)
+

Po 8 Pp II(

pi II2(0) 7pi

Poni 36Po

n, (o)
'

p3(PMS)

po

2p (0) 4II4(0) p, n, (o) n, (o)n, (o) n, (o)
'

3p, n, (0)
'

p, 'n, (o)—&Z +8 +
P II, 2Pon ) II ) n) 2Po nt 2Po n)

4p~(0) II~(0) p, p2(0) p)

PoH 1 2Po~ 216Po

with more complicated expressions than Eq. (30)
for a(PMS) in terms of a(0).

Note that the optimal PMS form at a given or-

der is not trivally obtained from that at some

higher order, i.e., the different truncations of Eq.
(45) are not equivalent. The addition of more

terms in the series both for H and a„makes the
scheme-dependence space more complex and so the

turning points of II that determine Eq. (45) are

shifted (as seen in the simple example of Fig. 1).
Nonetheless, renormalization-group invariance, Eq.
(9), implemented through Eqs. (16)—(19), etc. , en-

sures that as the order of truncation increases, the

range of schemes over which there is little scheme

dependence is enlarged (as in the simple example of
Fig. 1). Any sensible criterion will pick out

schemes for the truncated expansion in this (flat)

scheme-insensitive region.
What PMS does is to force the coefficients in

the expansion of H, viz. H&.Hz. H3.H4. , to be

in just the ratio of the corresponding coefficients

of the P function, viz. Pp:P&.P2.Pq. (aside from

simple rational fractions). That this happens

should come as no surprise, since how the truncat-

ed perturbative expansion for H changes with

scheme is dictated by how o. does and this is

fixed by the P function through the Callan-

Symanzik equation, Eq. (11). Thus, not surprising-

ly, Eq. (45) generalizes to still higher orders in

PMS.
FACC requires that we choose an a, so that the

truncated expansions, both for the Callan-Syman-

zik function and for the physical H, are apparently
convergent. PMS, by forcing the coefficients of
one to be given in terms of the other, is thus a par-

ticular implementation of FACC where the expan-
sion of II is sensible if that for P is too.

IV. CONCLUSIONS

As a minimum we can only believe a perturba-

tive expansion in terms of some a, if its p-function

expansion makes sense. For without that, a, itself
is ill defined. Since we can only calculate the first

few terms of this expansion, a truncation criterion

is essential, even in this definition. The expansion

of the Callan-Symanzik function is not, in general,

convergent, nor perhaps an asymptotic series.

Thus at some order, the perturbative expansion for
the p function will break down.

Typically, in QED, expansions in a, e.g., for

(g —2), have a hundred or so decreasing terms and

then ever increasing ones, which make the series

diverge. In perturbative QCD, we would expect
the change to increasing terms to occur after
perhaps only 3 or 4 and the Pz to show an N!
behavior sooner rather than later. At what N this

happens will differ from scheme to scheme.

Indeed, 't Hooft has pointed out that there do ex-

ist schemes in which all the coefficients of the p
function, but pp, p~, are zero. Though formally de-

fined, unfortunately we do not know what renor-

malization prescriptions these are and how to cal-
culate in them. Schemes, like MS or MOM have,
in general, nonzero P;, though hopefully some
known schemes may have P-function expansions
which are Borel summable.

Our hope is that we can obtain a good approxi-
mation to physical quantities in suitable kinematic
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domains by calculating the terms in the nonin-

creasing part of the series, as in QED (but see Ref.
35). For this to be meaningful, the truncated ex-

pansion of the P function must be sensible. The
fastest apparent convergence criterion (FACC), by
its very nature, embodies this idea. In this paper,
we have deduced that Stevenson's principle of
minimal sensitivity (PMS)' requires the terms in
the analogous expansion for any physical quantity
to behave just as for the P function (aside from ra-
tional fractions). Thus PMS tells us nothing that
FACC does not. The claimed optimality of
Stevenson's principle is then no more or less believ-

able, or less transitory, than the naive criterion of
fastest apparent convergence.

In any event, these criteria, whether FACC or
PMS, force a choice of expansion parameter that
makes the first few terms in the perturbative series
dominant. Nonetheless, this does not render futile
calculation of higher-order terms. For without
knowing these, we cannot know in any given situa-

tion what expansion parameter is optimal, and
without knowing this much of the predictive power
of perturbative QCD is lost. '"

Note added in proof F. ollowing the preprint ver-

sion of this paper, Wrigley (Ref. 40) has provided a

more elegant proof of the general result of Eq.
(46)
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