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The possibility of introducing SU(N) antisymmetric Higgs fields is raised, and a pat-
tern of spontaneous symmetry breaking by an antisymmetric Higgs field is presented in

terms of quartic coupling constants. A detailed application is given for breaking an SU(7)

gauge symmetry to a realistic SU(3), &(SU(2) )&U(1) by two antisymmetric fields H ~ and
H».

Recently, Georgi' has discussed a large gauge
theory based on SU(N) groups. The principal
motivation for extending the SU(5) gauge theory
to a still bigger theory is to look for a solution of
the so-called "flavor question. " In addition to this
flavor question, the "gauge hierarchy problem" has
been a theoretical obstacle to the grand unified
theories for many years. To understand the prob-
lem of gauge hierarchy Susskind considered the
hypercolor gauge group in addition to the chro-
moelectroweak gauge group SU(3), && SU(2) XU(1).
Weinberg, on the other hand, advocated a scheme
toward a gauge hierarchy by assuming a massless

Higgs doublet at the grand unification mass scale.
So far no explicit example of the Weinberg
mechanism is known. The ideas of hypercolor
gauge group or the massless Higss field of Wein-

berg may be achievable in a larger gauge group
which contains an SU(5) gauge theory. Therefore,
the study of SU(N) gauge theory has been a focus
of recent attention. ' ' With a larger symmetry, we

hope that a realistic example of the Weinberg
mechanism can be found.

In this spirit, we study the first step (grand uni-

fication mass scale) of spontaneous symmetry

breaking by a completely antisymmetric-tensor

complex Higgs field of order 2 & n &X/2 in a

grand unification gauge group SU(N) (this repre-

sentation has dimension zC„),
ala2 an or H

l 2 n

above weak isospin relation. Previously, only
adjoint-representation breaking has been suggest-
ed

For simplicity, let us introduce one Higgs field.
Although I assume that this field is elementary,
the following theorem will be applicable when the
effective potential for composite Higgs fields takes
the same form as in our case. In this paper I re-
strict my attention to potentials symmetric under
reflection: H —+ —H.

A completely antisymmetric tensor of order n of
U(N) can be formed by n arbitrary vectors and the
generalized Kronecker 6's

If the sets of numbers Ia „a2,. . .,a„ I and

IP&,P2, . . .,P„ I are equal and P ~,P2, ,P„are all

different, 5, . . . "=1or —1. We can choose

gauge axes such that the n independent vectors are

The completely antisymmetric Higgs fields being
only SU(2) doublets or singlets will lead automati-

cally to a relation Mz ——M~ sec 8~. In case
some Higgs fields survive the breaking to the
chromoelectroweak gauge group, these antisym-
metric Higgs fields are natural choices for the

FIG. 1. A standard form of H ' ".The shaded

box is n &(n dimensional.
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X„,—(lp. . .p,p. . .p), . . .~,„,=(00. . . 1,0. . .0) up to
normalization. Therefore, A ' ' "=+1 for
P; =i (and appropriate cyclic permutation of this),

and all the other elements are zeros. Since the sum

of tensors of the same order, type, and weight can
be added to give another tensor of the same order,

type, and weight, and we can choose gauge axes

such that X independent vectors are X[;]——6; &

(i =1,2, . . .~, an arbitrary antisymmetric tensor
of order n can be reducible to a direct sum of (2),
as shown in Fig. 1.

In Fig. 1, the n-dimensional shaded boxes (when

n =2, these are 2X2 matrices) are irreducible and where

[n/2]
J2+ y [Nn]~

n! {n!)2
(3)

all the other elements are zeros. The small open
box, whose dimension is smaller than the shaded
boxes, is absent when [N/n]n =N, otherwise
zeros. Hence vacuum expectation values can be
made block diagonal in the sense of Fig. 1 with
[N/n] different vacuum expectation values:
H12. . .n

U
Hn+1. . .2n ~nl —n+1. . .nl=U1, =U2, . . ., Pi =Ul

and their cyclic permutations with zeros for all the
other elements. The most general Higgs potential
1s

J H . . . H''
n ) (3a)

E-=H HP1" P +1 ~.H~1 ~,P, +1a1. i +1 al l p ~ .

hi�ppo

~ opt j1 (3b)

with the coefficients

[W, n]
[n/2]

(3c)

case (1) uI +0, up — u[]vga] —0 )
2 2=

case (k) ui ——v2 = . =uk @0,2 2 . . . 2

2= = 2=
uk+1 = ' ' ' =U[w/n] —O )

The c; are chosen such that the vacuum expecta-
tion value of V takes a simple form,

( V) = p'(u]'—+v2'+ +u~')

+A(vt +v2 + . +vi )

+C(v] +u2 + ' +vt ) ~

The extremum conditions of ( V) are

2

v;[A(vi +u2 + +ui )+Cv; ]=~
v, .

(4)

for 1 & k & [N/n] Certainl. y, the minimum of the

[N/n] cases lead to the absolute minimum of the
classical potential V, when the bounded energy
condition is satisfied. For case (k), we have

S'AC —= (
p4 4(A+C/k)

If case (k) is the minimum of ( V), ( V) for case
(k) should be less than those of other cases. There-
fore, it is appropriate to calculate a testing func-
tion T,

y k, m pk+m pk

For p )0, not all u; can be zero. I choose U1 as a
nonvanishing entry,

2

Cu] +A(vi +v2 + +u[~g„] )=2 2 2 p
n

Pl C
4k(k +m ) (A+ C/k)[A+ C/(k +m)]

(10)

If another entry, say uk is nonvanishing, I have

(6)
with 1 & (k and k +m ) & [N/n], where m can be
negative or positive.

On the other hand, the condition for the bound-
ed energy

2 2
U1 Uk (7)

for the case C+0, by considering (6) and (5) for
i =k.

Therefore, I obtain [N/n] different possibilities
for the symmetry-breaking pattern:

A+ —,)OC

should be satisfied for all 1 & k' & [N/n]. There-
«re, A+C/[N/n] &0 satisfies (11) for C&0, and
A+C&0 satisfies (11) for C&0. For the symme-
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&0,)0 (12)

for all the integers

try breaking to realize the value k for p )0, and
nonzero A and C, we need

(A) Sp(2k) where k =[N/2], when n =2, C &0,
and A+C/k &0,

(B) [SU(n)]" with k = [N/n] and
N n—[N/n] =0 or 1, when 3 & n & [N/2], C &0,
and A+C/k &0,

(C) SU(n ) X SU(N n—) when 2 & n & [N/2],
C&0, and A+C)0.

m )0
&0,

respectively, satisfying 1 & k +m & [N/n] Fro. m
(11) and (12), we obtain for n & [N/2]

(13)
k=[N/n] for C&0,
k=1 for C&0.

Therefore, the SU(N) gauge symmetry-breaking
pattern is

The cases (A) and (C) for n =2 were considered
by I.i. ' For the overlapping case of (C), our pat-
tern is slightly different from his. The unbroken
Sp(2k) or SU(n) groups are obtained by calculating
the gauge-boson masses.

In the following, we discuss an SU(7) gauge
theory as an application of the above result. We
consider two antisymmetric Higgs fields H p and
H py. The potential consistent with the individual
reflection symmetries is

2
A] '2 A2 h)HaP ~ H HaPy+ H HaP + H HaPy + HaPH HyPHap 6 apy 2

HPvPH H aPoH + H H aPH HPvP+ H aPH HPPaH + H aPH H HPo'P
12

(14)

To apply the above result, let us assume

I ~s I &&
I
~i I 1~2 I

Now we can use the symmetry-breaking pattern
separately for two different Higgs fields. For the
H p case A=A,

&
and C =h ~, and for the H py case

A=A, 2 and C =h2. We obtain

SU(7)~SU(5) XSU(2) for h
& & 0 and A,

~ & l
h ~ l

(16)

SU(7)~Sp(6) for h»0 and A,» —h&/3, (17)

SU(7)~SU(4)XSU(3) for h2 &0 and g2&

(18)

SU(7)~SU(3) XSU(3) for h» 0 and A,» —h, /2 .

The locking of H p and H py is determined by
mixed terms A,3, A,4, and A,5. I consider only case
(16). In this case I choose nonvanishing elements
of (H t') as

(H") = —(H") =u2 (20)

and all the other elements are zeros. For Eq. (18),
there are three possibilities for nonvanishing
(H ~r) =us. (a) (H' ), (b) (H ' ), and (c)
(H ) without loss of generality. The three cases
lead to the classical vacuum energies due to mixed
terms, b, ( V)/u2 u3 ——2(A3+A4+As), 2(ls+A4/2),
and 2A,3, for cases (a), (b), and (c), respectively (Fig.
2). A physically realistic situation results when
case (b) is the minimum of the three cases: SU(7)
breaks to SU(3) XSU(2) X U(1). This happens
when

A,4&0, A,4+2K,5)0 . (21)

A similar consideration for Eq. (19) leads to un-
physical situations.

For Eqs. (16), (18), and (21), the unbroken gauge
symmetry axes are 1,2,3 for SU(3), and 4,5 for
SU(2). Defining the charge of the charged weak
gauge boson 8'5 as + 1, the charges of the funda-
mental representation are uniquely determined for
e5 ——0 since the sum of the charges adds to zero:

( ——, , ——,, ——,, 1,0, 1, —1) . (22)
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FIG. 2. An example of H ~ in SU(7). The lines are

A,
&
= —h ] and —h &/3. The SU(7) gauge symmetry

breaks down to (I) SU(5) X SU(2) and (II) Sp(6). The re-

gion (III) is unphysical.

The choice of charge assignment is determined by
the choice of the quartic coupling constants.

Note added. An erroneous statement regarding a
massless Higgs doublet has been removed from the
original version of this paper, Report No. UPR-
144T, 1980 (unpublished). The symmetry-breaking
pattern (22) has been used by J. E. Kim [Phys.
Rev. Lett. 45, 1916 (1980) and Phys. Rev. D 23,
2706 (1981)],and by S. Dimopoulos and F.
Wilczek, ITP report, 1981 (unpublished).
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