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Within the Hamiltonian formulation and by means of Dirac's constraint formalism we

investigate the properties of Yang-Mills theories when the gauge-fixing conditions involve

the field strength E,'. We show, e.g. , that C,b;Eb ——0, where C,q, are the structure con-

stants of the gauge group, are satisfactory gauge conditions for any semisimple gauge

group in a basis where the first three indices represent a minimal SU(2) embedding. We

also give an unconstrained formulation of the theory. This generalizes a previous similar

treatment of the SU(2) case by Goldstone and Jackiw. We argue that this formalism

could be used to study the quantum excitations around, for instance, the Julia-Zee dyon

solution.

I. INTRODUCTION

We shall consider, to start with, a pure Yang-
Mills theory with a compact semisimple gauge
group given by the Lagrangian density

W(x) = —,F,„,(x)Ff—"(x),

where

G, (x)= D;E,'= —d;E,'(x—)
—C,b, EbA—,( . (1.6)

1

Now this is a Hamiltonian system with con-
straints' since (1.3) contains the primary con-
straints

where E,(x)=0 . (1.7)

F,„„(x)=c}„A„B,A,„+g—C,b,Ab„A,„. (1.2)

C,~, are the totally antisymmetric structure con-
stants of the gauge group which are assumed to
satisfy C„dCb,d &x: 5,b. (Our general results are
valid even if the representation does not satisfy this
relation, but a more careful analysis is then re-

quired. ) The group index a runs from 1 to I (the
order of the group). The spacetime metric is time-
like. The transition to the Hamiltonian formula-
tion is obtained by means of the canonical conju-
gate momenta to A,z defined by

(1.3)

which satisfy the basic equal-time Poisson-bracket

(PB) relations

Consistency [E,(x) =0] requires furthermore the
secondary constraints

G, (x)=0

for which G, (x) =0 is satisfied. All these con-
straints are first class, ' since

[G,(x), Gb(y)I=C, b, G, (x)5 (x —y),

IE,(x), Gb(y))=0.
(1.9)

According to Dirac's constraint formalism such
constraints may be eliminated by means of gauge-
fixing conditions. F., is eliminated by fixing the
variables 3, . This is a trivial elimination leaving
the phase space spanned by E,' and A,'. The physi-
cal phase space is then reached by means of m

gauge conditions

IAt'(x), Eb„(y)] =5t 5,b53(x —y) . (1.4) X,(x)=0 (1.10)

The canonical Hamiltonian density is in turn given

by

A, (x) = —, E,'(x)E„(x)+ 4
—F'~(x)F„&(x)

to G, (x)=0. &n order for P, to be satisfactory the
matrix

Ibf,b(x,y) =
I G, (x), &b(y) I—

—gA, (x)G, (x), (1.5) must have an inverse in the following sense:
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dzMbxz M 'b, zy = dzM ',bxzMb, zy =6„5 x —y (1.12)

When this is the case, the Poisson brackets for the physical phase space may be expressed in terms of the
original ones by means of the Dirac brackets

{A (x) B(y) I*= {A (x),B(y) ]+f fd'z d'z' [ {B(y) X, (z) I
(M-')., (z z') {Gb(z'), A (x)]

—{A (x),X,(z)] (M '),b(z z') {Gb(z'), B(y) I ]

—f f f fd'zd'z'd'z" d'z'" [ {A (x),G, (z)I(M ')b, (z,z'){Xb(z'),X,(z")I

&&(M '),d(z",z'") {Gd(z"'), B(y) I ] . (1.13)

Usually the transformation properties of the
field under global symmetry transformations look
differently in the physical space than in the origi-
nal one. Let J be a generator of a global symmetry
transformation. Then J is gauge invariant, i.e.,

{G, (x),J I =0

and by means of the Dirac brackets (1.13) we find

{A„(x),J]*={Ag, (x),J]+D;8J, ,

where

W~, (x)=—f d z{J,Xb(z) I(M ')b, (z x) .

(1.16)

Hence it is the symmetry properties of the gauge
conditions that determine the transformation prop-
erties in the physical space. Take, e.g., J=H
where H is the Hamiltonian, i.e.,

H =Hp+HG,

Ho ——fd'x( —, EgE„+ , F,'~F—„)), —

HG= —g fd xA, (x)G, (x),

where HG is just a gauge transformation. Inserted
into (1.15) we get

A„(x)= {A„(x),H I*

= {A„.(x),HD]*

E()x +D~,A( —)x,

where

A, =—fd'z {HO,Xb(z) I (M ')b, (z,x) . (1.19)

Hence if we have made the gauge choice A, =3„
then we would have 7, =0 and

{A„(x),H]*={A„(x),HI . (1.20)

We shall come back to global transformation prop-
erties later.

There is only a limited set of gauge conditions
considered so far in the literature. There are the
standard Coulomb [B~A,'(x) =0] and axial

[A, (x)=0] gauge choices for which (M ),b(x,y)
exists at least in perturbation theory. (See, e.g. ,
Ref. 2.) Other gauge choices are, e.g. , the radial

gauge x'A„(x) =0, (see, e.g., Ref. 3) and e,b;Eb =0
in the SU(2) case treated by Goldstone and
Jackiw ' and the more complicated gauge choices
considered in Ref. 6.

In the present paper we shall investigate some
properties of linear gauge conditions on the field
strength E,' including the Goldstone-Jackiw one
for SU(2). General conditions on coefficients as
well as on the field strengths are derived.

II. GAUGE FIXING OF E„.

First let us for simplicity eliminate A, from the
theory and then introduce the Euclidean metric for
the space indices. We have then the basic PB rela-
tion

{E.;(x),Ab, (y) I =5;,5,b53(x —y) . (2.1)

We shall consider gauge conditions of the type

X, =B,b;Eb;(x) =0, — (2.2)

where B,I,; are constants. A necessary condition
for this to be a satisfactory gauge condition is that
7, represents m algebraically independent variables
different from zero. Thus we have the following.

Condition I (necessary): The constants B,b; when

viewed as an m X (m &(3) matrix must have rank m.
A both sufficient and necessary condition is that
the matrix
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M,b(x,y) = [G,(x),Xb(y) I

C—„dE„(x)B.bd;5 (x —y) (2.3)

is invertible in the sense of (1.12), which here leads
to the following.

Condition II (necessary and sufficient): The ma
trix

Mgb(x) =C„dE„(x)Bbd; (2.4)

Bbdi Cbdi (2.5)

where C,b, are the structure constants in a basis

where the first three indices correspond to the so-

called minimal embedding of the SU(2) algebra.
This embedding (which always exists) has the

property that no (nonzero) element of the gauge

group algebra commutes with all elements of the
SU(2) subalgebra (see Ref. 7). This property im-

plies that if a, C,bk ——0 for all b and k, then u, =—0,
which is equivalent to the statement that C,bk con-

sidered as an m X(m X3) matrix has rank m.
That minimal embedding exists for the special case
SU(Ã) can easily be shown by considering the ir-

reducible, Hermitian X-dimensional representation
of SU(2). The matrices of such a representation

obviously form a subalgebra. However, since the
representation is irreducible, then according to
Schur's lemma there is no matrix other than a
multiple of the unit matrix which commutes with
the SU(2) matrices. Now the unit matrix does not
belong to the Lie algebra of SU(N) and therefore
there is no Lie-algebra element which commutes
with the SU(2) algebra.

The minimal embedding has some further
noteworthy properties. %'hen the adjoint represen-
tation of the gauge group algebra is decomposed
with respect to the SU(2) subalgebra, only integer
spins j occur and furthermore j) 1 (see Ref. 7).
Therefore the gauge group algebra is decomposed
into orthogonal subspaces ji (1=1,2, .. .) of dimen-

sion (2ji+1) under the action of the SU(2) subalge-
bra. Also the field strength Ed; can be similarly
decomposed into subspaces when d labels vectors

must be nonsingular. Far from all 8's which satisfy
condition I, also satisfy condition II. Take, e.g.,
B,dk ——5k35,d which yields the gauge condition
E 3 —0, but which implies M b ——0. Thus the con-
stants Bbd; have at least to mix group and space in-

dices in order for (2.4) to be invertible. A natural
choice of Bbd; which satisfies condition I for any
semisimple gauge group is

in the different subspaces j, but they are of course
not irreducible under SU(2) since Ed; also carries
the space index i U. nder the joint action of SU(2)
in the gauge group and SO(3) on the spatial in-

dices, the linear combination Cbd;Ed; can be shown
to transform as a spin-ji vector if d is restricted to
the subspace ji. (Use the fact that C„; are repre-
sentation matrices in the adjoint representation. )

Therefore our gauge condition can be stated as the
elimination of the spin-jh states occurring in the
coupling of the spin j~ from the gauge group and
the spin 1 from the spatial degrees of freedom.
The joint action of SU(2) in the gauge group and
SO(3) is then also the natural realization of rota-
tional symmetry since it respects the gauge condi-
tion. The generators of rotational symmetry are
thus Jk+ Tk, where Jk are the generators of SO(3)
and Tk those of SU(2) in the gauge group.

We would like to mention that there exist other
similar expressions for BI,d; which satisfy the
necessary condition [e.g. Bbd; ——Cbd'+3 in the repre-
sentation (2.14) of SO(4)j. However they are not of
such a general character as (2.5) and we shall
therefore consider only the minimal-embedding
case for Bbd; in what follows.

We turn now to the analysis of the matrix (2.4).
When (2.5) is inserted we obtain

M,b(x) =C„dE„(x)Cd' .. (2.6)

Using the Jacobi identity of the structure constants
we find

M b(x)=Mb (x) Cb~g (x—),
where X,(x)=C,b; Eb; (x). Hence, when the gauge
condition X, =0 is imposed the matrix M,b(x) be-

comes symmetric. Another property of M,b is

TrM, b (x)=riEb (x),

where g is a constant related to the normalization
of the structure constants. The necessary and suf-

ficient condition for 7 ——0 to be a gauge condition
is Det M,b(x)+0 which divides E„(x) in at least

two sectors; those characterized by Det M,b(x) & 0
and those for which Det M,b(x) &0. The values of
E„(x) for which Det .M,b(x) =0 must be excluded

to start with, but one could try to add them in a
consistent fashion to the final physical theory.
What we should prove is that the set of values of
E„(x) for which Det M. ,b(x) =0 is a null set. This
we shall not do in its full generality, but we shall

give strong arguments that this is the case. First
we show that there exists an open set of E„ for
which Det M,b@0. Consider E„=A( )5x„+ «, e
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Where e„are Small, then M,b
——A(X)m, b +gab (X )

where m, b
C——aidCdib and gab(x) small. m, b is

nonsingular, since condition I is satisfied. Hence,
when A, is large compared to eci we have Det M,b

=A, (x) Det pab+Trrjab(x)+0. Next we consider
some explicit examples.

In an SU(2) Yang-Mills theory the minimal

embedding is trivial. We have the gauge condition
(cf. Ref. 5)

a(X) =EabiEbi(X) =0 . (2.8)

which leads to

DetM, b(x) = —,[(T«)'—T«'] (2.10)

Since E„(x) is symmetric, there exists an orthogo-
nal matrix R,b which diagonalizes E„(x). We
have

Hence, Eb;(x) is a symmetric 3X3 matrix. The
matrix M,b becomes here

M,b(x) =e„dE„(x}edib 5ab TrE—— Eab, —

(2.9)

the number of nonsingular sectors of EJ,- by divid-
ing also E& into such sectors. We illustrate these
properties by an explicit example. In the SO(4)
case with the nonzero structure constants C,b,
given by

!

~ijk ~ijk~ Ci+3,j+3,k ~ijk (2.14)

we have M;+3j+3 M;j and Det M,b

=(DetM~ ) —(DetMj) where

Mij =Mi+3,j =~iImEI+3, k ~mkj Hence, when

El+3 k —0 the nonsingular sectors of E~ (x) are ex-
actly those of SU(2), and when El+3 k@0 the posi-
tions of these sectors have changed and a further
sector has entered. We see also the alternative pos-
sibility of letting EI+3 k be divided into these non-
singular sectors leaving EJ free. In the SU(3) case
which is more complex we have checked that the
general feature as described above still holds. [In
this connection we would like to mention that the
SU(3) treatment given in Ref. 8 is different from
ours although the minimal embedding is important
there as well. ] We conclude that apart from a null
set of field configurations the gauge condition

Eob(x) =Ra,D,dRdb ~ (2.1 1) Xa (x):C,b; Eb; (—x.) =0 (2.15)

where D,b(x}=5,b j!b(x) When this. expression is
inserted into (2.10) we get

DetM, b(x)=(Ai+)(2)(i(l+A3)(kp+A3) .

(2.12)

Those values of E„.for which Det M,b
——0 are thus

characterized by the surfaces A,
&

———A,2 or A,
&

———k3
or A,2 ———A,3. These values have to be excluded,
which then divide E« into eight nonsingular sec-
tors. (This analysis should be equivalent to the ap-
parently different analysis in Ref. 4.) For a gen-
eral Yang-Mills theory we shall first consider a
very particular case, namely when E& ——0 for
c+1,2, 3. The matrix M,b becomes then

A„.(x)= S„(x) C„b(M '—
)b, .

1
X — dkE,k(x)+ C,—daEdkS, k, (2.16)

where Sa;(x) may be chosen to satisfy

C,b;Sb;(x)=0 . (2.17)

is fully satisfactory.
When (2.15) is imposed we may construct a

completely unconstrained formulation of the
Yang-Mills theory. The expression for Aai(x) in
the physical phase space is obtained by solving
Gauss's law G, (x) =0, Eq. (1.6). Obviously the
following expression is a solution (cf. Ref. 9):

Mkl(X } Ekjm Eji (X)hamil

M,-k(x) =0, a+1,2,3,
M,b(x)=C~gEj;(x)C-d, b, a,b+1,2,3.(2.13)

Sai (x } ~ai (x } CaibPbc Ccdk~dk (2.18)

where pb, is the inverse of the matrix C„bC„„
which is nonsingular since condition I is satisfied.
By means of the Dirac brackets (1.13) one obtains

This last equation makes it possible to invert (2.16)
yielding

which implies Det M,b
——DetMkIDetM, -b. The re-

quirement Det Mab@0 is thus equivalent to the
SU(2) conditions above together with Det Mob+0.
We expect therefore that the number of nonsingu-
lar sectors of Ej ~ increases with the order of the
gauge group. For arbitrary E& the positions of
these sectors depend on E,k or we may decrease

{S„(x),S„,(y) )*=0,

{E„(x),Sbj(y) I'=IC„bi5 (x —y),

+ai, bj
=~ab6ij CaicPcdCbjd '

(2.19)
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The constants K„b, satisfy

Ceaj+ai, bj
= Ccgj +at', $j =0 and Ez,.~, = 2m. Hence

S«(x) and E„(x)are (4m) canonical variables that
span the physical phase space. When (2.16) is in-

serted into the Hamiltonian (1.16) we obtain a
completely unconstrained formulation of the
Yang-Mills theory which may be quantized by
standard techniques (cf. Ref. 6).

III. SOME PROPERTIES OF
THE YANG-MILLS THEORY

UNDER GAUGE CONDITIONS {2.15)

[A«'(x)i Jk+Tk} [A«(x)iJk+Tk } i

[E«'(x)iJk+ Tk } [E (x«)iJk+ Tk }

Hence, the equations

(3.1)

[A„(x),Jk+ Tk }= IE„(x),Jk+ Tk }=0 (3.2)

What are the properties of the Yang-Mills
theory when the gauge condition (2.15) is imposed?
First we notice that the conventional perturbation
expansion is not valid. This may, e.g., be under-

stood from the fact that Gauss's law (1.16) be-

comes i};E„(x)=0 in the g~O limit which then

has zero PB with 7, . Hence, the gauge condition

X, =0 is not effective in the g —+0 limit (see also
Refs. 4 and 5). The solutions are thus nonpertur-
bative. Maybe the theory describes, e.g., a mono-

pole sector. Indeed in this gauge spherically sym-
metric monopole solutions are easy to obtain. To
see this we first notice that since the gauge condi-
tion is invariant under global transformations gen-
erated by Jk+ Tk, k =1,2, 3, where Jk is the gen-
erator of rotations and T, the generator of global

gauge transformations, we have, due to (1.15)

x H(rit)= (M— ')ktd;Et( (3.5)

which by means of (3.3) becomes

1 a'(r, t)+P'(r, t)r +4Pr
2er

(3.6)

I p~(x),Jk+ Tk }=0, a = 1,2, 3

to Eq. (3.2), whose solution is

tp, (x)=x'h(r, t) .

(3.7)

(3.8)

There always exists an expression for E«which
yields the standard monopoles solutions. ' [Since
P, =Dotti, =0 for monopole solutions, the expres-
sion (3.5) still holds. ] However, they are only solu-
tions to the equations of motion when we scale E„.
to zero in (3.5). (In addition, we have to set

A„=E« ——(t},=0 for a+1,2, 3.) The problem is
now that E„=O is the most singular value in the
theory (leading to M,b

——0) and we do not know if
this value may be included in a consistent fashion.
What we need is to determine the restrictions of
the E«~0 limit of the theory which seems very
difficult. However, there is a spherical symmetric
solution to Yang-Mills for which E„+0,namely,
the Julia-Zee dyon solution' (for vanishing Higgs
potential' ):

[Notice that (M ')ki is the inverse of Mki when

E,k =0 for a+1,2, 3.] Now choosing S„=O and

a(r, t)=ct /r, p(r, t)=c2/r, we get
H (r, t) = —1/gr, which when inserted into (3.3)
yields the Wu-Wang monopole solution. " Howev-

er, this choice is only a solution to the equations of
motion in the limit E«~0(ci,c2~0), i.e., when we

scale E« to zero. in (3.5). This is a general proper-
ty. When we introduce Higgs fields, we have to
add

E„(x)=a(r, t)5„+p(r,t)x'x',

A«(x) = y(r, t)5„+p(r, t)x'x'

+e,tkx H(r, t)

for a =1,2, 3. Equation (2.18) implies

S„(x)=y(r, t)5„+p(r, t)x'x' .

(3.3)

(3.4)

may be consistently imposed even in the physical
phase space. (For the general connection between

these equations and monopole solutions, see, e.g.,
Ref. 10.) The solutions are H(g),

gr cos8

E,k =(Dkq&), sin8,

where

K(g)= . , H(g)=gcothg —1,
sinhg

'

g=pr cos8, tan8= qE

qM

(3.9)

(3.10)

Comparison with the expression (2.16) for A„(x)
leads to the relation

where in turn qE and q~ are the electric and mag-
netic charge of the dyon, respectively. One may
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easily check that E,; (a =1,2, 3) is of the form
(3.3) and that Eq. (3.6) is satisfied [(3.5) is valid
since Dog, =0]. The determinant of the matrix

MJ is given by
r 3

DetM; = —tan8 —H(g)E(g)
1 2

lj r'

X I 1+K(g)[H(g) —K(g)] j', (3.11)

which is positive definite and finite for finite r and
at r~O, but goes like e ~'" " at r~ oo. Hence,
M,J is nonsingular for all r except in the limit
r~ ao.

IV. CONCLUSIONS

%e have given an unconstrained formulation of
the Yang-Mills theory for an arbitrary gauge group

which generalizes the SU(2) construction by Gold-
stone and Jackiw. The minimal embedding of
SU(2) in the given gauge group played an impor-
tant role in our construction. The resulting theory
may not be used to study quantum fluctuations ei-

ther around the conventional vacuum or around
the spherically symmetric monopole solutions. It
may, however, be used to study fluctuations
around the Julia-Zee dyon solution since in this
case the gauge condition is nonsingular.
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