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We calculate hyperon radiative decays using quark-diagram analysis taking both weak

and electromagnetic interactions to be short-distance processes. The second-quantized

quark fields are expanded in terms of MIT bag modes, so as to be consistent with quark
confinement. In this paper, we present the general formulation of the quark-diagram cal-
culation and use the X+~py process to illustrate the procedure. We rederive traditional
baryon-pole-model results. The calculation indicates the need of some nonleptonic weak

interaction with chiral structure different from ( V—A) 8 ( V—A).

I. INTRODUCTION

Weak radiative decays such as X+~py and
A~ny are a good place to study nonleptonic weak
interactions. Such radiative decays are presumed
to be the combined effects of electromagnetic and
nonleptonic weak interactions. Though the experi-
mental information for such radiative decays is
more scarce than for pionic decays, the calculation
of photon emission is much simpler and more reli-
able than the calculation of pion emission and we
can still learn a lot about the structure of nonlep-
tonic weak interactions from such weak-radiative
processes.

Earlier calculations of these processes are based
on symmetry principles and the baryon-pole
model. ' These models used tree diagrams as indi-
cated in Fig. 1. Two-body weak transition vertices
are also responsible for pionic decays and can also
be represented by pole diagrams as in Fig. 2.
Later improvements on these simple pole-model
calculations were attempted using dispersion-
theoretic techniques combined with current alge-
bra.

The Weinberg-Salam model of electroweak in-

teraction is recognized by now as a good theory of
leptonic and semileptonic processes. It is to be ex-

pected that the weak hadronic currents in this
model are also the source for nonleptonic weak
processes. In order to test this point, we must
have a clear way to separate the strong-interaction
effects from the weak-interaction effects. The
development of "factorization" theory guarantees
that every nonleptonic weak amplitude can be fac-
torized into a product of a coefficient function (to
which hard gluons contribute) and a matrix ele-

ment of some local operator (to which soft gluons
contribute). The coefficient function can be calcu-
lated by renormalization-group techniques. The
matrix element can be either parametrized by some
parameters which are fitted by data or calculated
from certain quark models [nonrelativistic SU(6)
model, MIT bag model, and so on].

Since the only available data are for (X+—+py)
process, we calculate it in the standard model. We
use quark-diagram analysis and factorization
theory so that we can easily see how the observed
decay width and angular distribution (or equiva-

lently, the asymmetry parameter) relate to the
structure of the four-fermion Hamiltonian.

(o)
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(o) —=Y (b) Y B"

FIG. 1. Typical pole diagrams for weak-

electromagnetic decays of hyperons in the baryon-pole
model, also known as Graham-Pakvasa model. In Fig.
1, Y and B denote the initial and final baryons, B' and
B"denote the internal baryons. Open circles represent
two-body weak vertex, and the triangles represent the
electromagnetic vertex.
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FIG. 2. Particle-pole diagrams for hyperon nonlep-
tonic weak decays, where open circles represent three-
body strong-interaction vertices, and shaded circles
represent two-body weak-interaction vertices.
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Hyperon radiative decay is a higher-order elec-
troweak process, and calculations should be per-
formmi in the framework of a full relativistic
quantum field theory which is consistent with

quark and gluon confinement. The only such
theory we have at the present time is the second-
quantized MIT bag model. The only undeter-
mined parameter in the dynamical quantities calcu-
lated by bag model is the overall normalization
constant which relates the matrix element of the
operator calculated in hadronic static bag states
and the matrix element of the same operator calcu-
lated in hadron plane-wave states. Though there
are several papers discussing the relations between
static bag states and plane-wave states, ' there is
still no rigorous calculation of such a normaliza-
tion constant.

It is believed that one can use one set of data to
fix this normalization constant; all other predic-
tions are then unambiguous and are of physical
significance. In our analysis of hyperon radiative
decays, we use the total decay width of the X—+py
transition to fix this normalization constant. The
asymmetry parameter of this decay is independent
of the normalization constant and is a prediction
of our model. Decay widths and asymmetry
parameters of other hyperon radiative decays, such
as A~ny and:- ~X y, can also be predicted, but
they will be presented elsewhere.

In this paper, we present the general formulation
of quark-model calculation of hyperon radiative
decays. We recover the baryon-pole-model result
and therefore provide some theoretical justification
of that phenomenological model. We also show

that the contribution from high radially excited
resonant states are ignorable. The standard model
predicts too small a value for the asymmetry
parameter a= —0.154, which may be an indication
of the existence of some "intrinsic" nonleptonic
current-current weak interactions with chiral struc-
ture different from (V —A) 8 (V —A). This new
interaction may help us to understand quantitative-
ly the EI= —, enhancement in weak interactions
and the unequal-lifetime problem in charm mesons
r(D+)/r(D )=5, which the standard model cannot
explain unambiguously.

The paper is organized as follows: In Sec. II, we
give the kinematics of the radiative decay and de-
fine three types of quark transition amplitudes
which give the complete third-order electroweak-
interaction contribution to this radiative decay. In
Sec. III we evaluate the hadronic matrix elements
of those quark transition amplitudes. In Sec. IV,
we give the numerical results of our calculations
and our conclusions. In the Appendix we give the
results of two-quark integrals and four-quark in-

tegrals which appear in the four-quark transition
amplitude.

II. KINEMATICS
OF HYPERON RADIATIVE DECAY

AND INTERACTION LAGRANGIAN

The most general electromagnetic vertex func-
tion involving two-spin- —, fermions has the follow-
ing Lorentz-invariant structure:

us(p)t "us (p')=us(p)[P[Ei (q )+F",(q )ys]+i/'qua[F2(q )+F2(q )ys]+q"[F's(q )+Es(q )ys] Jun'(p')

(2.1)

2

E (q )=— Fs(q ) .
My+My

(2.2b)

Fs(q ) =0 if Ms ——Ms. The above equations nor-
malize F, '"(q =0) to zero.

where q"= (p —p')i' and F; (q ) and F; (q ),
i =1,2, 3 are vector and axial-vector form factors,
respectively. Conservation of electromagnetic
current relates Fj,A(q ) form factors and F&'"(q )

form factors as follows:

2

F, (q')= — F, (q'), Ms+Ms, (2.2a)
Mg —Mg

mN
A(X+~py) =i

4~a'OEx
u~(p)(C+Dys)

Xo"'e„q„ux(p')5 (p' p q) . —(2.3—)

When the photon is a real photon (q =0), the
transversality condition e q =0 eliminates the static
form factors Es"(0) and Fs (0); only Fq (0) and

E2 (0) contribute. In this paper, we use C and D to
denote F2(0) and F2(0) in X+~py process. C is
called the transition magnetic dipole moment and
D is called the transition electric dipole moment.

The two-body radiative decay amplitude
A(X+~py), in the rest frame of X, has the form'

1/2
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(Mz —M~ )

2M,
(2.4)

From (2.3) the angular distribution of the photon
is given by

Mg —M~2 2'3
IV(8)=

16m Mg

X(
I
C

I
+ ID I

)[I+a.(s.p)], (2.5)

where s is the polarization vector of X in its rest
frame, p is the direction of the proton momentum,
and a is the asymmetry parameter given by

The magnitude of the photon momentum q„ in the
rest frame of X is completely determined by
baryon masses,

2 Re(C*D)

I
c

I
'+

I
D

I

'
The decay rate is found to be

2 2'3
MX —MNR=

Sm My.

(2.6)

(2.7)

4

~wE= g~; (2.&)

where wi 2 3 4 represent the quark —gauge-boson,
quark —Higgs-boson, gauge-boson —gauge-boson,
and gauge-boson —Higgs-boson interactions,
respectively. Wi is given by

%e study this hyperon decay process in the
"standard" model. In Feynman —'t Hooft gauge,
the electroweak (EW) interaction Lagrangian Wwa
(Ref. 11) consists of four terms

[J'+'(x) IV'-'~(x)+ J'-'(x) IV"'"(x)]
vZ

—(g +g' )' Z&(x}[J~3(x)—sin Hs JgM(x)]+eA&(x)JgM(x) . (2.9)

The charged current J„+'(x) is defined by

J„'+'(x)= UL (x)y&V DL (x)

and

J„' '(x) =[J„'+'(x)]

where

UL(x)=[uL, (x),cr, (x),tL(x)],

DL (x)= [dI (x),sL (x),bi (x)] .

(2.10a)

(2.10b)

(2.10c)

(2.10d)

Uz (x) and Ds (x) are similarly defined. Each flavor quark carries three colors, but we suppress the color in-
dex here. V' is the unitary weak mixing matrix'

Ci —SiC3 —Si$3

V = sjc2 c)c2c3 $2$38 cic2$3 +s2c38C i5 i5

$]$2 C jC3S2+C2$3e Ci$2$3 —C2C3e
i5 i5

c;=cos8;,s; =sin0; .

JgM(x) is the electromagnetic current and J~3 is given by

J3 (x)= —,[UL, (x)} UL (x) DL, (x)}"DL,(x)] .—

&2 is given by

(2.10e}

(2.10f}

W2(x}=— [UL, (x)V'm' 'Dg(x) Ua(x)m' 'V' Dt. (—x)]

" [D„(x)m' 'V'U, (x) D, (x)V'm'"U—tt(x)1 .
U

(2.11)
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In the above equation U is the vacuum expectation value of the neutral component of the Higgs doublet and
rI„O 0 md 0 0

(2.12)

0 0 I, 0 0 mb

w3 and w4 are given by

W (x) =ie I a„A„(x)[8' '"(x)8'+'(x) —W'+'"(x) W' '(x)]+[a„W„'+'(x)—a„W„'+'(x)]W' ' (x)A(x)~

—[a„W' (x)—a„W„'-'(x)]W'+'(x)A(x)~I, (2.13)

Wz(x) = [vP' '(x)A "(x)W„' '(x)+v*P'+'(x) W„'+'(x)A "(x)]

+( ie )A—"(x)I [a„yI„-,']y'+ ~(x) —y'-'(x) [a„tI)I+']I

+terms not relevant to this calculation . (2.14)

To take into account strong interactions, we use the MIT bag model' along with QCD. In the bag model

the quarks move freely and independently in a cavity, the confinement being produced by an external pres-
sure 8. Quark-gluon coupling is considered as weak; hence we can ignore corrections due to the gluon-
exchange diagrams which are O(a/m. ) weaker than the zeroth-order result. However, we do make exception
for those gluon-exchange diagrams which produce color-octet operators in AS=1 weak transitions. These
operators which are absent in the SUq(2) XUr(1) model suppress bI = —, ones. '

We assume that each baryon is made up of three quarks which are combined in such a way as to give the
correct quantum numbers of that baryon. The radiative decay amplitude A(X~py) is in the third-order
term in the perturbation expansion series of the electroweak Lagrangian WwE. The relevant part is

lg 'X

A(X~py)= i fd—x fd y fd z ", (p l
J@r(x)Jss=t(y)Jz, as=o(z) I

~)( ')Ds (y z)
4~(m.q

)'~z

where

1
—ik (y —z)

Du(y —z)= d k
(2n) k2 Mg 2+i—e

and

Jas ~(y) = sin8~cos83 g u (y)y (1—y5)s~(y),
—g

2 2

3

J~ o(z)= cos8& g d (z)y (1—y5)u (z) .
a=1

(2.15)

(2.16)

Operator-product-expansion theory can help us to construct an effective local weak Lagrangian from the bi-
local one,

GF
i fd y fd—z J~,(y)Jx~+ o(z)Du (y —z)= sin8~cos83f d y g C I t~u' ' 'u' ' dp' sIt" ~i=1

The C~'s are Wilson coefficients which are calculated by QCD renormalization-group equations, 'I ' '~@~ is
the color-Lorentz matrix which specifies the color and Lorentz structure of the corresponding operator,
cr, cr', . . are spin. or indices and u, 13,. . . are color indices. Higher-order gluon exchanges make I different
from the zeroth-order value



26 QUARK-DIAGRAM ANALYSIS OF HYPERON RADIATIVE. . . 203

The hyperon-radiative-decay amplitude is therefore the matrix element of the effective electroweak La-
grangian,

sin0~cosOIcos03
A (X~py) = iGF—e d x d y e'~ "ez'(p

~
JgM(x)u (y)u ~(y)dpi'(y)s&&(y) ~

&)
4m(2nqp)'; ~ tr

CT' P

XC I '
'Pp', Pp . (2.18)

Carrying out the Wick reduction of Eq. (2.18), we find three types of terms: (i) terms with "no contrac-
tions" between quark fields, (ii) terms with one contraction between quark fields, and (iii) terms with two
contractions between quark fields. We shall denote them by A6, A4, and A2q, respectively, and represent
them diagrammatically in Figs. 3—5. The gauge-invariance condition implies that A2& must be a local
magnetic-moment-type transition between s and d quarks:

3

Jd'» g (p ~d (x)rJt"(Fp+F2y5)s (x) ~X)e„q,e"
27K 1rqo

GFe
F2 =—,(me+m, ) g Vg Vg

4m~ 2m i =u, c,t

The quark parameters F2 and Fz are picked up from the one-loop-order s-d-y vertex":

—29t; +31t;—8 (2t; —3t; )
lnt;

24(1 t; ) — 4(1 t;)—
(2.19)

(2.20)

Ap mg —md
2

ms+md

where t; =mI. /mw and mI-=mu

III. HADRONIC MATRIX ELEMENTS

In this section, we shall calculate the hadronic
matrix elements of the three transition amplitudes
A 2q A 4q, and A & defined in Sec. II, using the MIT
bag model, which is a phenomenological model for
hadrons in QCD. The bag model has been success-
fully applied to the nonleptonic weak decays of hy-
perons and E mesons' and KL -Ks mass-difference
estimates. ' The model has also been used to study
the radiative decays of baryon and vector-meson
resonances. '

igP(x) =P(x),
and a nonlinear boundary condition

(3.1)

n„P(x)g(x) =28,
BXp

(3.2)

In the MIT bag model the baryons are bound
states of three quarks. The quark fields satisfy
free Dirac equations inside the bag and on the sur-
face satisfy a linear boundary condition,

(o) u (c) u

U

(b) u

U U

(d) u- =

d=
u

FIG. 3. Quark diagram representing the six-quark
transition amplitude A6, where the shaded box is weak
vertex.

FIG. 4. Quark diagrams representing the four-quark
transition amplitude A4, where the shaded box is the ef-
fective local four-fermion weak interaction.
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Sh
~I

U

where the flavor index f is suppressed and mq is
the quark-mass parameter. The momenta k„and
k„appearing in Eqs. (3.3) and (3.4) are the roots
of the quantization equation which result from the
linear boundary condition Eq. (3.1),

FIG. S. Quark diagram representing the two-quark
transition amplitude A2 .

where n& is the unit vector normal to the surface
of the bag and 8 is the "bag volume pressure. "
The fields vanish outside the bag regions. Assum-
ing a spherical bag, n =(O, r ), and the nonlinear
condition implies that only quark modes with total
angular momentum J= —, can exist in the bag.
There are two types of solutions with opposite par-
ities: (1) the even-parity solution,

ff n (» )) M(X&t)

'ijo«. r ~'M
n

8
—ice(f, n —1)t

v 4~ E„j,(k„r)~—.r&M

n
tanZn = (3.Sa)—1+mqRs+to(f, n, —1)Rs

Zn
tanZn =— (3.Sb)

1 —mqRt) +o)(f,n, +1)Rtt

where Zn =knR&, Zn =knR&, and R~ is the bag
radius. The rest mass of hadron can be expressed
as

Ma = g o);(f,n, a)+BV+(zero-point energy

+gluon energy+ ) .

(3.6)

The charge-conjugate state of gf „„M,denoted

by ff „„M,is its antiparticle state. The symmetry
properties

and (2) the odd-parity solution,

Pf, n, (»=+)) M(X, t)

(3.3a) Zn Z —n

to(f, n, n) = to(f, n, —)r)——

(3.7a)

(3.7b)

N «n J((knr)&'~+M

v 4~ jo(k„r)XM
—im(f, n, +1)t

(3.3b)

give the usual "hole" interpretation of antifermion
C

gf, n, », M.
Every quark field of a certain flavor f and color

i has the expansion

+M =+1
1

0 ~ ~M= —1

jo(z) and j)(z) are sPherical Bessel functions. ,
1/2

to(n, —1)—mq

ro(n, —1)+mq
E„=

where Nn, Nn are normalization constants,
to(f, n, tr) is the quantized energy, the index f speci-
fies flavor quantum number, index n plays the role
of principal quantum number which labels each set
of a =+1 mode energies in order of increasing
values, and sc is the parity index. M is the spin in-

dex~

and

—5M M'5f f'5„„5„„5;; (3.9a)

IbM(f, n, a,i ),bM (f', n', a'', i') I

gf(x, t)= g [aM(f, n, n, t )pf M(x)e
n, z,M

+bM(f, n, a, i) 1'„„M(x)e'"' """].
(3.8)

The creation and annihilation operators satisfy the
usual anticommutation relations, namely,

I aM(f, n, a,i ),aM (f', n', tr', i') I

and

1/2
with to(n, —1)= k„2+mq

~

(3.4)
1/2

to(n, + 1) rnq-
to(n, +1)+mq

1/2
with o)(n, +1)= k„+mq

5M, M'5f, f'5»,

A low-lying baryon (such as p, n, X+, . . .) has all
its quark constituents in relative s-wave states; each
quark model has a parity index )~= —1 (positive-
parity solution) and energy given by the lowest
positive solution of Eq. (3.S).

The quark representations of X and p are given
by
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[aM +i(u, i)aM +i(u j)aM i(s, k) a—M +i(u, i)aM i(u j)aM=, i(s, k)] ~O), (3.1Oa)
ijk

~lg [aM= —1(u t)aM=+1(u j}aM= i(s,k) a—M =i(u, i)aM i(uj)aM +i(s,k)]
~
O), (3.1Ob)a uia

I»»= ~1 [aM= i(u, i)aM=+i(uj)aM= i(d, k) —aM i(ui)aM i(uj)aM +&(d,k)] ~O) . (3.1Od}
«gk

In the above equations, quantum numbers n =+1 and ~= —1 are suppressed.
Two helicity amplitudes are defined as

' 1/2
~N +~N

A (X,~p, +y) =i
qosw

2

q+
EN +~X

lp»= ~ui [aM=+i(u, t)aM=, i(uj)aM &(d, k) aM—+, (u, t)aM i(uj)aM +i(d, k)] ~O), (3.1Oc)
&i'

X [ [X,(e X q). trX, ]C+i [X,(e o )X& ID I 5 (Pz+ q )5(q+EN ™&), (3.11a)

' 1/2
E&+M& q2

A(X,~P, +y)=i q+
qoZ N+

X ([X+(CXq) oX,]C/i [X,+(6 0 )X,]D)5 (PN+q)5(q+FN —~x) (3.11b)

where the parameters C and D are those defined in Eq. (2.3),

0
X$

1

Xt —0 1

and the two equations are defin~ in the r~t frame of X. Thee two amplitudes can be calculata by the

phenomenological Lagrangian

Fq„(x)
W;„,(x,t) =imp(x)at'"(C + Dys)gx(x)

2

as follows:

3 (X,~p, +y) =i (2n ) f dt (p „y ~
W;„,(0 t)

~
X, )5 (Pz+ q },

A(X,~p, +y)=i(Zir} f dt(p„y~ W;„, (O, t) (X, )5 (P~+q} .

(3.12)

(3.13a)

(3.13b)

The matrix elements in (3.13) can be calculated by the quark transition amplitudes defined in the last sec-

tion.

In the following, we give the details of the calculation procedure for A6 (X,~p, +y), A4 (X,~p, +y),
and A2q(X, —+p, +y) in the MIT bag model. We just state the results for the other helicity amplitudes, since

its calculation is essentially similar.

A. Evaluation of six-quark transition amplitude A«

In calculating A&(X,~p, +y) the following integral is important:

Ii —— g f d x f d y C;"'I ' '$'~~(p, ~:uz(x)puz(x)u ~(y)u (y)dti&(y)sti & (y):
~
X, )e's",

Wt
@+i ~ P ig

I
&~& i ~ ~ p~p

(3.14)
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where the Wilson coefficients C s and the color-Lorentz matrices "'I ' 'pp'p are those introduced in Sec. II.
Expanding each quark field in Eq. (3.14) in terms of the bag states as given in Eq. (3.8), and substituting

~
X, ) and ~p, ) by quark representations given in Eq. (3.10), integral Ii can be reduced to

Ii —— g (2n)C . 'I ~'~tpDJic sc'sc M M ~ 5(qo)5(co(s, +1,—1)—co(l, +1,—1))
lpPj ~ ~ OP

a, 0', . . .p'
M] y ~ ~ ~ yflf 6

x f d'xf„, iic, (x)f'P„,sc, (x)e ' ' " f d'yf, ,M, , (y)g, ,~,, (y)fdM, ,c(y)P, ,~~(y)

(3.15)

where all the quark wave functions belong to n =1 and a = —1 mode, and the coefficients

Dcz, a', p, p'
M],M2, M3, M4, M5, M6

specify the spin and color configuration of quarks in initial and final states. It is given by a sum of prod-
ucts of Kronecker 5's. Notice however that we should have m, & mI, where I denotes the light quarks u, d,
to explain the hyperon-nucleon mass difference. This requires

co(s, +1,—1)&co(l, +1,—1), (3.16)

and so the 5 function causes the integral to vanish. A6&, being proportional to I&, vanishes identically.
Higher-order gluon exchanges which connect the diagram in Fig. 3 may change this result, but this ampli-
tude is suppressed by higher powers of the weak QCD coupling constant, and it is beyond the scope of our
analysis in this paper. Our result is consistent with a recent calculation of hyperon radiative decays, ' which
is done in a nonrelativistic quark model.

B. Evaluation of the four-quark transition amplitude A4q

A4 (X„~p,+y) receives contributions from all the four diagrams in Figs. 4(a), 4(b), 4(c), and 4(d). The
amplitudes of the four diagrams are determined by the following integrals:

I2"' —— g f d x f d yC '"'I' ' '$'~p(P, ~:u (x)e[iSF'"'(x y)] u —(y)dpi'(y)spe(y):~X, )e's",
lyly ~ ~ eg

I
CTy ~ ~ op

(3.17a)

I'2' ——g f d x f d yC, " 'I' ' '$'$ (p, ~:d (x)t[cSF '(x —y)]~ ~ (y)upe(y)up ~(y):
~
X, ) '~'e",

i, at ~ 0 p'
I

cr, . . .p

(3.17b)

12"'= y f d x f d yC;""'I $'~p (p, ~:u (y)[iS+"'(y x}cu (x)] dp—z(y}sp z(y):~X, )e's'
i,a. . .p'

I
CTy ~ ~ op

(3.17c)

Iq ——g f d xf d yC; "I~'~'p'p (p, ~:d (y)[i'*'(y x)gs~(x)]~up~(y)—up~(y):~X, }e'i",
i,a. . .p'

I0 y ~ ~ op

(3.17d)

where
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&4'« —y) = g [Sf,...,M «)Pf,...,M(y)@X'—y') —4f .,M(»|7'f n,.M(y)()(y' —X')1.
n, z, M

(3.18)

Integrating out the two time variables in Eq. (3.17) the four equations can be reduced to the typical form:

(2~)C, "".'r. 'pp GM M M M 5(q+Ex —Mx)
lp Cy ~ ~ o P

I
(Ty ~ ~ ~ yP

M), M2&' ~,M4

X d P Q n

1

fo(l n ~)+(o(s + I I )
1 I Ml ~~ Pa, tl, K,M

X fd'ye.',...,M,.(y)V.,M, ,.(y)pd M,p(y)Q, ,M, ,p(y) (3.19)

We have suppressed the n =1, a.=—1 indices for the ground-state positive-parity wave functions in I2"',
I

I2"', I2", and I2'. The coefficient GM M' M M exhibits all possible color and spin configurations of quarks

in the hyperon and proton, and it is given by

Ga, a', p p' pp p a p (25
—15+15—15—1+25—15+15+15+1 5

—15—15—15+1 5+15+15—15+1)
(5 5 —5 5 ~ )

M), M~, M3,M4 ls M) M2 M3 M4 Mj M2 M3 M4 M) M2 M3 M4 M) M2 M3 M4

(3.20)

The two integrations in Eq. (3.17) give only a quark energy conservation 5 function, namely,

2m.5(q +co(l, + 1,—1)—fo(s, + 1,—1));
we have to insert the bag energy BV and zero-point energy by hand to give a phenomenologically correct
hadronic energy conservation. I2 ', I2", and I2' are similarly calculated:

I' '= g (2n')C;" 'I' ' 'p'p. HM M' M M 5(q+E M)—
lpCo ~ ~ pP

I
CTy ~ ~ y CT

M] p ~ ~ ~ yM4

X ~
—

& g
1 1 f d &Qd Ml(x)~Id g, a,M(x)e

X f d'ygd. ,M, (y)gg, M, a'(y)Q. ,M, ,p(y)Q. ,M, ,p(y)

+I g l 1 f d'&1TdM, (x)&A,...,M(x)e " "
„„Mfo l, n, lf +fo s, +1,—1

fd'ylTd a,.,M, (y )lt, ,M, , (y)1T.,M, ,p(y)gu, M,p'(y) (3.21)

where

+25M 5M 5M 5M 5hfl5hf2 5M35M4 5hfl5hf~5M35M4)

(3.22)
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Ivu)

lyaa ~ ~ yP
a, . . .,p

M) &
~ ~ ~ yM4

(2n.)C;""'I ' 'p'pGM', I,'I, sr, 5(q+E~ M—x)

„„~2'(l,+ 1, —1)—ro(l, n, ir) —co(s, + 1,—1)

X f d yf„sr~ (y)Q„„„~ (y)fdsr3 p(Y)ggsr4p, (Y)

1

„„sr2'(l, + 1,—1)+co(l, n, a ) co(s—, + 1,—1)

f d &~.~ (y)4...;,~, (y)A, M, ,,(y)tt, ,M, ,~(y) (3.23)

is defined in Eq. (3.2O);

' ~, ','p', p'HM', ,lw,',~, ,sr 5(&+EN Mz)—
l)aa ~ ~ pP

I0's ~ yp
M I 0 ~ ~ ~ NM4

1

(I +1 1) ~(& n &)
1(gnzM(x)~gsM2(x)e

X f d yg4sr, (y)g, „„sr .(y)P„sr ~{y)g„sr q, (y)

+ g
& 1 1 f d xg~, ~,~,M(x)&Q~, M, (x)e„„~~ i, +1,—1 +co s,n, a

d3' d, M, ,o Y,n, ,M, 'P u, M, P M y (3.24)

where HM' I' M z is defined in Eq. (3.22).

The helicity amplitude 24~(X,~p, +y) is a linear combination of the four integrals I2"', I'z ', I2", and
I+s)

2
' 1/2

2K
w~(x, p, +y)=

9'0
Gzesin8~cos8~cos8&cos8s[ —,I2"'+ , I2"' , I2 ' ———,I2' ]—5 —(Pn+q ) .

(3.25)

The one-loop-order QCD-corrected weak Lagrangian gives the color-Lorentz matrices

5 5

g (i,u)po, ~',p,p' ~ C (i,u)p~, a', p, p
i a,a', p, p'= ~ i a, a', p, p'

i=1 i=1

=[«i+Cs)5..5pp+&25ap5a p][X'(1 rs)1 [X—d 1 —)'s)]"

+[C45 5pp+Cs5 p5 pl[X'(1+7's)] [Xd 1 Xs)]"—
and

5 5

Ci ~ a, a', p, p' ~ Ci a,a', p, p'
i=1 i=1

=[«i+Cs)5 5pp+C» p5 pl[r'(1 )'s)l" [Xdl —rs)l"—
+[C~5 5pg+Cs5 p5 p][l"(1 )s)1-[)'—s.(1+vs)]" .

(3.26)

(3.27)
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The small differences in wave-function normalization constants and momenta between strange and non-

strange quarks produce small SU+(3}-symmetry-breaking effects in the matrix element. Such small "dynam-
ical" symmetry-breaking effects can be ignored, except in the particular case where all the wave functions in
two-quark integrals and four-quark integrals are of n =1, )c= —1 mode, since they contribute to the ampli-
tude of the baryon-pole term in our model where SUq(3)-symmetry-breaking effects are significant. We
shall discuss this point later. All the two-quark integrals and four-quark integrals in I2"', Id ', I2", and I2'
have been evaluated, and they are given in the Appendix.

We find that all positive-parity intermediate states in the propagator i'(x —y) contribute to magnetic
dipole transition, and all negative-parity intermediate states contribute to electric dipole transition. We give
the explicit expression for A4 (X,~p, +r) in the rest frame of X:

where

pi+r) = g ~~(X( pi+r»
n=1

(3.2S)

' 1/2

A4$(X(~pi +r}=in. Gi e sin8(cos8)cos8s5 (P)v +q )5(q +Ez —Mx )
e'0

X I[X,(eX(I) crX, ][(C(—Cz+Cs)(FI'L, +Gl".'I. )+(C4 Cs}(FL.'—i( +Gi~'ic }]

+ [&'X)(e ~» l[«i C2+ Cs }—(Fi".'I.=+'+GL„'l.=+')+«4 Cs }(Fl".,'P—+'+ Gi".'ii=+' }l]

(3.29)

A4 is the amplitude, to which the (n —1)th radially excited intermediate state contributes. X, and X, in Eq.
(3.29) are two-component spinors (i) and (0), respectively. Fi" I '"= ' is given by

~n =1,K= —1

~L,L

and for n)2

—,Ni Li i[(N)/Ni)E(R'((')i) —(Ni' /Ni )E'(R,'('()i')']

co(l, + 1,—1)—co(s, +1,—1)
(3.30)

~n, K= —1
~L,L

1 2 1

co(l, n, —1)—co(s, + 1,—1) 3 2co(l, + 1,—1) co(l, n,——1)—co(s, + 1, —1)

4 2 1(1n) R1(1n) I
3 (l, +1,—1)—(, , —1)

Ni N„[EnR (0()+E1R ((0)] I,n ~ (3.31)

The primed quantities in Eq. (3.30) are bag-model parameters for the strange quark and the unprimed
quantities refer to the nonstrange quarks. The parameters are different since we want to include SU~(3)
breaking effects. Fi". l.

'"= ' vanishes in the exact-SUp(3) limit, but the smallness of the symmetry breaking
is enhanced in this amplitude by the singular denominator co(l, +1,—1}—co(s, +1,—1). The result is fairly
large. Li i and Li „come from four-quark integrals and are defined in Eq. (A22} and Eq. (All). R'((0', ),

R, (0 1')', and R '(01). . . in the above two equations come from two-quark integrals, and are defined in Eq.
(AS). The subscript s in R,'('0(')' reminds us that this integral contains strange-quark parameters. FL'I=+' is
given by

~n, K=+1
~L,L

1 2 1

co(l, n, + 1)—co(s, + 1,—1 } 3 2co(l, + 1,—1) co(l, n, + 1—) —co(s, + 1,—1}

~ 4~ 2 R 0(1n) R 0(1n)+ R 2(1 n)E1E ' 2E1E
3 co(l, +1,—1} co(s, n, +1)— 3 3

(3.32}
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where R (po), R (i i), and R (i i) are defined in Eq. (A9). Mi „comes from four-quark integrals, and it is0(1 n) 0(1 n) 2(1 n)

defined in Eq. (A14). Gl".'z= is given by

~n, z= —1
~L,L

1 2 1

co(l, n, +1)+co(s,+1,—1) 3 2co(1, +1,—1)+co(l,n, +1)—co(s, +1,—1)
+

1 1 4 2 —1 1(1n) 1(1 n)+
3

(3.33)

where R '(p i) and R '(ip) are defined in Eq. (A9). L i „comes from four-quark integrals and it is defined in

Eq. (A17). GL, 'L,
=+' is given by

n, x'=+1 1 2 1

co(l, n, —1)+co(s,+ 1,—1) 3 2co(l, + 1, —1)+co(l,n, —1)—co(s, + 1, —1)

1 1
N 4N 2 g0(1n) 1 " 0(ln)

1 —1} (
(3.34)

where Mi „ is defined in Eq. (A20). I'I" R
'" is given by

Ni [9L( i+ 9Lg i(+1 —1)][(Ni/N))E)R (()i)—(N'(IN() E)R, (()i)]

co(l, + 1,—1)—co(s, + 1,—1)
(3.35)

(3.36)

where L, i and Lq i(+1,—1) are defined in Eq. (A22) and Eq. (A23). SU~(3)-symmetry-breaking effect is

included in bag integral evaluation. For n & 2

—,L, „+—,L, „(+1,—1) —,L, „+—,L, „(+1,—1)

co(l, n, —1)—co(s, + 1,—1) 2co(l, + 1,—1)—co(l, n, —1)—co(s, + 1,—1)

1 2L i,n+—Lz, n(+—1 1)— 1(1 n)

Ni Nn [EnR ""+EiR'(oi)']
co(l, + 1,—1) co(s, n,——1)

where L i „ is defined in Eq. (Al 1) and Lz „(+1,—1) is defined in Eq. (A12} with a =+ 1 and b = —1 in

that equation. I'L'R=+' is given by

~n, a=+1
~L,R

——,M1 „ —,Mi „—9M' „(+1,—1)

co(l, n, +1)—co(s, +1,—1) 2co(l, + 1,—1) co(l, n, +—1)—co(s, +1,—1)+
1 2 —1 —1

9 Mi, n + 9 M&, n( + ~ 1 } — -p(i „) E)En p(i n) 2E)En 2(1 n)+ ' '
N1 N 8 (00)—

co(l, +1,—1) co(s, n, +1)— " 3 3
~ (11)+ (1 1)

(3.37}

(3.38}

where Mq „(+1, —1) has its general definition in Eq. (A15) with a =+1 and b = —1 in that equation.

GL'R= ' is given by

,L, „+—,L, „(+—1,—1) 9L)n+ 9Lq „(+1,—1}

co(l, n, +1)+co(s,+1,—1) 2co(1, +1,—1)+co(l,n, +1)—co(s, +1,—1)

9 Ll,n+ 9L2,n(+1, —1)
4 2 —i i(i ) i(n i)+ ' '

Ni N. [En R (oi) —EiR (oi)1,
co(l, +1,—1)+co(s,n, +1)

where Lz „(+1,—1}has its general definition in Eq. (A18) and a =+1, b = —1 in that equation. Gl"'i(=

is given by

~n, ~=+1
~L,R

]
—,M1 „

co(l, n, —1)+co(s,+1,—1)
+

—,M, „+—,M, „(+1,—1)

co(l, +1,—1)+co(s,n, —1)

—,M, „+—,M, „(+1,—1)

2co(l, +1,—1)+co(l,n, —1)—co(s, +1,—1)

N N 2 g0(1~) ~ g0(1~) ~ g2(1~)E1E„ 2E1E
1 n (00) 3 (11) 3 (11) (3.39)
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n 1

co(f,n, —1)= =(n ——, )
B B

(3.40a)

co(f,n, +1)= =(n + —, )
B B

(3.40b)

where M2 „(+1,—1) has its general defintion in

Eq. (A21) with a =+1, b = —1 in that equation.
The expression for the other helicity amplitude

A4 (X,~p&+y) can be obtained from Eqs. (3.28)
and (3.29) by interchanging the spinors X, and X,
in Eq. (3.29).

All the radially excited intermediate states con-
tribute to the amplitude A4 (X,~p, +y); therefore
the upper limit of the summation of n in Eq. (3.28)
can even extend to infinity. However, the contri-
butions from higher radially excited intermediate
states are small, and it can be shown that the series
in Eq. (3.28) converges.

Zn and Zn are both monotonically increasing
functions of the principal quantum number n.
%hen n is large, the quark mass effect is ignorable,
and the quark energies and wave-function normali-
zation constants are proportional to Z„or Zn,

Xn =ZnRB

&n-—Zn~B ' '
(3.41a)

(3.41b)

The two-quark integrals and four-quark integrals
have the general structure

sinZnx
]

Jn =Zn f(x)x dx

cosZnx

+0(Z„) . (3.42)

f(x) is a product of two or three spherical
Bessel functions of order 0 or 1, and is independent
of Z„. Since sinZ„x and cosZ„x change phase
rapidly for large n, and f(x) is a smooth function,
the integral J„ is a decreasing function of n. The
amplitude A4 decreases faster than 1/n. We ex-
pect that the series in Eq. (3.28) converges.

We call the following part of 34~='(X,~p, +y)
the baryon-pole term,

1/2
2K

~b ryo pol (X1 pl+ y)
9'0

Gze sin8~cos8~cos83[(Ct C2 C3)F—I". L,
'"—= '+ (C4 —C5 )FL„n

'" ']

X[X,(eXq) oX,]&'(Pn+q)&(q+E~ —Mx)

[X,(eXq) OX„)]& (Pn+ q)&(q+En Mx), —le (px pn )b-
Mg —M~

(3.43)

where we approximate I/co(s, +1,—1)—co(l, + 1,—1) in Eq. (3.30) and Eq. (3.35) by 1/(Mx —MN ), and the
parameters b, p~, and p~ are defined as

1/2
2~ 6 2 2 4b=+ G~E~ sin8~cos8&cos83I [—,(C, —Cz+C3)+ —,(C~ —C, )]L»+—,(C„C5)L,2, (+I, 1)I,
qo

3

1(11)
I X ~ El~s (01) &

1

I

El (01) '
l

(3.44)

(3.45)

(3.46)

Equation (3.43) is the familiar expression for the parity-conserving amplitude in the baryon-pole model for
hyperon radiative decays. Our quark-level short-distance analysis can provide some justification of that
phenomenological model. The small SU~(3) symmetry-breaking amplitude (px pz)b is enha—nced by the
singular denominator I/(Mx —M~) and make this baryon-pole term an important contribution to the mag-
netic transition in A4 (X,—+p, +y).

Our model is also consistent with the phenomenological "—,-resonances model, "which has been recently '

proposed for calculating the parity-violating amplitude of hyperon radiative decay. Notice that I'I" I '"=+'
and II"z

'"=+' both contain terms
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1 1
and

ro(l, + 1,—1)—co(s, + 1,—1) co(l, +1,—1)—~o(s, n, + 1)

which can be regarded as being approximately the terms 1/(M~* —Mx) and 1/(Mz —Mx. ) of that model,1—
Mz. and M~. being the masses of certain —, nonstrange and strange baryon resonances.

C. Evaluation of the two-quark transition amplitude Apq

2 2E+ 2 +0(11)+ 1 +0(11) 1 +2(11)(00)+ 3 (11)— 3 (11)
i

(4
—

z) Vp

3 2

Calculation of the two-quark transition amplitude given in Eq. (2.19) is straightforward, and the result is

1/2

(3.47)

The coefficients ——, come from SU(6) Clebsch-Gordan coefficients and color contractions. The other

helicity amplitude Az~(X, ~p, +y) can be obtained from Eq. (3.47) by interchanging X, and X, in that equa-
tion. The general structure of the helicity amplitude for such a local two-quark radiative transition has been
studied by Gilman and Wise. They write the amplitude as a product of three factors: (1) quark parame-
ters Fz and Fz, (2) a numerical coefficient which comes from Clebsch-Gordan coefficients and color con-
tractions, (3) a function F(q) which depends on the overlap of the initial and final wave functions of
baryons (as well as photon momentum). The amplitude in Eq. (3.47) has exactly that structure, and the
function F(q) is the calculable integral

2 2E
F(g)=Xi R (pp)+ R (I i)— R2 0(1 1) 1 0(1 1) 1 2(1 1)

3 3

in our model.

IV. NUMERICAL RESULTS AND DISCUSSION

We shall give the numerical estimates of quark transition amplitudes in this section. The set of bag
model parameters we use is the conventional one which gives good predictions of hadron mass spectrum. '

The parameters are

mI =0 (I, =u, d), m, =0.279 GeV, co(l, +1,—1)R =2.04,

co(s, + 1, —1)R =2.909, ro(l, + 1,+ 1)R =3.81, ro(s, + 1, + 1)R =4.22,

co(l, 2, —1)R =S.4, ro(l, 2, +1)R =7 .

R is the integration limit of radial-variable integrations in two-quark and four-quark integrals; we take it as
the average of the hyperon and proton radii ' and 8 =5.285 GeV

The integrals of Bessel functions given in Appendix 8 are all numerically evaluated. The results for A&q',
n =1,2 are

' 1/2

Gze sin01cos01cos03

X [(p&eXq. ok&)[(CI —Cz+C3) —(1.73X10 )+(C4 Cs)7 8X10 ]

+i +/ O~t)[(C1 Cz+C3)2.7X 10 +(Cq —C5) ( —7. 1 X 10 )]j (4.1a)
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A ~ (X,~p, +y}=iir(2) 2K

9

' 1/2

G~e sin0~cos8~cos83

X I(X,eXq oX,)[(Ci—Cz+C3)2.7X10 +(Cq —C&)4.13X10 ]

+i(Xie oX,)[(Ci —C2+C3)( —4.68X10 )+(C4—C5)1.67X10- (4.1b)

A4s is a decreasing sequence, and A4 (X,~p, +y) can be approximated by the sum of A+"' alid A4t2~.

Wilson coefficients in Eqs. (4.1a) and (4.1b) are C, —C2+C3 = —2.4 (Ref. 23) and C4 —C5 =().()6, which
are calculated by Gilman and Wise.

We substitute the expressions in Eq. (2.20) for F2, and F2 in amplitude A2q(X, ~p, + y), and use numeri-
cal values for the "electromagnetic vertex":

E2 2E 2

R (pp)+ R ()))— R ())) ——0.726.p() )) E) p(& &)
2E) 2() ))

3 3

Then

A2q(X ~p, +y)=i 2~
9

1/2

Gze sin8icos8icos8iI7. 6X 10 [cos ezf (m, )+sin 82f (m, )]I

X[X,(~Xq) oX, +iX,(e 0)X,], (4.2)

where m, =1.5 GeV. The upper bound of sin8i can be obtained from ECI.-Es mass-difference calculation
and charm-meson-decay analysis; we have sin02(0. 3. We consider three possible top-quark masses, m, =15
GeV, 30 GeV, and 60 GeV. They represent three different cases where the model has a light, heavy, and su-

perheavy top quark. f(m, ) and f(m, ) are

f(m, ) =4.6X 10

f(m, =15 GeV) =4.7X10, f(m, =30 GeV)=0. 118, f (m, =60 GeV) =0.106 .
(4.3)

A2q(X, ~p, +y) is much smaller than A4 (X,~p, +y) and the latter determines the whole hyperon-decay
amplitude,

A (X,~P, +y)=NgA4 (X,~p, +y) .

N~ is the normalization constant which normalizes the calculated radiative decay width of X to the mea-
sured value. This normalization constant relates the matrix element evaluated using plane-wave states and
the matrix element evaluated using spherical bag states. The asymmetry parameter defined in Eq. (2.6) is
independent of Nii, and is predicted by our model as a= —0.154, which is much smaller than the measured
value a= —0.7. Since our calculation is based on first principle, there is no free parameter in the model and
we can use this radiative decay to explore the structure of 5S =1 nonleptonic weak-interaction Lagrangian
in the standard model. The wrong prediction of a may indicate that there may be a right-handed charged
hadronic current which contributes to M =1 nonleptonic weak transition. Actually the hS =1 weak La-
grangian

—Gp
W (x)= sin8i cos83[(C, +C3)5 5pp+C25 p5 p]2

X[L +xR ] [Li+xRi]i'i'u~~(x)u~ (x)dpi'(x)5p&(x) . (4.4)

[L~=y (1—y5), R =y ( I+y5)] can give an asymmetry parameter a =—0.7 where x =—,.
We summarize the results of this paper as follows.
(1}Our calculation using the second-quantized NIT quark bag model can produce the traditional baryon-

pole-model results for the parity-conserving amplitude as indicated in Eq. (3.43), and also give an expression
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for the parity-violating amplitude which is somewhat similar to the prediction of the —, baryon-resonance

model. Our quark-model calculation gives some justification of these phenomenological models.
(2) High radially excited resonant states give very little contribution to this radiative decay amplitude.
(3) Only the M = —, part of the weak-interaction Lagrangian contributes to X radiative decay.

(4) There are no ambiguities of relative phase and normalizations between the two-quark transition ampli-
tude and the four-quark transition amplitude in our model. In the standard model, numerical estimates
show A4 is much larger than A2q.

(5) There may be a right-handed charged hadronic current which contributes to nonleptonic weak decay.
The standard model may not be sufficient for nonleptonic decay.
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APPENDIX: CALCULATION OF TWO-QUARK AND FOUR-QUARK INTEGRALS

The two-quark integrals which appear in I2"', I2 ', I2", and I2' are the photon-emission amplitudes.
Since electromagnetic interaction conserves flavor, we omit the flavor indices in the wave functions. The
transition amplitudes for emitting a transversely polarized photon are

f 0&, ) M(x )eg„ |sr(x )e '~'"d x= f g„|M(x )Eg~ |I(x )e '~ "d x

i)NINn[XM(e+q) ~XM ][EnR'I01I+EIR IIOI]

f g~ ~sr(x )gP„+~~( x )e '~ "d x= —f g„+1sr(x )egl 1~( x )e '~ "d x

(A I)

—1 —1
-p(1 n) E1En p(1 n) 2E1En 2(1 n)=&N1Nn[Xsf( &'& )XM'] R (oo)—

3
R (11)+ R (11)3

, M( x )gy„'„I( x )e '~ "d x=iN~N„[XM(exq ) oX~][E„-'R'Io",I —E,R'IIoI], (A3)

f f„+&sr( x )EP~ ~ ~( x )e ' "d x=iN~N„[X~(eXq ) o'X~][E„'R'Io&I—E~R'IIoI], (A4)

C ~ —~i ~ x 3 f ~ ~ C p(1n) 1 n p(ln) 1 n 2(ln)f f& & ~( x )pp, ( x )e ' '"d x= iN~N„[X~(e —o)XM ] R ~oo)'+ R (I&) 3
R (I I)

j 7

(A5)

|M( x )gg& &M( x )e ' '"d x=iN~N„[XM(e o')XM'] R (oo~+ R ~&|~
— R ~»)f C 3 ~ C A. p(1 1) 1 n p(1 n) 1 n 2(1 n )

(A6)

The wave functions in the above equations are those given in Eqs. (3.3a) and (3.3b). The charge-conjugate
spinor of XM is defined as

c
~M 0 2+m (A7)

1

R I„,~' ——R f dxx jl(qx)j, (Z x)j,(Z„x),
1

R'~„,~"' ——R' f dxx j~(qx)J„(Z x)j,(Z„)x, (A9)
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where R = , (R—z+RF ) and Rz and R& are the bag radii of X and P; q =qR.
The four-quark integrals are the amplitudes of 28=1 weak transitions. The one-loop-order QCD-

renormalized hS = 1 weak-interaction Lagrangian contains operators of ( V—A ) 8 ( V—A ) type and

( V—A) S ( V+A ) type. We therefore calculate the matrix element of a general operator with chiral struc-
ture

[y'(I+ays)] o [yd I+bys)]FF .

All integrals are evaluated in exact SUF(3) symmetry by giving all quarks a common mass parameter. Fla-
vor indices of wave functions are suppressed. The results are presented below:

(a»)= f d y[1('n, -l,M, ( y)y (I+ays)pl, -l,M, ( y )][$1,-1,M, ( y )y2,(1+bys)gl —1M ( y )]

= f d y[1(tl 1M ( y )y ( +ays)4, 1,M—( y )][01,—1,M, (y )y2(1+bys)41 -1,M, ( y )]

where

3

[(~M1~M2)( ~M/M~)il, n ( +Ml& ~M2)( +Ms& +M4)L'2, (a b)] (A10)

and

1

Ll „——R f dxx [jp (Zlx)+El Jl (Zlx)][jp(Zlx)jp(Z„x)+E1E„jl(Zlx)jl(Z„x)],

1

L2„(a,b)=R' f dxx' ah[ jp'(Zlx) —E, 'j, 2(Z,x)][jp(Zlx)jp(Z x) —ElE jl(Zlxj)l(Z x)]

(Al 1)

2ab+4+
3

Eljp(Zlx )jl (Zlx )[Eljp(Z„x )j,(Z,x )+E„jo(Z,x )j,(Z„x)]

where

")=f"&[0., +1,M, ( y )y (I+aysW'1, -1,M, ( y )][41, 1,M, ( y )y2(1+bys)gl, 1,M, ( y )]

=—f d y[ $1,-1,M, ( y )y (I+ays)f, il, M ( y )][pl,-l,M, ( y )ylj(1+bys)gl, -l,M, ( y )]

3

I ( ~MpM2)( +M/Mg)aMl, n ( ~M ~~M )( +M ~+M )~2,n(a b )]

(A12)

(A13)

1

Ml „——R' f dxx [jp(Zlx)jp(Z„x)+E1E„'jl(Zlx)jl(Z„x)][ jp'(Zlx)+El jl'(Z, x)],
Rnd

1

M2 „(a,b)=R f dxx b[ jp (Zl,x)—El jl (Zlx)][jp(Zlx)jp(Z„x) —E1E„'jl(Zlx)jl(Z„x)]

(A14)

4a+2b+ Eljo(Zlx)jl(Zlx)[E1jo( Znx )jl(Zlx)+En jo(Zlx )jl( Znx)]

Cn(a b)= f d'y[ pl, 1M ( y )Y —(I+aysW', +1 M ( y)][ pl —1 M ( y )12(1+bys}$1,—1 M ( y )]

= f d'y[p„+, M, (y)y (1+ays)Q, , M, (y)][/, , M (y)y2(1+bys)Q, , M ( y)]
3

I(~M/M )(~M/M ) 1, (~M a ~M )(~M ~~M ) 2, ( b)I

(A15)

(A16)
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where
1

L1,n=R xx jo Z1x +E1 J1 Z1x jo Zlx JO Znx E1En J1 Zlx J1 Znx

and

1

L2„(a,b)=R f dxx ab[jp (ZIx) EI—J'I (ZIx)][jp(ZIx)jp(Z„x)+E„E„jI(ZIx)jI(Z„x)]

(A17)

2ab+4 . . —, —
t,EIjo(ZIx)JI(ZIx)[E„j'p(ZIx)j I(Z„x) EIj p—(Z„xj)I(ZIx)] ',

D„(a,b) = f d y[ gI I I ( y )1' (1+a/5)II@,—I,M ( y )1[4I, —I,M, ( y )yII(1+bys)II('I, —I,M, ( y )1

d y[ fn —I M ( y )y "( +ayshl I, —I,M ( y )][1('I,-I I ( y )1d 1+bus)A I se ( y )]
3

( (+MI+sr2)(+Itrs+M~)a MI, ( +M)a +M2)(X~s&XM4) M2, „(a,b ) ]

where
1

~1,n R x x Jo Z1x JO Znx E1EnJ1 Z1x J1 Znx 0 Z1x +E1 J1 Z1x

and

1

M2n(a~b)=R f dxx b[jo (Z'Ix) EI j I (—ZIx)][jo(ZIx)jo(znx)+EIEnjI(ZIx)JI(znx)]

(A18)

(A19)

(A20)

4a+2b
3

EIjp(ZIx)j I(ZIx)[Ejp(ZIxj)I(Z„x) EIj I(ZIxj)—p(Z„x)]

(A21)

When the SUy (3)-symmetry-breaking effects are included in A I(a,b), L» and L2 I(1,—1) will have the fol-
lowing expressions:

1

LI I
—— R f dxx [jp(ZIx)jo(ZIx)+EIEIj I(ZIxj)I(Z',x)][jp(ZIx)+EI jI' (ZIx)], (A22)

1

L2 I(+ 1,—1)= R f dx x I s EIjo(ZIx)jI(ZIx)[EIj, (Z', x)j,(Z,x)+E',jp(ZIx)JI(zlx)1

—
l jo'(ZIx) —EI'JI'(ZIx)][jo(ZIx Vo(zlx) —EIElJI(ZIx VI(z'»)]l

(A23)
where symbols with a prime pertain to kinematics of strange quarks.
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