
PHYSICAL REVIEW D VOLUME 26, NUMBER 8 15 OCTOBER 1982

Dirac supermultiplet
Christian Fronsdal

Department of Physics, University of California, I.os Angeles, California 90024
(Received 10 August 1981)

The graded extension of the de Sitter space-time algebra so(3,2) is identical to the struc-

ture defined by polynomials of order 1 and 2 in the natural coordinates gi, .. ., g4 of four-

dimensional phase space. Ordinary Weyl quantization gives a representation that is

unique among all the representations of the graded algebra in that the Poisson bracket re-

lations ( g;,pi I
= —C;, (which are not part of the structure of the graded algebra) are

preserved. The restriction of this representation to the Lie subalgebra so(3,2) is the direct

sum Di 6 Rac of the two singleton representations. There exists a unique, supersym-

metric, interactin field theory of a single Dirac multiplet. The interaction Lagrangian

has the form —, dy(3gg'ijrg+g P ), where P is the scalar Rac field, ir'j and g are the

spinor Di "field strength" and associated "potential, " and g is a real coupling constant.

Applications to confinement and to composite massless particles is discussed.

I. INTRODUCTION

The existence of a quantum field theory that in-

cludes an interacting, massless field of helicity
exceeding 2 has been doubted. No limitation on
helicity is encountered in the theory of free fields, '

and interactions with fixed, external sources can
also be introduced, ' but a genuine theory of in-

teracting fields has not yet been found within the
conventional framework. In fact, it was suggested'
that any field theory of a massless, interacting field
with helicity greater than 2 may have to contain an
infinite family of massless fields with unbounded

helicity.
Some objections have been raised against the ex-

istence of higher-spin, massless particles. In par-
ticular, it was shown that, under certain condi-
tions, a charged massless particle of spin greater

1

than —, cannot exist, and that any massless particle
with spin greater than 1 cannot have a covariant
energy-momentum tensor. However, the condi-
tions under which this result was obtained are not
satisfied by Einstein's gravity; evidently one can
draw no inference concerning our de Sitter field
theory that describes massless particles with all

splns.
de Sitter field theory is interesting for at least

two reasons. First of all, the conventional view,
according to which Minkowski space is the back-
ground for quantum gravity, is tenable only if the
cosmological constant is rigorously zero. In order
to allow for a nonvanishing cosmological constant,
however small, one has to take a de Sitter back-
ground. Secondly, it turns out that the limit of
zero curvature is singular in the following sense.

de Sitter covariance allows the existence in de
Sitter space of two truly remarkable elementary

particles; the spinless Rac and the spin- —, Di, col-

lectively known as singletons. Emission or absorp-
tion of one singleton is absolutely unobservable in
terrestrial experiments. This can be viewed as a
type of kinematical confinement and described as
follows. If energy is measured in units of the
square root of the curvature, and J is the angular
momentum in the usual units, then the quantum
number c—:( —) is —1 for singletons and +1
for all massless particles. Hence singletons are
"colored" and massless particles are not. No parti-
cles with similar properties exist in flat space.

An even more remarkable property of singletons
is the purely kinematical fact that all two-particle
states are massless. ' We have proposed to inter-

pret all massless particles as two-singleton states.
The idea that massless particles may be com.posite
is now current; it should be strongly emphasized,
however, that this idea is implemented much more
easily in de Sitter space than in flat space. Free,
two-particle states in flat space have all masses and
all spins, and detailed dynamical models are re-
quired to prove the existence of a small set of
massless bound states with all the correct proper-
ties. Not the least difficult is to explain why these

bound states dominate the subsequent dynamical

picture. In contrast, two-singleton states in de

Sitter space are massless for purely kinematical

reasons, and all one needs to explain is why the
states of lower spin have more evident dynamical
manifestations than those of higher spin. If the re-

lative strength of electromagnetic and gravitational

couplings is a guide, then it is not difficult to im-
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agine that direct observation of massless particles
with spin higher than 2 may be difficult. It seems
to us, then, that ideas such as quark confinement
and gluon compositeness are much more likely to
work in de Sitter space, with singletons playing a
role similar to that of quarks or preons.

The theory of local Rac fields on de Sitter space

is characterized by a gaugelike structure that

necessitates the introduction of an indefinite metric

and Gupta-Bleuler-type quantization. ' Internal

consistency requires that the interactions be "gauge

invariant, " as well as invariant under the de Sitter

group SO(3,2) of space-time transformations, and

this limits the interaction Lagrangian to an expres-

sion that contains only two real coupling con-

stants. ' Here it will be shown that supersym-

metry imposes an algebraic relation between these

two coupling constants and makes the interaction

Lagrangian essentially unique (up to a single real

coupling constant).
The Dirac supermultiplet Di 8 Rac is unique

and fundamental in the following sense. Let (g;),

i =1,...,4 denote the odd elements, and (I. pI),

a &P=1,2, 3,5 the even elements of a basis for a

graded Lie algebra that we shall call osp(2). It is

also known as osp(4, 1). For on-shell, free Di and

Rac fields, the following "metaplectic" structure

relations hold:

4i4i =(& )ill ap 2&ij—

where C is the charge-conjugation matrix and X p

is the representative of L~& in the four-dimensional

symplectic representation of so(3,2). The entire

osp(2) graded-Lie-algebra structure is contained in

this equation, including anticommutation relations

between the g;, and commutation relations between

g; and L~p, and between the L~p. This metaplec-

tic structure, defined by Eq. (1.1) and the associa-

tivity of operator products, is an extension of
osp(2), since not only the anticommutator, but the

commutator as well of two odd elements is speci-

fied. This suggests the possibility of a deeper in-

terpretation, not only of Dis and Racs and mass-

less particles, but perhaps of space-time itself, pos-

sibly along the lines of the twistor program.
Alternatively, Eq. (1.1) may be interpreted as de-

fining an ideal in the enveloping algebra of osp(2).

The fact that this ideal uniquely characterizes the

free Dirac supermultiplet may be of some utility.

For example, it should be possible to give a new

and more direct proof of the fact ' that the repre-

sentation (Di SRac) 8(Di 8Rac) of SO(3,2) has

an extension to a unitary representation of the con-

formal group SO(4,2) that is a direct sum of all the
"massless representations"; by this means one

could then investigate whether or not conformal

invariance is preserved by the interaction.

Summary. Di and Rac field theories can be for-
mulated in two ways. As field theories formulated

directly on the space-time de Sitter manifold, they
exhibit interesting features that are normally en-

countered only in vector field gauge theories. The
case of the scalar Rac field has been worked out in

detail. A physically equivalent field theory, that
is, one that gives the same S matrix, can be formu-

lated on a three-dimensional manifold that is the

boundary of de Sitter space at spatial infinity. '

This avoids all the gauge complications as far as

the Rac is concerned, and leaves only an easily

manageable "chira1 gauge" problem associated with

the Di field. Section II contains the details.

The fact that free singleton one-particle states

form a de Sitter supermultiplet was pointed out in

a recent review on Dis and Racs. In Sec. III we

give the details and work out the free-field

transformation rules. The algebra closes on-shell

only, but this is remedied in Sec. IV with the help

of an auxiliary scalar field. Interactions can now

be introduced in a unique way, up to a single, real

coupling constant. Finally, the auxiliary field can

be eliminated; this leads to a new, nonlinear form

of the supersymmetry transformation law for the

Rac field P and the Di field X:

where gi, . . .,(4 is a basis for the odd part of the

graded supersymmetry algebra, C is the charge-

conjugation matrix, and g is the coupling constant.

II. DI AND RAC FIELDS ON THE CONE

Space-time is a four-dimensional de Sitter space

with very small constant curvature p, or perhaps

the flat-space 1imit p~O. The theory of Rac fields

on de Sitter space is an interesting and unconven-

tional type of local field theory. Although the

Rac field is a scalar field, features appear that are

usually associated with gauge theories, and Gupta-

Bleuler techniques are required for quantization.

A similar approach can certainly be attempted for

the Di field, but that will not be done here.

In fact, it is not necessary, nor usefu1, to develop

Di and Rac field theory on de Sitter space because,

as was shown in detail in the case of the Rac, '
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there exists an equivalent three-dimensional field
theory that is much simpler in that the gauge
fields disappear. By calling this three-dimensional
field theory equivalent to the four-dimensional
field theory, we mean that both give the same S
matrix.

Let (y~), a=0, 1,2, 3,5 be the Cartesian coordi-
nates of a five-dimensional pseudo-Euclidean space
with metric 5 given by

y =& ydp=yo —y+y5 ~

2 aP 2 ~2 2

The hyperboloid y =1/p is a model for a four-
dimensional de Sitter space with curvature p.
Fields defined on de Sitter space can be extended

toy &0 by fixing the degree of homogeneity. In
the case of the Rac field P we choose

with M = —L, ...,L and L =0, 1,... . The free,
quantized Rac field is given by

4U') =pl bLM4'LM(3)+bLMNLM(y)1
LM

[br ~,bi''M'] —=5LL, '5~M' )

and the homogeneous propagator is

D (y,y'): (0
l

—0(3')0(y')
I
0)

QUALM(3 )R,MU ')
LM

(2~ .~ ~

)
—i /2

4m

Commutators and time-ordered products have also
been calculated.

N=y 8 (2.1)

P(y)=r ' P(t,y), r:—
~ y ~

(2.2)

Now it turns out ' that all the physical informa-
tion contained in P is retained when one takes the
limit of P as y ~0, with all coordinates y~ finite.
This limit will henceforth be denoted P, so that the
field P is defined only on y =0 from now on. We
have

B. Di fields

The action of so(3,2) on spinor fields is given by

Lap i (3 asap 3 p5u)+~ap ' (2.7)

A basis for the irreducible representation

Di=D(1, 1/2) is given by (J= 1/2, 3/2, . . . = to-
tal angular momentum)

where P is defined on Si XS2 and the angles are
defined by y5+t'yo re", y =y/——r.

A. Rac fields

6M (3 ) =3 ~JM (3'»

where

&JM(3»=r '"—e'"+~M(3")

(2.8)

(2.9)

%e shall give a very brief summary of the basic
facts relating to classical and quantized Rac fields
on the cone. ' The free wave equation is

(2.10)

The spherical spinors 9'J~ are given in the Appen-
dix. The space spanned by the fJM's can be
characterized by

$=3tX, Nf= ——,g,
5/=0, 5 =—5PB Bp. (2.3)

(2.11)
This can be derived from the Lagrangian

, fd34A—

integration over the cone is defined by"'

fdyL (y) =f dt dyL(t, y ),
for scalar fields L of degree —3 only, where

L(y)=r L(t,y) .

(2.4)

(2.5)

4t~(y)=r '"(2L+1) '"e ""+'"'& (")

(2.6)

Such integrals are SO(3,2) invariant. A complete
set of positive-energy solutions is given by

~=—2ir ~y ap.

Since 3t = —y =0 on the cone, we encounter here,
somewhat unexpectedly, a new "gauge" phenom-
enon.

The relation $=3tX is equivalent to 3t1tt=0 and
may be regarded as a subsidiary condition. It is
possible to express the wave equation (it+ —,)X=0
in terms of f, as will be seen later; to express the
theory in terms of P alone is nevertheless very in-
convenient and probably not compatible with an
action-principle formulation. We shall therefore
regard the field X as a type of potential that con-
tains unphysical degrees of freedom, eliminated by
multiplication by y. %e shall see that the wave
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equation (2.11) is invariant under what we shall
call "chiral gauge transformations" (see the Appen-
dix),

under chiral gauge transformations, we shall not
need to carry out this construction. No error will

result from substituting

X~X+yA, NA, =——A,

that is, (v+ —,)yA, is identically zero.
For sc we have the expressions

=yB. +N = By—N —5,—

(2.12)

(2.13)

(0
i 1;(y)X (y')

i
0) — (2y y')

4m

during the evaluation of the S matrix.

III. FREE-FIELD SUPERMULTIPLET

from which we deduce that, on the cone,

y(a —N) =(a.+X+3)y=0 . (2.14)

Since the degrees of homogeneity of P, X, and
3 5

A are ——,, ——,, and ——,, respectively, the "chiral

gauge invariance" of the wave equation (2.11) fol-
lows at once.

The wave equation can be derived from the
Lagrangian

(2.15)&+2 &—
2

where X'=O'JXJ (see the Appendix). This is real,
and invariant under chiral gauge transformations.
The integrand is of degree —3, as required by in-

variance.
A quantized free P field may be defined by

f(y) =g[dJMQJM(y)+dJM AM(y)C],
JN

[dJM~dJ'M']+ 5JJ'bMM'

The homogeneous propagator is evaluated in the

Appendix, with the following covariant result:

S(y,y') =—(0
~
g(y)l7(y')

~
0)

QPJM(y W JM(y')

=(ir+ —, )D(y,y') . (2.16)

This suggests that the homogeneous 7 propagator
should be

1
(2y .y i

)
—3 /2

4a

but to achieve this it would have been necessary to
introduce additional ghost states with nonpositive

norm, and to include creation and destruction

operators associated with these states in the defini-

tion of the quantized X field. Because our Lagran-

gian and hence our S matrix will be invariant

The construction of the graded extension of
so(3,2) to be carried out here was already done by
Keck. It is based on the isomorphism between

so(3,2) and sp(2+). This was already exploited by
Dirac in his singleton paper; in fact, Dirac's paper
makes it pretty evident that Di 8 Rac extends to a
very special and fundamental representation of the
graded extension of so(3,2), although the extension
was not mentioned.

Consider a four-dimensional phase space 8'=8
with global, natural coordinates g', . . . , g in
terms of which the components of the symplectic
two-form are —C,J, where C is the charge-
conjugation matrix (see the Appendix). In other
words, if [, ] denotes the Poisson brackets, then

[g;,gJ) = —CJ . (3.1)

A. Quantization

A very special representation of osp(2) is given

by the Weyl quantization map, modified by replac-

The space of second-order polynomials with real
coefficients, with the Poisson brackets, has the
structure of the Lie algebra sp(2+ ) =so(3,2).

Consider the space of polynomials of order 1 or
2, spanned by the ten even elements L p and the
four odd elements g;. A structure of graded Lie
algebra is defined on this space as follows: If f,g
are both odd, then [fg] =fg; if f g are both even,

or if one is even and the other is odd, then

[f,g]= {f,g]. Keck verified that the graded Jaco-
bi identity holds, but this also follows from the ex-

istence of faithful representations of the structure.
This graded Lie algebra will be denoted osp(2).

A representation of osp(2) is a mapping f +fof-
osp(2) into a space of linear operators in a Hilbert

space such that [fg]~[fg]+=fg+gf if f and g
are odd and [f,g]~[f,g]:fg —gf if f and g ar—e
both even or if one is even and the other is odd.
Representations of osp(2) were given by Keck and

others. ' " Oddly enough, however, the simplest
and perhaps the most fundamental representation

appears to have been neglected.
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ing the conventional factor i% by unity. This map
preserves the Lie algebra structure and it was
shown' ' that the representation of so(3,2) that
one obtains is precisely Di S Rac. The easiest way
to obtain a representation of osp(2) is to make the
trivial observation that the Weyl map also pre-
serves the graded-Lie-algebra structure; hence the
representation Di 8 Rac of so(3,2) may be extended
to osp(2). But that is not all, for the Weyl map
also preserves the additional structure relation
(3.1); that is, [g;,gj] = —Cj (times the identity
operator).

All the structure relations may be summarized

by a simple formula

B. Free-field transforrnations

To express these results as transformations of
free Di and Rac field operators, we introduce the
linear map generated by

bJM, J,M integer

dJM, J,M half-integer.

This allows the Fock space spanned by (3.3) to be
identified with the direct sum of the spaces of Di
and Rac one-particle states, and to reinterpret the

g; accordingly. Finally, this action transfers to the
field operators. The result is

(3.6)

=(X p);jL 2i CV— (3.2) 1

gr Pj (v(j ——
2 Cij )P (3.7)

acting on a Pock space spanned by

(gl)J+M((2)J —M

M= —J,—J+1, . . . , J; J=0,—,, 1, . . . .
(3.3)

The normalization constants fz~ can be chosen so
that the induced matrix representation of the g;
satisfy the Hermiticity condition g; =g. A unitary
representation of SO(3,2) is now generated by the
operators L~@ defined by

g;gj =(X jj)~jL~~ —,Cj—(3.4)

The symmetric part (with respect to the inter-
change of i and j) of this formula is the anticom-
mutator structure of osp(2); the antisymmetric part
is the structure of the Heisenberg algebra. The
remaining structure; that is, so(3,2) commutation
relations for the L ~ and the fact that the g; span
a spinorial ideal, follows from (3.2) and the associ-
ativity of the operator products. According to the
von Neuman unicity theorem, the representations
of (3.2} are unique up to projective equivalence.
We construct an explicit realization in the notation
of Bargmann-Segal quantization, or ladder opera-
tor formalism. ' From now on we are dealing ex-

clusively with this operator representation, and the
carets on g;, L jj will be dropped.

We interpret g' and g as creation operators and

g and P as destruction operators (g—=C'g j),
k= —~2 4= —~2,

k=0' k4= —0'

Equation (3.7} follows immediately from (3.6) and
the structure relation (3.4).

In principle it is superfluous to verify that (3.6)
and (3.7) is compatible with (3.4) and with the free
wave equations, since our construction guarantees
it. Nevertheless, it will be useful to do so. First,
(3.6} and the free Rac wave equation 8 ({l=0 imply
that

8 /=0. (3.&)

We shall verify that this holds on-shell; that is, by
virtue of the Di wave equations (2.10) and (2.11).
First, the identity (2.13) shows that (~+ —, )X=O is
equivalent to ye =0; hence BX=yA, on the cone,
and Py/X= —Py A, = —2yA, = —2elX on the cone.
Again, (2.13) gives siyX=( —2 —ysi)X identically,
so finally 8 1(=s)s)yX=( —2B—s)ysi)X=O. [Warn-
ing: It is important to distinguish between state-
ments that are independent of the extrapolation to
y & 0 and those that are not. Equation (3.8) is in-
dependent of the choice of {analytic) extrapolation
of 2', because Xf= ——,1t.] Next, by (2.13), Eq.
(3.7) can be written g; Pj = (y B)j,P, which is com-
patible with setting

g;X, —BpP . (3.9)

In a theory with chiral gauge invariance this is
equivalent to (3.7). Together with (2.11), which can
be written y&X=O, (3.9) implies that 8 /=0, in
agreement with (2.3).

From (3.6) and (3.7) we get one expression for
g;gj1(t», and (3.4) gives another. Equating the two
we get

Lap= —2(& p)'%ikj . (3.5)
~,gv =&,6 &»0, &,v4— .—

This representation is precisely Di 8 Rac, as was
well known,

1 1+ 2 ~ij 4 2 Ci»lj (3.10)
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Since M &k+Mjk; +Mkj vanishes identically, (3.10)
is equivalent to M JI,

—MI,J;
——0 and thus to the

equations

0=C"'M;jk —= [(ir+ —, )g]j,

O=l "'Mijk=[(k+ i ))'A]j .

By means of the identity

(3.1 1)

(3.12)

IV. SUPERSYMMETRIC INTERACTIONS

one can now easily verify that (3.11) and (3.12) are
equivalent to (2.10) and (2.11), so that (3.10) holds
on-shell. This is a rather surprising result, which
perhaps explains why the simple Di-Rac supermul-
tiplet was not found by Keck and others.
This miraculous closure would have been even
more masked if we would have formulated the
problem on de Sitter space (rather than on the
cone). Of course, such a formulation is possible.

where B,JI, is totally antisymmetric, and M,JI, is the
quantity (3.10). Since Mijk vanishes on-shell, it is
consistent to require 3;J. and B;J~ to vanish on-
shell. This approach can be pushed to completion
at the cost of a lot of work.

A simpler method makes use of previous work
on de Sitter superfields. ' Let 0', . . . , 8 be the
generators of a Grassmann algebra. Then the
operators

Q;=(1+—, 8 )i};—8;8 i}+8 (ir; ——,C; )

(4.5)

with 8 =8'8;, satisfy the osp(2) anticommutation
relations. Applying these operators to the super-
field

4= P+O'P, +
,
8'8 jA,,—+

,
8'8 j8k—B;,,

+—g'g Jg g ( "II
4&

and putting g;4=(;P+8j(gjg)+. . . , we find

L pP=i(y r}p ypi} )P— (4.1)

The operators defined by (3.6) and (3.7} satisfy
the structure relations (3.4) on-shell only. To facil-
itate the study of interactions it is very convenient
to improve the formulation so that the structure
relations are satisfied identically. More precisely,
this will turn out to be possible only so far as the
osp(2) structure is concerned, while the additional
commutation relation [g;, gj] = —CJ will be aban-
doned off-shell. In all that follows, as in the
preceding section, L~p stands for the operator that
is defined by

1

4 Wj =«ij i Cij)0+—A j (4.6)

(i~jk ™ijk+Bijk, (4.7}

(4.&)

in agreement with (3.6), (4.3), and (4.4), and expres-
sions for g;Bjki and g;Cjki that we shall not write
down.

The chirality condition (2.10},1(i=yI, is expect-
ed to remain valid off-shell, so it is interesting to
check whether this condition is compatible with
(4.6) and (4.7). Using the identities in (3.11) and
(3.12), we find that, when 1(i=yp, then

M jk
———yjk[(k+ —,)X]; .

L pg;=i(y r}p yp& )f;+—(&,p} Q, . (4.2)
Hence (4.7) is compatible with restricting A,z to the
f0&Ii

1

kllj kikj0 (+ij 2 Cij )0+Aij (4.3)

with A,j ———AJ, . The symmetric part of (4.3), ap-
plied to pk, leads after some calculation to the fol-
lowing requirement of consistency:

k Ajk ™ijk+Bjk (4.4)

The so(3,2) commutation relations, and the spinori-
al nature of the g;, will be maintained without
comment, while our interest centers on (3.4), of
which only the symmetric part is relevant to osp(2)
and to supersymmetry.

A direct approach allows for a generalization of
(3.4) by introducing an additional term in (3.7):

g"=—v "glJ W lJ (4.9)

which is precisely what is needed in order that
(4.6) remain compatible with /=yes.

It is remarkable that, when A;J. is of the form
(4.9), then one obtains simply g;Bjki =Cjki, and the.
internal consistency of the entire scheme may be
assured by setting

BiJI =CsJI,

No auxiliary field besides AIJ is required in order
to obtain off-shell closure. The transformation law

(4.6) and (4.7) can be expressed as
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,X; =y, y+C, ,A

g;A =[(tc+ 2
)X]]=(P']])X)].

The supersymmetric free Lagrangian is

&0———,fdy []t]B /+X(a+ —, )X—A ] .

(4.10)

(4.11)

(4.12)

(4.15)

and the transformation law

Therefore, this auxiliary field can be eliminated to
give the following total Lagrangian:

~= —,fdy[Pd'/+X(]r+ , )X—

+ 3gIX''+g'0']

Interactions

l l

k XJ=]'])J-0 gc—j-4'

(4.16)

(4.17)

~l =g fdy( , PX0' A-0'»— (4.13)

with g real. The wave equation for A becomes

A+gP'=0 . (4.14)

The interaction Lagrangian density, to give an
SO(3,2)-invariant action, must be of degree —3.
The only possible terms are AP, P gX, and ((],
since $1(t vanishes and XX is not chiral gauge in-
variant. The only real combination that is invari-
ant under the supersymmetry transformations
(4.10) and (4.11) is
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APPENDIX

That (2.8) and (2.9) defines a basis for D(1,—,) is a special case of results given' for D(EO, —,). The spher-
ical spinors are

—(J+ 1 —M)' YJ+]/2 M ]/2
(J+1+M) Yg+1/2, M+]/2

1/2

JM +2 0
0

We have used the following conventions:

—0.
l

0 '~o I

'Y5= —Xo'V&'VQ'3=i I C= —i

Our justification for referring to y as the chirality operator and to (2.12) as a chiral gauge transformation
is as follows. Apart from a fixed power of r, the fields are defined on S]XS2, which is a covering space of
compactified (2+ I)-dimensional Minkowski space. In a notation that is adapted to that interpretation one
finds that y is the product of the chiral projection (1+yi)/2 and an invertible matrix. '

The homogeneous propagator (2.16) was obtained as follows. First,

I 0
XC. (yV. (y')=~yX~~+,' ~.M)e ~'I'J+1/2(y"y ) 0 0

y'
JM J

r

y(ia +—' —O"M) g e "E ]/2'I' y-'-
E=0
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with r=t t—. The Fourier series defines a distribution that can be defined as the limit of an analytic func-
tion, as r tends to the real axis from below, and the final expression in (2.16) must be interpreted in this
sense. The final simple and covariant form is found only after restriction to y =0, and some algebra.
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