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Equations of motion of a non-Abelian charged spin particle in a Yang-Mills field
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The equations of motion of a non-Abelian charged spin particle are derived from
energy-momentum conservation and covariant charge conservation following the moment
method of Papapetrou.

I. INTRODUCTION

In a recent paper' the laws of motion for a
pointlike non-Abelian charge were derived from
energy-momentum conservation and covariant
charge conservation following a procedure first in-
troduced by Mathisson. In this paper we shall ex-
tend these results for a particle with spin and
SU(2) electromagnetic moments. We shall follow
the moment method of Papapetrou, which has
been used recently in the analysis of pole-dipole
charged particles with electromagnetic moments in
an electromagnetic-gravitational field. The method
will also give the volume integral of the energy-
momentum tensor and of the current, and of their
first moments.

II. FIELD EQUATIONS AND LAWS OF MOTION

The field equations for SU(2) gauge theory are
given by

with

kowski space. From (1) it is easily shown that T~f)
satisfies the equation

T~~~ = —F" ~ J

We introduce now the matter-symmetric
energy-momentum tensor T"' by the requirement

From (5), this is equivalent to the statement that
T""is such that the overall energy-momentum for
the system matter-gauge fields is conserved,

t)&( T~ +T)f) ) =0 .

From (3) and (6) we shall derive the equations of
motion for a particle with charge and spin follow-

ing the moment procedure of. Papapetrou. 3 We
consider an extended system with reference point
X (s) with velocity 'u=dX'/d asnd we shall take
moments of T"' and J"about this point, up to
first order. By demanding that the dimensions of
the system tend to zero around X (s) at the very
end of the calculation, this point will give the
world line of our pointlike charged spin particle.

From (6) we have the equations

F~, t)„A, t)+——„A„)—& A, . — (2)

Three-dimensional vector notation is used for the
degrees of freedom referring to the local isospin
and X denotes the cross product.

As a consequence of the field equations (1) the
current J„is covariantly conserved, i.e.,

„—A X

t) (x"x~T ")=x~T""+x"TS +x"x~F' J

(9)

Integrating Eqs. (6), (g), and (9) over the three-
dimensional space volume for t =const of our sys-
tem, then

We introduce now the energy-momentum tensor
of the gauge fields F",

—JT "dV= JF" J dV, (10)

(4)

with the metric rl "=diag(1, —1, —1, —1) in Min-

I xt'T dV= I Tu dV+ I xuF" .J,dV,
dt
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and

—f x"x~T dV= f x~T" dV+ f x"T~dV
dt

+ x~x~F JQdV .

Also,
+ 0 ~ 0

q= =f JdV, dj= — =f5xJJdV

(22)

Next we write

x"=X"+5x"

(12)

(13)

are the SU(2) charge and electric dipole moment,
respectively.

With u =dX /ds, Eqs. (17), (18), and (15) be-
come

with X =t, that is, 5x =0. Substituting Eq. (13)
in (11) and using (10) we obtain

f T dV+ —f 5x"T"dV
dt dt

= f T"'dV+ f 5x"F" J dV. (14)

d M"
Fv .NQ g Fv .NPQ

P Q P Q
ds u

Ov ppv
P M d M MP~ F~ NPQ

ds u

M' M" "
u~ +ui' =M» +M»"

u' u'

(23)

(24)

(25)

Next we substitute Eq. (13) into (12) and use

(11), and afterwards use (13) again for x~ and use
Eq. (14). Neglecting second-order moments of T""
one gets

dX" dx~f 5x~T "dV+ f 5x"T "dV

= f 5x~TI"dv+ f 5xl'T~"dv . (15)

Now we expand F" (x) around X,

and

B„(x J')= J +x A"X J„

B„(x x~J")=x~J +x J~+x x~A"X J, .

(26)

(27)

Before we go on with these equations we derive
those that follow from (3). From this equation we
have

F" (x)=F" (X)+5x@BpF" (X)+ (16)
Space integration of Eq. (3) and of (26) and (27)
gives

f T"dV+ —f 5x"T'"dV
dt dt

(17)

where Bp
——8/Bx~. Introducing Eq. (16) in (10)

and (14) one gets to first order in 5x ~

—f T dV=F" f J dv+B~F" f 5x~J dV,

—f J'dv= f A, x J"dv,
dt

Q JOdp JQdg
dt

+ fx A„XJ"dv,

—f x 'x ~J '= f x ~J 'd V+ f x J ~d V
dt

(28)

(29)

= f T"'dV+F" f 5x"J dV. (18)

We introduce now the notation (u =dt /ds)

M~~ —uo f T~&dV M«~ — go f 5x~T~&dV

(19)

+ f x x~A„X J "dV. (30)

Now we proceed as before. We use (13) in (29)
and make use of (28), then in Eq. (30) first for x
and afterwards for x~ and make use of (29) each
time. Next we expand A"(x) around X~:

and A"(x)=A (X)+5x~a,A (X)+ . (31)

Note that

M"I'=O, N'~=O. (21)

N=u f JdV, N = —u f5x JdV.

(32)

Keeping only terms to first order in 5x we ob-
tain, in the notation (20), the following set of equa-
tions analogous to Eqs. (23)—(25):

+ 0

, =A„XN' —B&A.XN~',
ds u
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a0
u N0 d N =Na —Axe
uo ds u0

N+ N 0 N++Nu' u'

Substituting the value of N obtained from Eq.
(33) in Eq. (23) one gets

s uO uO

(33)

(34)

in its rest frame and

f (5x'J~ —5xj J')dV
2u'

+ —,(u'dJ —u Jd'), (43)

which reduces to the usual nonrelativistic magnetic
dipole moment in the particle rest frame. Note
that from (40) and (42) we have

u

u 0 p a=F" N —8 F' NP — N
u

13
—AyF" Nj. (35)

Aiming to obtain a covariant derivative for F
we express N p in the last term of (35) in terms of
N with the help of Eq. (34). The last term of
(35) becomes

(44)

To obtain the spin equation we interchange p
and v in Eq. (24) and subtract the resulting equa-
tion from Eq. (24) itself. Keeping in mind that
M""=M""we obtain the equation

V

MO|M + Spv F,Npa Fp, Nva
u' u' ds

ApXF'~ N P= —(ApXF"~) N — N '
u

NI3o
XAp F" u . (36)

u

where

M &—M~"S" =
u'

(45)

Equation (35) can now be written as

=Q F" u —DpF' J P,
ds

where

(37)

= f (5x"T" 5x'T ")dV—

is the spin of the system. Note that

S" = — = f 5x"T dV.u'

(46)

(47)

M' -„N
, +Fa' 0

is the generalized momentum,

0

Q= + ApXN+=q —AJ Xdj
u' u'

is the generalized SU(2} charge, and

(38)

(39)

As shown in Ref. 4 S"' is a tensor and bg the
same argument there used for the usual J ~

current moment, j ~ is also a tensor.
Using Eq. (35) and recalling (38), Eq. (45} can be

written as

dS""
ds

=p"u —p u"+F"a.J —F a J"

(40)

j p= , (N~ Np)+ —(u N—~ upN ) . —
2u

(41)

j aP NPa u Na0
u'

Using Eq. (34) we can see that j p is an an-

tisymmetric quantity,

(48)

This is the final covariant form of the spin equa-
tion. By the tensor character of S",F", and J
we conclude that p" is a four-vector. Setting v=0
in Eq. (24) we can express M "=M and conse-

quently p" in terms of M . We have from (24),
(47), and (44)

From Eqs. (40), (41), and (20) we have

j' = —N' =u f 5x'J dV=u d', (42)

u ds

(49)

which is the electric dipole moment of the system and introducing this in Eq. (38) we have
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dS" - -~ - -~00
p&=mu~+ +F'. J ~—F~..J",

Qs

where

M 1 p -. ~p
00

Nl = a'Ju' u'

JT dV F;—d'
u'

is the total mass of our system. Note that

p =mu0 0

(50)

(51)

(52)

1 dSI'
M~ =u~p +—

2 ds

1 u Sp0 u SOy F+ +p
u' u' (56)

Equations (56) and (55) give, respectively, the
volume integral of T""and of its first moment in

terms of the dynamical variables of our problem.
Consider now Eq. (33) and concentrate on its

last term. Using Eqs. (40) and (2) this term can be
written

3&A„XN~"= , (F&„+—AgXA,)'j "~

d M~
Mfa% P v +F . QP

ds u' (53)

As p" is a four-vector m is a scalar.
Next M"" and M ""are expressed in terms of

the dynamical (tensor) variables. Introducing Eq.
(49) in (24) we obtain

dA„
+ X

From Eqs. (33), (40), and (39) we also have

~ a0
N =u Q+ — +A„Xj"

ds u'

(57)

(58)

ut'
(u~S"+u "S'1') .

2u'

From here we have

(54)

where use has been made of Eqs. (44), (50), and

(51).
Next we concentrate on Eq. (25). This equation

gives M~"" in terms of the spin by the following
procedure. Add to Eq. (25) the equation obtained

by exchanging P and v and subtract the equation
obtained by exchanging p and v. A sum, M"
+M ~, will be present in the final equation that
can be expressed in terms of M~= —u S. The
final result is

M~""=——,(S~"u "+SP"u")

(59)

where Q is the SU(2) generalized charge defined in

Eq. (39).
Equations (37), (48), and (59) generalize the

equations for a point spinless particle obtained in
Ref. 1.

Using (39) and (42), Eq. (58) can be written as

g)
~ e0

Nc ~ +A X
' 'vcx

Ds uO
(60)

Substituting Eqs. (57) and (58) in (32) and using
pthe Jacobi identity for Ap, A„, and j ' together

with the antisymmetric character of this last quan-

tity one obtains the equation

DQ dQ ~ ~ ] ~ ~p—u A XQ= 2Fpx J
Ds ds

M~" = —, (S~&u +S+—u"+u~S" ) .

Taking this result in Eq. (53) we obtain

(55)

Equations (60) and (44) give, respectively, the space

integral of the SU(2) current J and of its first
moment in terms of the electromagnetic dipole mo-
ment tensor j
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