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The two methods of quantizing scalar field theories in the soliton sector currently in

use in the literature, one developed by Christ and Lee, the other by Matsumoto and

Umezawa, are examined simultaneously. It is shown that both may be derived by the
same general technique, but correspond to different adiabatic-switching prescriptions.
The Christ-Lee switching leads to an interaction picture which includes bound-state

modes and the collective coordinate, while the Matsumoto-Umezawa interaction picture
uses the standard massive free field. The asymptotic ground states in both cases are real-

ized as coherent states, in the Christ-Lee method constructed from the exact classical
solution, in the Matsumoto-Umezawa method built around a function which satisfies a
simple inhomogeneous equation. It is shown that both representations yield identical re-

sults when used to calculate unrenormalized Green's functions. The Lehmann-

Symanzik-Zimmermann reduction formulas are developed for both approaches and used

to show the two methods predict different results for particle-soliton scattering. Advan-

tages and drawbacks of both approaches are discussed, as well as extensions to multisoli-

ton problems.

I. INTRODUCTION

Considerable effort has been spent in investigat-

ing the classical solutions to the equations of mo-
tion for various field theories. ' Generically known
as solitons or extended objects, these configurations
may be interpreted as nonlocal manifestations of
the local dynamics and the structure of the ground
state. It is believed that the soliton represents a
sector of the theory inaccessible to standard pertur-
bative techniques.

While the attendant problem of quantizing the
parent theory in the presence of the soliton has
been studied exhaustively, and considerable pro-
gress has been made in the multisoliton problem,
an interesting and unusual question has arisen.
Examination of the literature shows that there
currently exist two approaches to canonical quanti-
zation in the soliton sector for simple scalar
theories. Each gives a unique method for deter-
mining the Feynman rules, propagators, and ver-

tices, in the soliton sector, and a cursory examina-
tion reveals little similarity between the two. The
first method, developed by Christ, Lee, et al. (here-
after referred to as CL), consists of a prescription
for translating the fields in the action by the exact
classical solution and self-consistently decomposing

the interaction-picture fields around the principal
modes which remove the linear and quadratic
terms. The second method, developed by
Matsumoto, Umezawa, et al. (hereafter referred to
to as MU), consists of representing the Heisenberg
field of the theory in terms of a functional power
series in the free field. The Heisenberg field in the
soliton sector is then found by translating the free
field by a function which satisfies the same equa-
tion of motion as the free field and resumming the
series. This method can be shown to yi'eld a classi-
cal solution of the original equation of motion in
the tree approximation for the vacuum expectation
value of the Heisenberg field. In addition, both
methods have been formulated in terms of a path
integral for the time-ordered products of fields in
the soliton sector.

It is the intent of this paper to examine both
methods to determine whether these two formula-
tions are equivalent and, if they are not, to find
their respective domains of validity. For the pur-
poses of this paper the standard techniques of per-
turbation theory will be employed. In so doing it
is necessary to select an asymptotic particle spec-
trum with which to populate the scattering states.
This is determined by adiabatically switching off
the interaction, either completely or partially, and
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using the remaining part of the Hamiltonian Ho to
define a complete set of scattering eigenstates. In
order to reflect the presence of the soliton in the
ground state, the asymptotic vacuums will be
represented by a coherent state constructed using
the particle operators which create eigenstates of
Ho and a function determined self-consistently.
Once these steps are completed it is straightfor-
ward to find the evolution operator, which interpo-
lates between these asymptotic vacuums, in terms
of a set of time-ordered products of interaction-
picture fields which lie between I'ock vacuums, not
the coherent states. The interaction-picture fields
must satisfy an equation of motion uniquely deter-
mined from Ho. It is then possible to examine the
vacuum graphs of the theory to determine if the
conditions of the Gell-Mann —Low theorem can
be met so that the adiabatic-switching parameter
may be allowed to vanish.

It will be shown that this method allows both
the CL and MU perturbation series to be derived,
and it shows that their difference arises from selec-
tion of a different adiabatic-switching condition.
The CL method corresponds to retaining a piece of
the interaction in the asymptotic region which al-

lows the coherent-state function to be an exact
classical solution. On the other hand, the MU
series is developed by switching to a standard free
Hamiltonian and using a coherent state built
around a function which satisfies a simple inhomo

geneous equation of motion. The form of this

equation of motion is determined by examining the
Yang-Feldman equation' for the interpolating
Heisenberg field derived from the evolution opera-
tor. Demanding that the Heisenberg field satisfy
the original equation of motion, and that the
coherent-state function interpolate between dif-
ferent constant solutions of the original equation of
motion and have a Fourier transform, " unique1y

determines this function's equation of motion.
These restrictions alleviate certain difficulties in

the MU method discussed elsewhere. '

When the vacuum graphs of the switched theory
are examined it is seen that both methods satisfy
the criteria of the Gell-Mann —Low theorem, and
thus both methods can be used to generate an

eigenstate of the full Hamiltonian even when the
switching parameter is extinguished. However, the
vacuum graphs in the MU theory are given by a
phase with an essential singularity in the coupling
constant, whereas the CL theory does not have this
property. This is symptomatic of the fact that the
asymptotic particles of the MU approach scatter

off the soliton, while those of the CL method do
not. It will be shown that the particle operators of
the CL theory can be written as functionals of the
particle operators in the MU theory as long as the
normal modes of both theories' interaction pictures
span the same space of functions, a condition usu-

ally satisfied.
It will be seen that, modulo the difference in va-

cuum graphs and with certain convergence condi-
tions met, the MU series representation of the un-

renormalized Green's functions can be resummed
to the CL series for the same unrenormalized
Green s function once the adiabatic-switching
parameter is allowed to vanish. In addition, it will

be shown that there exists a denumerable infinity
of representations "intermediate" to the MU and
CL representations. The question of the
equivalence or lack thereof for the renormalized
Green's functions wi11 not be resolved in this pa-
per; however, the way is clear to investigate this
aspect of the problem using the techniques
developed for resumming the bare series.

The remainder of this paper can now be out-
lined. In Sec. II, the general class of theories to be
analyzed is defined and the respective adiabatic-
switching conditions are fixed. The interaction-

picture fields are constructed, paying special atten-
tion to the translation mode and collective coordi-
nate, ' and the asymptotic ground states are de-
fined in terms of coherent states. The evolution
operators for both approaches are developed, and
from there the Yang-Feldman equations are de-

rived, so that the equation of motion for the
coherent-state function in the MU approach can be
found. In Sec. III, the unrenormalized MU series
is resummed using functional techniques to find
the conditions under which it is equivalent to the
unrenormalized CL series. Certain aspects of renor-
malization are discussed, and the extension to a
determination of equivalence for the renormalized
Green's functions is sketched. In Sec. IV, the
Lehmann-Symanzik-Zimmermann (LSZ) reduction
formulas for scattering in the presence of the soli-
ton are derived for both approaches and discussed.
In Sec. V the results are discussed for their utility
to computation in the soliton sector. The advan-

tages and drawbacks of both approaches are
evaluated, and extensions of the work presented in
this paper are suggested.

II. THE PERTURBATION SERIES

In this section the two forms for the perturba-
tion series in the soliton sector discussed in the In-
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troduction will be derived using standard operator
methods. There is no intention of claiming that
the results presented in this section are new; rather,
the intent is to show that both results can arise
quite naturally from the same general technique.
This is a necessary step in order to open the way to
their comparison. In order to begin this process
the class of theories to be considered will be speci-
fied.

A. Preliminaries and notation

Attention will be restricted in this paper to sim-

ple scalar field theories where the action has the
general form

and the sine-Gordon model

A t(P)=A, cos(aP) . (2.7b)

B. The interaction picture

a2
&(q)

In order to select the asymptotic particle spec-
trum, the Hamiltonian (2.3) is replaced by a time-
dependent Hamiltonian through an adiabatic-
switching procedure. In the CL approach the
Hamiltonian density is rewritten as

a2
~cL= 2 i/'+(~i/)'+, ~r(00)i/'

ay, '

& = I d "x dt[ ——,(B„P) +Mt(P)] . (2.1)
(2.8a)

a
a

(2.2)

It is assumed that Wt contains no derivatives of
the field i/, and that there are n spatial dimensions.
From (2.1) the equation of motion

where the second derivative of the interaction
Hamiltonian is evaluated at the classical solution
of (2.2) of interest. In the MU method the Hamil-
tonian is switched as

~MU =
2 [i/" +(~p)'+m'g'J

and the Hamiltonian +e [4 t ( I/l) —
2 m I/J ], (2.8b)

H= y d"x[ ,ib'+ , (&q—)'+~t—(y)]

are derived, where A I ———Wz. The theory is
quantized by the relation

[P(x,t),g(y, t)] =i5"(x—y) .

(2.3)

(2.4)

where m is given by (2.6). Note that at t =0 or
when a=0, both (2.8a) and (2.8b) coincide with the
original expression (2.3).

By selecting different adiabatic-switching
prescriptions the two methods cause the Heisen-
berg field to approach different limits at asymptot-
ic times. The limit of g in the CL method is
denoted

It will be further assumed that the equation

a m, (v)=0
av

(2.5) while for the MU prescription

(2.9a)

admits a possibly denumerably infinite set of dis-

tinct constant solutions such that

lim i/r=P . (2.9b)

a2
Mq (v)

a
=m, Vi, (2.6)

where m is some positive constant, which is the
same for each value v; which satisfies (2.5). Furth-
ermore, it will be assumed that there exists a set of
classical static functions $0( x) to (2.2) which inter-

polate between two or more different v;. The stan-

dard examples of such theories are the P model

From the fact that the right-hand side of (2.4) is
time independent it follows that both (2.9a) and
(2.9b) must satisfy the commutation relation

[P(x,t), P(y, t)] =[/(x, t),P(y, t)]

=i5"(x—y) . (2.10)

It is then possible to find the respective equations
of motion for (2.9a) by taking the large-time limit
of the relation

A t(P)= , a P + —,A$—— (2.7a) 0= —[0' [H' Pl] (2.11)
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(H —m )/=0 (2.12a)

and using (2.9) and (2.10) along with the respective
Hamiltonians from (2.8). This gives

The case (2.12b) is more complicated. In the
event that a static solution Po is being considered,
the eigenfunctions which satisfy (2.12b} will be
separable and have the form

and u(x, t) =u(x)e'"'. (2.15)

(2.12b)

(2.13a)

while the CL method gives

2

Ho ———, f d"x i}} +(V((}) + 2A r(Po)P
~No'

(2.13b)

Combining (2.10) and (2.12) shows that the fields
must be expanded around the complete set of
eigenfunctions which satisfy (2.12), and that crea-
tion and annihilation operators must be introduced
for every eigenfunction in the complete set. The
time development of these fields will be given by
the free Hamiltonians, which can be written in

terms of these interaction-picture fields. For the
MU approach this gives

Ho ———, f d"x[P +(VP} +m P ],

Under these conditions Eq. (2.12b) reduces to the
time-independent eigenvalue equation

—V + ~r(Po) u(x)=~o u(x) .
-2 a' -2

2

(2.16)

It will be assumed that the potential appearing in

(2.16) is sufficiently well behaved that there is a
complete set of orthonormal eigenfunctions
corresponding to real values of to. In general there
will be a continuum of "scattering" eigenfunctions

ju k (x) j and a discrete set of "bound-state" eigen-

functions. Among the latter there will be a group
of eigenfunctions, whose number will match the
spatial dimension of the theory, corresponding to
co=D. This may be seen by applying the gradient
to the static equation of motion for i}}oto obtain

This procedure is straightforward for the case
(2.12a), so that

y(x) (2 )
—&/2(a eikx+at ikx)—d"k

(2~)n/2 k k k

0= V V Po — A r(i}}o)
0

2 ,~r(4o) Vko
54o'

(2.17)

where

co =k +m2 2 2
k

and

[a -„,a - ]=5"( k —p ) .

(2.14a)

(2.14b)

(2.14c)

matching Eq. (2.16). These are the well-known
translation modes of the theory and, after proper
normalization, will be denoted ur(x). The set of
discrete eigenfunctions will be denoted

j ur(x):ur(x)], where the ui(x) are those discrete
eigenfunctions occurring in addition to the ur(x).
Their completeness implies

n

ur(x) ur(y)+ oui(x)ui(y)+ f u k (x)u~k (y)=5"(x—y),
l

while orthonormality requires that

f d x ur(x )iii( x) =5ri

and

f d"x u „(x)u'p (x)=5"(k—p),
where the translation modes are included in (2.19a) and all other inner products vanish.

In order to satisfy (2.10}and (2.12b), i}} is expanded as

(2.18)

(2.19a)

(2.19b)

CX~ —Etta(f d"k
$(x)=Q(t).ur(x)+ g, ui(x)e '+ /2, u k (x)e " +H.c.

(2toi )' (2~)"/2 (2'-k)'/2
(2.20)
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The a satisfies creation and annihilation operator
commutation relations

and thus an explicit calculation gives'

Q(t}=Q(0)+ tP, (2.25)

[at~ay'] =~tt' i

[a k,a-]=5"(k—p),
(2.21)

with all other commutators vanishing. Because
tp=o for the translation modes and because their
presence is necessary for (2.10) to hold, the time-
dependent Hermitian operator Q(t) must be intro-
duced. This operator is referred to as the collec-
tive coordinate, ' and has the property that

(2.22a)

where

[Qt(t),P, (t)]=i5„ (2.22b)

with Q and P commuting with all a operators. P
is not the canonical momentum, denoted P' to
avoid confusion, which will be discussed later.

The expansions (2.14a) and (2.20) may be insert-
ed into the respective free Hamiltonians (2.13) to
obtain

a-„IO)=o, vk

and therefore,

(2.26a)

Hp IO&=0. (2.26b)

For the CL method this state, denoted
I
0), has

the properties that

Q(0) IO)=at Io)=ak Io)=0, Vl, k . (227)

a form which will be useful later.
The asymptotic ground states for the respective

methods are written as a coherent state. In order
to do this it is necessary to introduce a state which
is cyclic with respect to the algebra of the respec-
tive operators. For the MU representation this
state, denoted

I
0), assumed to have unit norm,

has the property that

and

H = d kco-a-a-n
0 k k k (2.23a)

It follows that the time independence of Hp re-

quires that

(2.24)

Hp= —P + gtptatat+ f" ktoga i aP
l

(2.23b)

Io, t&=e ' Io),
which has the obvious properties

(2.28)

Having made this selection it is to be noted that
I
0) is not an eigenstate of P, due to relation

(2.22b), and therefore it is also not an eigenstate of
H0. In the conclusion, the technique for using
eigenstates of the Hamiltonian will be discussed.
Because Q is not time independent, it is necessary
to define a cyclic state at every time t by the rela-
tion

Q(t)
I

O, t & =at
I
O, t & =a-„

I
O, t & =0, Vl, k .

The necessity of introducing
I 0) and

I 0) will become clear when deriving the perturbation series.
The ground states of the two approaches are defined as coherent states. In the MU formulation the

ground state at time t is defined as

v '(t) Io)=exp i jd"x—p(x, t)f(x) Io) —=
I f,t) .

(2.29)

(2.30)

The form of the static function f(x}will be determined later. The state (2.30) has the property that

&f t Ik(x t) If t&=f(x}.
The CL approach differs only in its use of a static classical solution Pp. The ground state is defined as

V '(t)
I

O, t ) =exp i f d"x P(»t)4p(x—}
I
0 t & —=

I dp t ),

(2.31)

(2.32)

and has the property that
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&40 r
I 0(»r)14'o r) =00(x} (2.33)

In order for these relations to hold, the existence of the integrals in (2.30) and (2.32) must be verified. It is
clear that f(x) must possess a well-defined Fourier transform because of the decomposition (2.14a), while
the product of $0 and the principal modes of P must yield integrable functions. Under these conditions nei-
ther (2.30) nor (2.32) will be time independent.

C. Time-ordered products and the evolution operator

In Sec. IV, the LSZ reduction formulas will be derived. For both approaches the Green s functions will

be given in terms of time-ordered products of Heisenberg fields between the respective ground states (2.30)
and (2.32) at large times. The MU Green s functions, derived from the asymptotic condition (2.9b), are of
the form

GMU(xl x2» . =&f,r+ I T[p(x~)f(x2)
~

.
I ~

f, r )

while the CL counterparts, derived from (2.9a), are given by

GcL(x) X2. . .}=&$0r+
~

T Iq(x})y(x 2}
' ' '

] ~ljkp r )

(2.34a)

(2.34b)

where t+ and t are times far in the future and past, respectively.
The standard assumption' made to derive the perturbative representation of these amplitudes is that the

interpolating Heisenberg fields are related to the interaction-picture fields by a unitary transformation,
which thus preserves the canonical commutation relations. For the MU method

U(t)y(x, t)U '(t)=y(x, t),
while for the CL method

U(r)l((x, r) U '(r) =p(x, r ) .

It follows from the time development of the respective fields that

(2.35a)

(2.35b)

and

iU(t)U '(t)=e ''j f d"x [Ml(p(x, t))——,m p (x,t)]=—Hl(t)

2

i U(t)U '(t)=e '' f d"x Pt'1(P(x, t)) —— A q($0)P (x,t)—:Hl(t),
2 Qp2

(2.36a)

(2.36b)

where an arbitrary c-number dependence has been dropped. From the adiabatic-switching conditions it is
evident that

lim [U(t),P(x, t)]= lim [U(t),P(x, t)]=0.
/
t

i
~ oo

i
t

/

~ oo

From the definition of time ordering it follows that the amplitudes (2.34) can be rewritten as

GMU(X), X2, . . . ) = &0
~

V(t+ ) U '(t+ ) V '(t+ )

XT[[p(x|)+f(x~)][/(x~)+f(x~)].. . V(r+)U(r+)U '(r )V '(r

XV(r )U(r )V '(r )io)-
and

Gc (x L, 1,
.X. 2. )=&0,t ~V+(t+)U (r+)V (r+)

X T [kp(x&) +p (0x&)][/(x )2+/ (ox&)] V(t+)U(t+)U '(r )V '(r )I

X V(t )U(t )V '(t ) ~0, r ) .

(2.37)

(2.38a)

(2.38b)
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This form is dictated by the fact that the operator selected to act on the asymptotic cyclic vacuum must
give back a multiple of that state. Because the algebras generated by the fields P and P are irreducible in
the respective free sectors and U(t+) and U(t+) commute with all operator products by (2.37), it follows
that U and U must be multiples of the identity operator in the asymptotic region. It is then written

and

V(t )U(t )V '(t )io)=U(t )io)=k iO)

V(t )U(t )V (t )iOt )=U(t )iOt )=A, iOt )

(2.39a)

(2.39b)

with similar expressions holding at t+ for the constants A, + and A, +. It is now clear that the form (2.38) is
necessary because there are many functions for which

(0
i
v(t) io) =(o,t

i
v(t)

i
o,t) =o, vt . (2.40)

In particular the functions used in both approaches discussed here exhibit this property. Thus, unless the
operator V is removed from the asymptotic ground states, such a state could not be used for performing
contractions simply. The constants A, + and X+ are removed when the vacuum transition amplitude is nor-
malized. This will be exhibited explicitly.

Inspection of (2.38a) and (2.38b) shows that the evolution operators for the respective formulations are
given by

and

Z(t, t') = V(t) U(t)U '(t') V--'(t') (2.41a)

Z(t, t')=V(t)U(t)U '(t')V '(t') .

It follows for the MU formulation that

(2.41b)

Z(t, t'—) =I(t)Z(t, t'),
at

where

I(t) = V(t) V '(t)+ V(t) U(t) U '(t) V '(t) .

Expression (2.42) may be integrated and iterated using the definition of time ordering to obtain

(2.42)

(2.43)

t
Z(t, t') =T exp i f,dt"iI(—t") (2.44)

Identical expressions for the CL method are obtained with the respective operators receiving a tilde.
The operators I (t) and I(t) can be evaluated using (2.30), (2.32), and (2.36). The CL method will be treat-

ed first. Clearly, it is easy to see that

and

2

tv(t)U(t)U-'(t) v-'(t)=e-'~'~ f d"x ~,(y+p. )——,~,(p.)(p+p, )'
2 ~40'

~ ~ Q2
iv(t)v '(t)= —f d"x 400 00,~—t—(40)—40~ 40~do'

(2.45a)

(2.45b)

Expression (2.45a) may be expanded in a power series in p to obtain
r

a2 ~ ~

iI(t)= f d"x e-' ' l(p $0)+ A t($0) 00 2~v(40) p 4—00+C—
~40 Wo'

(2.46)

where I(g,go) represents the terms cubic and higher in P, while C represents the collected c-number func-
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tions. Using the equation of motion (2.12b) and integrating by parts, assuming good spatial behavior, gives

2

il(t)= I d"x e "i(4 4'0)+(e ' ' —1) ~I(40) PO— , ~I(40) 4'+C
Wo &go'

(2.47)

"fhe last term in (2.47) is clearly proportional to e for most values of t and vanishes in the event that e is
zero. For these reasons it will be discarded. The diligent reader may ascertain that the presence of this
term which is not completely switched in no way invalidates the Gell-Mann —Low theorem. Thus, the final
form of (2.38b) is

Get(x \et, ~ )= ()e) —) (O t+ I '[d(xl)+t)e(el)[[t)(xt )+()e(xt)1

t+
X exp —i I dtd"xe '('(I(dt, dte)+C O, t ) .

d t

(2.48)

This amplitude may be normalized by the factor which normalizes the vacuum transition element. This is

done by demanding that

X(ti, t )(dtpo, t+ i to(, )t ) =1,
so that

[N(tet)[ '=, ().+I, ) (0t+ T exp —i j dtd"xe '('(I(dde)+C O, t )

(2.49)

(2.50)

It is clear the N(t+, t ) removes all c-number dependence as well as canceling the vacuum graph phase

present in (2.48).
The way is then clear to apply the Dyson-Wick contraction scheme to (2.48). It is left as an exercise to

show, using (2.20) and (2.25), that

A(x —x') = (O, t+ i
TI())(x)$(x') I i O, t )

(t+ —t)(t t')—
= (O, t+ i

O, t ) 8(t t') i —— u T(x ) u r(x')
(t+ —t )

+ g (2~t) 'ut(x)ut(x')e
I

d "k—(2~ k ) 'u
k (x)u*-„(x')e

)n

(t+ t')(t t)— —
+ 8(t' t) i — uT(x). uT(x')

(t+ t )—
+ g (2d()t) 'ut(x)ut(x')e

I

k i ~ ~, iso~&(t —t')
+ (2' k ) 'u'-(x)u -(x')e

(2~)n k k k
(2.51)

where the vacuum element

(2.52)
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may be ignored since it will be canceled by the normalizing factor N(t+, t ), given by (2.50), which contains
the same element. Because odd powers of Q vanish when their vacuum expectation value is taken, the Feyn-
man rules consist of the vertices given by I($,$0) and the propagator of (2.51). It is shown in the Appen-
dix, using some results of the next section, that these are equivalent to the CL rules.

At this point the Gell-Mann —Low theorem establishes that the state

fp&H=Z(0 t )[p, t &[(p,t=0[Z(0 t ) fp, &] (2.53)

where
~
p, t & is an eigenstate of the operator P, conjugate to the operator Q, is an eigenstate of the operator

H=Hp+ f d"xI($,$0) (2.54)

in the limit that e vanishes. The application is straightforward and left to the reader. The operator H is,
modulo c-number differences, the full Hamiltonian (2.3) shifted by $0, and written in terms of the
interaction-picture field (2.20).

The evolution operator for the MU approach is developed similarly. It follows from (2A3) that

iI(t)= f d x [e
—

I 1[4 1(p+f) m(p+f) —]+/(V —m )f] (2.55)

after an integration by parts which precludes ffrom satisfying the static equation of motion (2.12a).
At this point a second demand is placed upon f, and this is that it must interpolate between two or more

different constant solutions to (2.5). In particular, to be topologically equivalent to the classical solution Pp
which it seeks to mimic, f must interpolate between those same values which $0 does. To reflect this, f(x)
is written

f(x)=v(x)+g(x), (2.56)

where g (x) is assumed to vanish at spatial infinity, a property which will later be verified, and v(x) consists
of constant solutions to (2.5) prefaced by step functions. An example serves to clarify this statement. The
two-value case for one-space dimension is written

v=v(x ) =v;8(x —a)+vj8(a —x), (2.57)

where a is an arbitrary constant. For higher spatial dimensions the spherically symmetric version of the
two-value case is written

v=v;8(r a)+vj8(a —r) . —

Generalization to many-value cases is obvious, e.g., the three-value case in one dimension,

v= v;8(x —a) +v [8(a —x) —8(b —x)]+vk 8(b —x),

(2.58)

(2.59)

where it is assumed that a y b By inspecti. on these forms are spatially dependent solutions to (2.S) which
satisfy (2.6) over all space.

Expanding (2.S5) about v gives

iI(t)= f d" {xC+e' ' I(P+g, v)+/[(V m)f e" m—v]I,— (2.60)

where C represents the collected c-number functions and I(P+g, v) represents the terms cubic and higher in

()I)+g. These terms include parts linear and quadratic in P. Amplitude (2.38a) is then normalized by divid-

ing by the factor

f+
N(t+, t )=(0)+)Dt )()+) )(0 '1 exp —i f d)(I()) D) . (2.61)

As in the CL case the Gell-Mann —Low theorem may be applied to show that the state

I
0&H —=Z(0.t-)10& [&0

I
Z(0 t- ) 10&] '

is an eigenstate of the operator 8 given by

(2.62)
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0=HO+ "x I +g, v + V —m —m v (2.63)

in the limit that e vanishes. Again, H is the Hamiltonian (2.3) shifted by f and written in terms of the
interaction-picture field (2.14a).

In order to find the equation of motion for f it is necessary to examine the Yang-Feldman equation for 1{

in the soliton sector. In the MU approach this is given by the evolution operator Z(t+, t ). It is straight-
forward to show'

l()(x) —v( x ) —=1{(x)

=({)(x)+g(x)+f dt'd"x'bz(x —x')[I'{ll(x'),v(x'))+(V —m )g(x')+V v(x')], (2.64)

where I' is the derivative of I, and hz is the retarded Green's function satisfying

(CI —m )Az(x —x')=5(t —t')5"(x —x')

and given by

b z (x —x') =i 8(t t')[P(x—),P(x')] .

Expression (2.64) shows that P, as opposed to P, is the operator generated by the perturbation series.
For the purposes of this paper the function g can be given the general form

g(x) =go(x)+g(x),

where go satisfies

(V —m )go(x)= —V v(x),

(2.65a)

(2.65b)

(2.66)

(2.67)

while g is an arbitrary function which does not satisfy (2.67) but does possess a Fourier transform. It is easy
to show that

E+

J dt'd"x'hatt(x —x')[(V —m )g(x')+V v(x')]= —g(x), (2.68)

so that (2.64) becomes
t

P(x)=))))(x)+go(x)+ J dt'd"x bii(x —x')I'(g(x'), v(x')) . (2.69)

Result (2.69) shows that only go contributes to the iteration of (2.64) for l{). Thus f(x) is fixed to be

f(x)=v(x)+go(x)

and satisfies the inhomogeneous equation

(V —m )f(x)= —m v(x) . (2.71)

Result (2.69) is very similar to the MU formulation of the Yang-Feldman equation in the soliton sector.
However, in the MU approach f (x) is assumed to satisfy the homogeneous form of (2.71) and thus does not
have a Fourier transform, creating difficulty in iterating (2.69). This problem is completely removed by
demanding that f(x) satisfy (2.71). Selecting (2.71) removes that equation from (2.60) and (2.63), so that the
final form for (2.38a) is

GM„(x„xz,. . . )=k+). (p T [p(x, )~f(x, )] . . exp —i J d)d"xl(p+gov) 0) .

The Yang-Feldman equation for f in the CI. approach can also be derived. It is given by

l((x)=p(x)+$0(x)+ J dt'd"x')5+{x —x')I'(f(x') —po(x'), ))))o(x')), (2.73)
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b,„(x—x') =i 8(t —t') [P(x ),tI)(x') ),
and satisfies

(2.74a)

where I' is the derivative of I and the retarded
Green's function has the representation

side does not vanish, the states of the theory are
not eigenstates of the canonical momentum opera-
tor. In the interaction picture or in the asymptotic
region the canonical momentum operators have the
representations

8
CI — A t(Pp) hatt (x —x'}

Q2p 2

=5(t —t')5"(x —x') . (2 74b)

P'= J d"xya, (Vy), a, =————
Bt Bt

(2.80a)

v( x ) =v8(x —a) —v8(a —x ), (2.75a)

It is straightforward to show that the representa-
tion of g obtained by either (2.69) or (2.73) satisfies
the equation of motion (2.2).

An example of the MU method is useful. The
P" theory, given by (2.7a) has been evaluated in one
spatial dimension for the two-value form (2.57).'

Thus v( x ) is given by

P'= jd"xya, (Vy), (2.80b)

in the MU and CL methods, respectively. A
straightforward calculation shows that the ground
states (2.30) and (2.32) are not eigenstates of these
operators, in agreement with (2.79). A significant
difference occurs in the algebra of the asymptotic
operators. It is easy to show that

where

1/2
n

m =2(x (2.75b)

[Hp, P'] =0 (2.81a)

It is straightforward to show that

2

[Hp, P ]= I d "x y V, P t(yp),
ay, '

(2.81b)

f( x )=v( x ) —v8(x —a )e

+v8(a —x)e (2.76)

I($+gp, v)= 4A(P+gp) +gv(x)(P+gp)

satisfies the one-dimensional form of (2.71). The
form for I is

so that P, in the CL approach has an explicit time
dependence. The fact that (2.81a) vanishes is a
direct consequence of the existence of the state

~
0) which both operators annihilate. Relation

(2.81b) is a manifestation of the fact that not even

~
O, t ) is an eigenstate of these operators.
It follows, however, that

(2.77)

Iteration of (2.69) using (2.76) and (2.77) gives, in

the limit A vanishes,
and

«f t IP'If t)=o

(P„t
~

P (t)
~
P„t)=0,

(2.82a)

(2.82b)

(0
~
g(x) +v( x )

~
0) =v tanh (x —a),

2

(2.78)

because a static solution has been chosen. A time-
dependent solution may be found by simply per-
forming a Lorentz boost on the static solution to
find

the standard kink solution of the classical theory.
x —pt

wp ~ yp (2.83a)

D. The canonical momentum operators or, for the MU case, boosting the function f to

Selection of a spatially dependent ground state
has broken translational invariance. This is easy to
see from the relation

x —pt
p2 }i /2x, t = (2.83b)

[P',P(x)]= i V f(x), — (2.79)

so that, if the expectation value of the right-hand
If these solutions are used the coherent states are
defined as
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V- (t) (o, t&=exp i—J' d"x(PPp P—Pp) ~0, t&= ~Pp, t& (2.84a)

and

V '(t) ~0&=exp i I—d"x(Pf Pf—) ~0&:—
~ f, t& . (2.84b)

The analysis of the previous subsections may be re-

peated to find that these coherent states lead to
boosted forms for P.

III. RESUMMING THE MU SERIES

In this section the MU representation of the bare
Green's functions will be resummed to find the
conditions under which it is equivalent to the CL
series for the same functions. This is done by re-

moving all linear and quadratic vertices in the
Feynman rules given by (2.72). The method which
will be used to effect this procedure is a formal

manipulation of the functional representation of
the bare Green's functions. Furthermore, to sim-
plify and clarify this process it will be done for a
specific model; however, the generalization will be
obvious. It must be stressed that. this resummation
could also be accomplished by manipulation of the
operator representation, but such an approach
would be much more tedious.

The model to be examined is the P interaction
given by (2.7a), (2.75b), and (2.77), although v(x )
will be allowed to be more general than (2.75a). In
the MU approach the Green's functions are given
by

G (x, . . .)=(f,t
( TI@(x,) j / f, t
t

+ x~ . . exp —l 'dtdx 4A, +go '+Av +go ' 0

It is verified by inspection that (3.1) has the functional representation

G MU (x» +f(xi)5
i5J x, i

5 5
Xexp i dtd"x——k +gp(x) +Av(x) +gp(x)i' x i' x

3

1

X exp ——,i d"xi dti d "x2dt2J(xi)h' '(xi —x2)J(x2) (3.2)

where 6' ' is given by

a'"(x, —x, ) =(0
( r[y(x, )y(x, ) I (0&,

and it is understood that the series (3.2) is evaluated at J=0.
The second exponential appearing in (3.2) can be rewritten

(3.3)

exp ——,i I d "xidtid "x2dt2J(xi )b, ' '(xi —x2)J(xi)

=Dp ' I [dP]exp i I d"xdt[ , P(Cl m)P+JP]——
L

(3.4)

The right-hand side of (3.4) requires clarification. It is the standard quadratic path integral with the
configuration-space measure [dP]. Such a measure has been discussed elsewhere, ' and is to be understood
as the limit of a lattice measure as the lattice spacing vanishes. It is assumed that m is given a small ima-
ginary part which selects time-ordered Green s function (3.3). Dp is a product of Gaussian integrals, and is
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given explicitly by

Do=[deth' '(x —x')]'

Inserting (3.4) into (3.2) yields

(3.5)

GMU (xi, . . .)=

x exp i f d"xdt[ , P(&—m'—)P,~(/+go) »—(0+go) +Jul ' (3.6)

a form derived previously by other means. Expanding the quartic and cubic terms and collecting those

terms with no dependence upon P into a phase factor allows (3.6) to be written
4

GMU (xi, . . .)= . +f(xi) exp i d—"xdt —A, +Af(x)5 . „1 5 5
i5K x

~ i.

3

&( Do 'e'~ f [dP]exp i f d "x dt[ , $(CI——m —Y'")P+(J+K X)P]—
K=o

(3.7)

where

X(x)=A[go(x)]'+3»(x)[go(x)]'

and

(3.8a)

Y"'(x)=3A[go(x)] +6»(x)go(x) =
~go

The path integration may be performed to obtain

(3.8b)

GMU (xi, . . .)= . +f(xi) exp i d—xdt —A, +Af(x)5 . „1 5 5

l xi 4 i5Kx i 5K(x)

3

Di
e'~exp —2i f d"xidtid"x~dt2[J(xi)+K(xi) —X(xi)]

Do

(xi —x2)[J(x2)+K(xq) —X(x2)] J o
K=O

(3.9)

where 6"' satisfies

(CI—m 2 —Y'")6"'(x x') =5(t—t')5"(x —x')—
and has the formal representation as an iteration of the equation

b"'(x —x')=5' '(x —x')+ f d"xidtih' '(x —xi) Y'"(xi)b"'(xi —x'),

while D& is the Jaeobian given by

(3.10)

(3.1 1)

Di ——[detb'"(x —x')]'i (3.12)

The second exponential in (3.9) may be rewritten, modulo terms independent of J and K which are absorbed
into P, as
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D)Do 'e'~exp —, i—fd"x~dt~d"x2dt2[J(x~)+K(x~) —X(x&)]4'"(x~ x—2)[J(x2)+K(xq) —X(xq)]

=Do 'e' ' f [d(I)]exp i f d"xdt[ —,'$(CI —m —Y"')P+(J+K)(P+g~)] (3.13)

where

g~(x)= f d"x'dt'6"'(x —x')X(x')= f d"x'dt'b"'(x —x')[Ago (x')+3Av(x')go (x')] . (3.14)

Inserting (3.13) into (3.9) gives

GMU(&i, }= . +f(xi) ' ' ' Do '&
iar x„

&& f [dp]exp i f d "x dt[ 2 (I}(CI —m —Y'")p

——,~(0+gi }'—~(v+go)(0+gi)'+J(0+gi)] .
J=O

(3.15)

Result (3.15) is analogous to (3.6) and gives a representation entirely equivalent to the MU form, but with a
new set of Feynman rules.

Steps (3.7)—(3.15) may be repeated j times, yielding

GMU (x) ~ ~ ~ )= . +f(Xf) ' ' ' DoiSJ(x()

X f [dII}]exp i f d"xdt —,P(CI —m2 —)'J')P

where

1 j—1

)(4+g ) —). v+ xg( (p~g )~yJ ()~ $g
l=o J=0

(3.16)

J—2

gt(x)= f d"x'dt'6'J'(x —x') Agj t (x')+3k, v(x')+ ggt(x') gj ~
(x')

l=0

with 5'J' satisfying

( CI —m —Y'i')b '1'(x —x') =5(t —t')5"( x —x'),

while

j—1 l-1
Y'J'(x)= g 3Agt (x)+6iL v(x)+ gg„(x) gt(x)

l=o r=o

Making the assumption that

11m gj =0
J~ oo

in a manner sufficient for the convergence of the series

go(x)=v(x)+ g gj(x),
j=O

(3.17a}

(3.17b}

(3.17c)

(3.18)

(3.19)
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it can now be shown that Pp is a solution of

(&+a')Pf=&(Pf)' .

By use of (3.17) it is straightforward to find

(3.20)

00 j—1 J 1—&

(I7—m )fo= m v+ g ~gj +3)Igj v+ g gt +3kgj+l g gt +2 v+ g g„gt
J=0 1=0 1=0 r=0

(3.21)

Using the identity
'3

Xgt
1=0

T

n 1—1

gt +3gt
1=0 j=O J=O r=0

1—1 j—1

+3gt g g. +2g. (3.22)

and the fact that the convergence of the series allows interchange of sum and product, (3.21) can be rewrit-
ten

( CI m)p—pf= jl(ufo) 3A~p—fo mv+—2Av

This reduces to (3.20) upon use of the relations (2.7Sb).
Using the second identity

n n 1—1

g gt = g gt +2gt g gj
1=0 1=0 j=0

it is easy to show that

lim F'j'=3k(g()) 3Av-
J~ ao

so that, from (2.7Sb),

(3.23)

(3.24)

(3.2S)

m + lim F'j'=3k(gp) —a = 8 f, ~1(do) .
ayf'

(3.26)

Thus, in the limit j~ ao, expression (3.16) becomes

GMU (X 1~ +f(xl) . Dp 'e'~
l5J xl

82
X f [dp] exp. i f d"xdt —,'p CI—,8 t(lt)p)f2

, A/4 Agfpg'+ J—(P+P—() f)—
J=O

(3.27)

It is obvious that this could be rewritten as

G MU (xl ~ ~ ~ )= . +pp(xl) Dp 8i5J xl

X f [dP]exp, i f d"xdt —,P Cl—
a2

, ~s(0o) 0
an't

f'

—
4
~0' ~Ko0'+ J(4+No f)—

J=O
(3.28)

Expression (3.28) can be written in terms of a set of Feynman rules by separating the cubic and quartic
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terms as a functional derivative series. If this is done (3.28) becomes

G MU (xi )= .~ +Ho(xi) Do 'D&'
l5J xi

4 3

Xexp i —d"x dt —,A, . +Ago(x)i5J(x i5J x

X exp , i—f—d"x&dred"xrdt2[J(x~)&(x~ —x2)J(x2)] (3.29)

where

and

D =[det&(x] —x2)] (3.30)

l

both forms, although considerably more difficult to
calculate with.

IV. THE LEHMANN-SYMANZIK-
ZIMMERMANN REDUCTION FORMULAS

f2

CI—,4 t((()o) b(xi —x2)
ayf'

=Q(t( —4)Q"(x (
—xr) . (3.31)

It is clear that (3.29) coincides with the CL repre-
sentation of the unrenormalized Green's functions,
apart from the irrelevant phase factor Do 'De'~, if
Pfo and (to are the same function Becaus. e many
choices are available for f, it is clear that Po must
be calculated by (3.19) before it is known which
solution it converges to, and if this function gives a
set of stable solutions to (2.16).

The equivalence has been proved for the un-

renormalized Green's functions, and the natural ex-
tension is to the renormalized Green's functions.
It has been shown' that the MU Green's functions
are renormalized by the same counterterms and
wave-function constants as the same theory
without a soliton present. It would be straightfor-
ward to include these in the initial representation
of the Green's function (3.2) and then to resum
this series to obtain the renormalized CL series to
which it is equivalent. Such a program will be fol-
lowed elsewhere.

As a final remark it is obvious that the argu-
ment presented in this section can be generalized to
arbitrary interactions which are polynomial in na-
ture by using the generalizations of (3.22) and
(3.24). Of course, there are a denumerable infinity
of representations which are passed through on the
way to CL form. These are entirely equivalent to

and

~
k;in) MU

——V '(t )a -„~0) (4.1a)

~
k;in&CL ——V (t )a-„~ O, t ), (4.1b)

where all objects have been defined in Sec. II. In
essence the definitions of (4.1) have picked asymp-
totic particle operators as

ag=V '(t )a k V(t ) (4.2a)

and

ag=V '(t )ak V(t ). (4.2b)

These particle operators also satisfy the usual alge-
bra of annihilation and creation operators. The
many-particle extensions of (4.1) are obvious.

The states of (4.1) can be written

In this section the Lehmann-Symanzik-
Zimmermann reduction formulas for particle
scattering in the static soliton sector will be de-
rived. These will be used to show that the MU
method of switching leaves asymptotic particles
which scatter off the extended object even in the
tree approximation.

The basic ingredient in deriving the reduction
formulas is the asymptotic limit of the field opera-
tor. For the respective methods these are given by
(2.9a) and (2.9b). A particle state can then be de-
fined in each approach by

~
k,A;in)MU —— i lim V —(t) f d" [Xx( k)x&, g( )]Vx(t) ~A;in)MU

t —+t
(4.3a)

and

( k,A;in&cL= —l lim V '(t) f d x[X(x,k)B,Q(x)]V(t) ~A;in&cL,t~t (4.3b)
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where

X(x,k) =(2' k )
' e' (4.4a)

~ ~

X(x,k) =(2' k )
'~ u k (x)e (4.4b)

Of course, any discrete mode except the translation mode is allowed in (4.4b), as well as the scattering solu-
tions. Using the standard replacement

f+
lim = — dt—+ lim

Bt ~~~+
'

the definition of time ordering, and dropping any forward scattering terms, it follows that

MU(B;out
~

T I l I
k ~ n & MU

i f d"—x f dtX(x, k)(&„—m )MU(B;out
~
TI [p(x) —f(x)]] ~A;in&MU,

(4.5)

(4.6a)

while

c,(B;out
~
TI ] ~

k,a;in&cL

t+ a2= —t f d"x f,
+

dtX(x k) — 2~t(do) cL&B'out
I
T[ ' [0(x)—po(x)]! l~'in&cL,

0
(4.6b)

where use has been made of the equations of motion for (4.4). These formulas may be continued until all

particles are reduced from the asymptotic states, leaving only the coherent-state operator. It is important to
note that, in the limit t+ and t become arbitrarily large, the terms proportional to f(x) and Po(x) in (4.6)
will disappear due to the time integration and the fact that there are no zero-frequency modes associated
with particle states. The amplitudes are thus reduced to a set of differential operators acting upon Green's
functions of the form (2.34). Implicit in relations (4.6) are the respective adiabatic-switching assumptions.

At this point the two-particle amplitude may be examined. For the MU approach this is given by

MU(k;out
~
p;in&MU ——f d "x dt d "x'dt'X*(x, k)X(x',p)

X(Cl m)( „—m )—(f t+
~
T[g(x)g(x')]

~
f, t (4.7a)

while the CL method gives

cL&k out
~ p in&cL f d"x dtd"x'dt'X*(x, k)X(x',p)

X &4o t
I
T[0(»@(x')I I do t (4.7b)

where it is assumed that kQp, that the ground states in both expressions have been normalized, and that the
terms proportional to Po and f may be dropped. The results of Sec. III show that the unrenormalized
Green's functions appearing in (4.7a) and (4.7b) are, modulo an irrelevant phase factor, identical. Thus, in
the limit A' —+0 both must reduce to 6, given by (2.S1), where terms proportional to Po and f are again
dropped. It is apparent that (4.7b) vanishes in this limit. However, expression (4.7a) becomes
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lim M„(k;out ~p;in) MU
—— d"x dt's*(x, k)X(x,p) A t(yo) —m

o

82
+ f d"x dtd"x'dt'X*(x, k)g(x', p) 4 t —m

ay, 2(x)

2

~r —m b (x —x'),
ay, '(x )

(4.8)

aIld

d lt

d "x P u -„(x)e' " ' "ak (2~)n/2 " P
(4.9a)

at- = d "y u'- (y)e
q (2~)n/2 q

(4.9b)

with similar expressions for the bound state opera-
tors. It is trivial to show, using the commutator
(2.14c) and the orthonormality conditions (2.19),
that these definitions satisfy the relations (2.21).

which does not necessarily vanish. Result (4.8)
shows that the asymptotic particles of the MU
method scatter off a classical potential created by
the extended object. This is, within the constant
m, the same potential which was used to generate
the interaction picture in the CL approach, where
the phase shifts and bound states are incorporated
into the particle spectrum and normal modes. In
the MU approach they must become part of the
perturbation series, hence result (4.8).

In this respect it is interesting to note that the
vacuum graphs of the MU representation of the P
theory, given by (2.7a), are given by a phase with
an essential singularity in the coupling constant A, .
This is because the solutions to (2.6) for the theory
are proportional to A,

'/ . When solving (2.71) the
function go will then also be proportional to A,

In the expansion of I(/+go, v), there will occur
vertices again with negative powers of v, and these
will lead to a phase whose argument is singular in

The CL representation of this theory does not
have this feature. This is symptomatic of the pres-
ence of the classical potential which causes (4.8),
and which does not vanish for the P theory if A, is

zero.
As a final note, it is possible to express the par-

ticles of the CL approach as superpositions of the
particles used in the MU method. This is only a
formal relation since the two sets of operators are
defined over different Fock spaces. The nontrans-
lation mode operators are written

I

The collective coordinate and its canonically conju-
gate operator are written

n

Q(t=0)= f d"x 2 '/ uT(x)
)n/2

~ ~X(a-e' " ' " +a -e ~ ' "
)

P P

(4.10a)

and

d "k
p &

dn 2
—1/2u ( )'(2~) /'

X (a k e ' " ' " —a -„e' " ' " ) . (4.10b)

These clearly satisfy (2.22b), are Hermitian, and
can be extended to arbitrary times by relation
(2.25). Of course, relations (4.9) and (4.10) impli-
citly assume that the CL modes possess well-

defined Fourier transforms, a condition usually sa-
tisfied for any well-behaved potential.

V. CONCLUSIONS

It is relevant to summarize the major results of
this paper. The first is that both field-theoretic
formulations currently in use in the literature for
calculating in the presence of an extended object
may be derived by using the same operator tech-
niques, but by selecting different adiabatic-
switching conditions. The CL switching condition
allowed perturbations to be performed around the
exact classical solution at the cost of first solving
the potential scattering problem (2.16), introducing
the collective coordinate, and calculating with an
interaction-picture field that is not manifestly a
Lorentz scalar. The MU switching condition al-
lowed a simple particle spectrum, but led to more
complicated Feynman rules and to the necessity of
introducing the function f which is not a classical
solution. The second major result is that, for the
class of theories studied in this paper, the equation
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of motion for f differs from that used by
Matsumoto, Umezawa, et al., and possesses solu-
tions with Fourier transforms, so that coherent-
state representations of the theory are possible.
The third major result is that the two representa-
tions yield, modulo an irrelevant phase factor,
identical results for the unrenormalized Green's
functions of the theory, an equivalence obtained by

using functional techniques. In addition, it was
seen that there exist a denumerable infinity of cal-
culationally equivalent representations intermediate
to these two. The fourth major result is that the
MU representation manifests particle-soliton
scattering in the static soliton sector, whereas the
CL representation does not. However, it was seen
that the same particle-soliton scattering informa-
tion is carried in the normal modes of the CL rep-
resentation, and thus the exact propagator would

be the same for both methods.
It is useful to discuss the advantages and draw-

backs of both approaches. The first asset of the
CL approach is that the particle spectrum in the
soliton sector is known if the equation (2.16) can
be solved and thus the question of stability is im-

mediately resolved. A second advantage is that the
Feynman rules are simpler, containing no vertices
lower than cubic. The major drawback to the CL
representation is the need to input an exact classi-
cal solution, an item which may not be available.
As a result, calculations of multisoliton effects by
this method have been difficult, and nearly impos-
sible in two- and three-spatial dimensions. The
MU approach has the asset that the equation for f
is much easier to solve, having solutions in any
spatial dimension for multivalued v(x). Thus, the
MU representation in the multisoliton sector may
be obtained easily. However, a drawback of the
MU approach is that the stability and the particle
spectrum of such a sector is not readily apparent.
In addition, the convergence of the series analo-
gous to (3.19) remains to be determined on a case-
by-case basis.

The stability of the sector represented in the MU
approach may be inferred from the form of the
function f used for the asymptotic ground state.
Should the inner product of

~ f, t ) and some other
possible ground state

~

f', t ) vanish, then the two
represent unitarily inequivalent sectors of the
theory. ' In particular, the translationally invari-
ant ground state

~
v, t ), given by

~
v, t) =exp i I d"x vP—(x, t)

~
0),

(5.1)

where v is a constant solution to (2.6), can be used
to ascertain whether the extended object is stable
against collapse into the translationally invariant
sector. Initial results show that the MU represen-
tations of multikink states reflect the instability
determined by other arguments, while spherically
symmetric single-kink states in higher dimensions
are not unitarily inequivalent to the state (5.1).
More complete analysis of this will be presented
elsewhere.

A further extension of the work presented here
would be in analyzing energy-momentum eigen-

states in the soliton sector, and to evaluating the
energy of multikink states using the MU function

f as a first-order approximation for the multikink
classical solution. Finally, the MU method has
been applied to the Abelian Higgs model as a
phenomenological approximation to the supercon-
ductor in order to investigate the formation of vor-
tices. It would be of interest to evaluate the pos-
sible equivalence between this approach and other
treatments of this problem.
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APPENDIX

Attributing the derivation of the perturbation
series (2.48) with propagator (2.51) for the time-
ordered products to the paper by Christ and Lee
stems from several statements made therein [viz.
Eq. (2.8) and remarks following] regarding expan-
sion of the interaction-picture field with a complete
set of eigenfunctions consistent with the classical
solution. However, it is of some concern to exam-
ine the form of the perturbation expansion
developed in Sec. II of this paper to ensure that it
is equivalent to that developed and used by Christ
and Lee elsewhere [viz. Eq. (2.13)] in their paper.
The primary concern is the zero-frequency mode
present in the interaction-picture fields which
could potentially cause infrared divergences to ap-
pear in the perturbation series. This mode is clev-
erly excluded from contributing in the CL forrnal-
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P(x)=i)(x)+Q(t). u r( x ) . (Al)

Clearly, for the static case considered in this paper,
ri is identical to the small fluctuation field em-

ployed by Christ and Lee, and its time-ordered
products will be free of the zero-frequency modes.
The problem is then to resum the perturbation

ism, but appears to contribute to (2.48) —(2.51).
This problem is directly related to the question of
equivalence of the Hamiltonians used in the respec-
tive approaches.

These questions can be resolved simultaneously.
To begin with the interaction-picture field (2.20) is
rewritten as

series (2.48) in such a way as to fold Q into the i)
fields. This is possible because the representation
of the perturbation series used in Sec. II has terms
linear and quadratic in the ri fields when (Al) is
inserted, and so will cause a resummation process
to occur. As in Sec. III this resummation is easier
to accomplish with functional methods. Only the
salient features of this procedure will be presented
since the details are essentially identical to those of
Sec. III. Again, for simplicity only the P case will
be presented.

The resummation is begun by noting that (2.48)
can be represented functionally (see Sec. III of this
paper):

Gci.(x i +Pp(xi)t5J xi
4

Xexp i f dx ——A, . +A,pp(x)
1 5 5
4 i5Jx i5J x

3

Xexp —,'i f dx —dyJ(x)b(x —y)J(y)
J=0

(A2)

If the second exponential is replaced by a path-integral representation (A2) becomes

2

GcL(xi, . . . )= +Pp(xi) Dp f [dP]exp i f dx —,P CI —
& P —4AP APyh +JP—J—p .5 I I 4

i5J xi 0
(A3)

In order to show the resummation it is necessary to split the measure in (A3) into a direct product of the ri
and Q measures. This is done by the replacement

[dg]=[de)[dq]5 f urri (A4)

where the 5 function over space-time prevents the q modes from being integrated by the rt measure, and
there is an implicit sum over all translation modes. This 5 function can be written

5 f u, g = f [d~]exp i f dx ~ u,g (A5)

which is much easier to implement in (A3). Direct substitution of (A4) and (Al) into (A3) gives

GcL«i
5

+go(xi) Dot5J xi

Xf [dq][dm][di)] exp i f dx —,rt Cl— —3A(q. ur) —6A(q ur) i)
ay, '

+ ~q uT q. u~ +~'urn
ay, '

+(J—A(q'ur) —3igo(q T) )i)

+Jq ur ——,Ai) ——,A(q ur) —&pp(q. ur)'-~ (po+q uT)g
J=O

(A6)
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As in Sec. III, the terms cubic and quartic in g, as well as the term proportional to m, may be considered as
interactions and the remaining path integral, linear, and quadratic in g, may be calculated exactly. The q
tegrations are not performed during this process. This functional is in turn replaced by an equivalent path
integral, as in step (3.13) of Sec. III. Leaving the details as an exercise to the reader, the result is

GcL(xi ) = 5
+40(xi) Dol5J xi

X J [dq][dn ][dr).] exp i J dx —, g Cl—
a2A

q
—6A(t'o(q. ur) —3AX —6A,(go+ q ur)g

a((,'

+[1—&1'—3&($0+q. ur)X']g ——„Ag —A(p, + q ur+y)ri'

BAy+(q ur+X)&+m" ur(r)+X)+ —,(q ur) — (q ur)2

——,A(q ur) —A/0(q. uz. )' ——,AX —) ($0+ q. u)g'

where

X(x)= J dy 6'(x —y)[A.(q.ur) +3APO(q ur) ]

and 6' satisfies

a2p'
Cl — —3A,(q ur) —6A,PO(q ur) 6'=5.

2

—3A,(q ur) —6A,QO(q ur) P2 J=0
(A7)

(A9)

(A10)

where c is simply a normalization constant, and that for the P theory

This process of resummation can be repeated an arbitrary number of times, but the form will not be exhibit-
ed since it is possible to see the trend from (A7). Recalling that the translation modes are given by

ur ——c Vgo,

2
= —a +3k,Pp (A 1 1)

it is easy to see that

2 +6k,PO(q ur)+3k, (q ur} = —a +3k,($0+cq Vgo) (A12}

This is the first step in the expansion

$0(x+eq)=$0(x}+cq Vgo(x)+ ' ' ' (A13)

(A14)

the Lagrangian density of the quantum-mechanical extended object with cq acting as the center-of-mass
coordinate of this object.

This process is contained by the next term P, as the diligent reader will verify. The latter terms in (A7}, all
of which are independent of q, are the first terms in the expansion of

$0(x+cq)Clio(x+cq)+ —,a $0 (x+cq) ——,Ago (x+cq) =W($0(x+cq)),
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The final form of the generator, after an infinite number of iterations, is

Gci.(& i
5

+$p(x) Dp
tM xi

)& I [dq][der][dq]exp i I dx

A—[go(x+cq)]rl +J[g+Po(x+cq) P—o(X)]

+sr uT(x) [si+Po(x+cq) —q ur(x) —Pp(x)]

+W(yo(x+cq))
(A15)

This generates the same Feynman rules derived

elsewhere in the Christ-Lee paper and discussed in

path-integral form by Callan and Gross. ' It is ap-

parent that the zero-frequency modes have can-
celed in a consistent way. This completes the
proof of equivalence.
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